Skip to main content

Advertisement

Log in

Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analysed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (SO4*) declined significantly between 1990 and 2008 (−15 to −59 %). In contrast, regional and temporal trends in nitrate were smaller and less uniform. In 11 of 12 regions, chemical recovery was demonstrated in the form of positive trends in pH and/or alkalinity and/or acid neutralising capacity (ANC). The positive trends in these indicators of chemical recovery were regionally and temporally less distinct than the decline in SO4* and tended to flatten after 1999. From an ecological perspective, the chemical quality of surface waters in acid-sensitive areas in these regions has clearly improved as a consequence of emission abatement strategies, paving the way for some biological recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alewell, C., Armbruster, M., Bittersohl, J., Evans, C. D., Meesenburg, H., Moritz, K., et al. (2001). Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany? Hydrology and Earth System Sciences Discussions, 5(3), 367–378.

    Article  Google Scholar 

  • Battarbee, R. W., Monteith, D. T., Juggins, S., Evans, C. D., Jenkins, A., & Simpson, G. L. (2005). Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modelling approaches. Environmental Pollution, 137(1), 135–149.

    Article  CAS  Google Scholar 

  • Brooks, P. D., Campbell, D. H., Tonnessen, K. A., & Heuer, K. (1999). Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrological Processes, 13(14–15), 2191–2201.

    Article  Google Scholar 

  • Brookshire, E. N. J., Gerber, S., Webster, J. R., Vose, J. M., & Swank, W. T. (2011). Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records. Global Change Biology, 17(1), 297–308.

    Article  Google Scholar 

  • Church, M., Shaffer, P., Eshleman, K., & Rochelle, B. (1990). Potential future effects of current levels of sulfur deposition on stream chemistry in the southern Blue Ridge mountains, U.S. Water, Air, & Soil Pollution, 50(1), 39–48.

    CAS  Google Scholar 

  • Clark, J. M., Bottrell, S. H., Evans, C. D., Monteith, D. T., Bartlett, R., Rose, R., et al. (2010). The importance of the relationship between scale and process in understanding long-term DOC dynamics. The Science of the Total Environment, 408(13), 2768–2775.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Evans, C. D., Helliwell, R. C., & Monteith, D. T. (2005). Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters. Environmental Pollution, 137(1), 73–82.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Evans, C. D., Goodale, C. L., & Heaton, T. H. E. (2011). What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems, 14(6), 1021–1037.

    Article  CAS  Google Scholar 

  • Curtis, C. J., & Simpson, G. L. (2014). Trends in bulk deposition of acidity in the UK, 1988–2007, assessed using additive models. Ecological Indicators, 37, 274–286. Part B.

    Article  CAS  Google Scholar 

  • De Wit, H. A., Hindar, A., & Hole, L. (2008). Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway. Hydrology and Earth System Sciences Discussions, 12(2), 393–403.

    Article  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Dukett, J. (2007). Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Applied Geochemistry, 22(6), 1181–1188.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid–base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30(2), 297–306.

    Article  CAS  Google Scholar 

  • Erlandsson, M., Cory, N., Fölster, J., Köhler, S., Laudon, H., Weyhenmeyer, G. A., et al. (2011). Increasing dissolved organic carbon redefines the extent of surface water acidification and helps resolve a classic controversy. BioScience, 61(8), 614–618.

    Article  Google Scholar 

  • Erlandsson, M., Cory, N., Köhler, S., & Bishop, K. (2010). Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification. Journal of Geophysical Research, 115, 8.

    Article  Google Scholar 

  • Eshleman, K. N., Morgan, R. P., Webb, J. R., Deviney, F. A., & Galloway, J. N. (1998). Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resources Research, 34(8), 2005–2016.

    Article  CAS  Google Scholar 

  • Evans, C. D., Harriman, R., Monteith, D. T., & Jenkins, A. (2001a). Assessing the suitability of acid neutralising capacity as a measure of long-term trends in acidic waters based on two parallel datasets. Water, Air, and Soil Pollution, 130(1–4), 1541–1546.

    Article  Google Scholar 

  • Evans, C. D., Monteith, D. T., & Harriman, R. (2001b). Long-term variability in the deposition of marine ions at west coast sites in the UK Acid Waters Monitoring Network: impacts on surface water chemistry and significance for trend determination. The Science of the Total Environment, 265(1–3), 115–129.

    Article  CAS  Google Scholar 

  • Fischer, R., Mues, V., Ulrich, E., Becher, G., & Lorenz, M. (2007). Monitoring of atmospheric deposition in European forests and an overview on its implication on forest condition. Applied Geochemistry, 22(6), 1129–1139.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Norton, S. A., & Church, M. R. (1983). Freshwater acidification from atmospheric deposition of sulfuric acid: a conceptual model. Environmental Science & Technology, 17(11), 541A–545A.

