Professional summary

Vasilis holds a dual background in engineering (MEng) and in environmental science (PhD). His expertise lies in terrestrial ecosystem biogeochemistry and in its quantification using computational ecology and data science methods. Vasilis’ research involves the development of ecosystem models, of observational data analysis algorithms and of integrated tools that produce actionable information. His work has led to academic publications and commercial agro-environmental software.

Other Publications

Levy et al.Challenges in Scaling Up Greenhouse Gas Fluxes: Experience From the UK Greenhouse Gas Emissions and Feedbacks Program, Journal of Geophysical Research: Biogeosciences, 127, no. 5 (2022). https://doi.org/10.1029/2021JG006743

Myrgiotis et al. The carbon budget of the managed grasslands of Great Britain – informed by earth observations. Biogeosciences 19, 4147–4170 (2022). https://doi.org/10.5194/bg-19-4147-2022 

Myrgiotis et al. Inferring management and predicting sub-field scale C dynamics in UK grasslands using biogeochemical modelling and satellite-derived leaf area data. Agricultural and Forest Meteorology, 307, 108466 (2021). https://doi.org/10.1016/j.agrformet.2021.108466

Sykes et al. Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biology, 26, 1085–1108, (2020). https://doi.org/10.1111/gcb.14844

Myrgiotis et al. Estimating the soil N2O emission intensity of croplands in northwest Europe. Biogeosciences 16, 1641–1655 (2019). https://dx.doi.org/10.5194/bg-16-1641-2019

Ehrhardt et al. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions. Global Change Biology, 24, 603–616 (2018). https://doi.org/10.1111/gcb.13965

Myrgiotis et al. Improving model prediction of soil N2O emissions through Bayesian calibration. Science of the Total Environment, 624, 1467–1477 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.202