    Article  CAS  Google Scholar 

  • Haines, T. A., & Baker, J. P. (1986). Evidence of fish population responses to acidification in the Eastern United States. Water, Air, & Soil Pollution, 31(3), 605–629.

    Article  CAS  Google Scholar 

  • Helsel, D. R., & Frans, L. M. (2006). Regional Kendall test for trend. Environmental Science & Technology, 40(13), 4066–4073.

    Article  CAS  Google Scholar 

  • Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732.

    Article  Google Scholar 

  • Hovind, H. (2010). Intercomparison 1024: pH, Cond, HCO3, NO3-N, CI, SO4, Ca, Mg, Na, K, TOC, Al, Fe, Mn, Cd, Pb, Cu, Ni, and Zn (Report No. 6029) (p. 75). Oslo: Norsk institutt for vannforskning (NIVA).

  • Hruška, J., Krám, P., McDowell, W. H., & Oulehle, F. (2009). Increased dissolved organic carbon (DOC) in central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environmental Science & Technology, 43(12), 4320–4326.

    Article  Google Scholar 

  • Jenkins, A., Camarero, L., Cosby, B. J., Ferrier, R. C., Forsius, M., Helliwell, R. C., et al. (2003). A modelling assessment of acidification and recovery of European surface waters. Hydrology and Earth System Sciences Discussions, 7(4), 447–455.

    Article  CAS  Google Scholar 

  • Kvaeven, B., Ulstein, M., Skjelkvåle, B. L., Raddum, G. G., & Hovind, H. (2001). ICP Waters — an International Programme for Surface Water Monitoring. Water, Air, & Soil Pollution, 130(1), 775–780.

    Article  Google Scholar 

  • Lawrence, G. B., Simonin, H. A., Baldigo, B. P., Roy, K. M., & Capone, S. B. (2011). Changes in the chemistry of acidified Adirondack streams from the early 1980s to 2008. Environmental Pollution, 159(10), 2750–2758.

    Article  CAS  Google Scholar 

  • Lepori, F., & Keck, F. (2012). Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio, 41(3), 235–246.

    Article  CAS  Google Scholar 

  • Likens, G. E., Wright, R. F., Galloway, J. N., & Butler, T. J. (1979). Acid rain. Scientific American, 241(4), 43–51.

    Article  CAS  Google Scholar 

  • Lyman, J., & Fleming, R. H. (1940). Composition of seawater. Journal of Marine Research, 3, 134–146.

    CAS  Google Scholar 

  • Matzner, E., & Murach, D. (1995). Soil changes induced by air pollutant deposition and their implication for forests in central Europe. Water, Air, & Soil Pollution, 85(1), 63–76.

    Article  CAS  Google Scholar 

  • Mitchell, M., Lovett, G., Bailey, S., Beall, F., Burns, D., Buso, D., et al. (2011). Comparisons of watershed sulfur budgets in southeast Canada and northeast US: new approaches and implications. Biogeochemistry, 103(1), 181–207.

    Article  CAS  Google Scholar 

  • Moldan, F., Kjønaas, O. J., Stuanes, A. O., & Wright, R. F. (2006). Increased nitrogen in runoff and soil following 13 years of experimentally increased nitrogen deposition to a coniferous-forested catchment at Gårdsjön, Sweden. Environmental Pollution, 144(2), 610–620.

    Article  CAS  Google Scholar 

  • Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L., & Malcolm, I. A. (2014). Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008. Ecological Indicators, 37, 287–303. Part B.

    Article  CAS  Google Scholar 

  • Monteith, D. T., Evans, C. D., & Reynolds, B. (2000). Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processes, 14(10), 1745–1749.

    Article  Google Scholar 

  • Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Hogasen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169), 537–540.

    Article  CAS  Google Scholar 

  • Newell, A., & Skjelkvåle, B. L. (1997). Acidification trends in surface waters in the international program on acidification of rivers and lakes. Water, Air, & Soil Pollution, 93(1), 27–57.

    CAS  Google Scholar 

  • Oulehle, F., Chuman, T., Majer, V., & Hruška, J. (2013). Chemical recovery of acidified Bohemian lakes between 1984 and 2012: the role of acid deposition and bark beetle induced forest disturbance. Biogeochemistry, 116(1–3), 83–101.

    Article  CAS  Google Scholar 

  • Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Krám, P., Hruška, J., Navrátil, T., et al. (2008). Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11(3), 410–425.

    Article  CAS  Google Scholar 

  • Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., et al. (2012). Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology, 18(4), 1197–1215.

    Article  Google Scholar 

  • Prechtel, A., Alewell, C., Armbruster, M., Bittersohl, J., Cullen, J. M., Evans, C. D., et al. (2001). Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrology and Earth System Sciences Discussions, 5(3), 311–326.

    Article  Google Scholar 

  • Rogora, M., Mosello, R., & Arisci, S. (2003). The effect of climate warming on the hydrochemistry of Alpine Lakes. Water, Air, and Soil Pollution, 148(1–4), 347–361.

    Article  CAS  Google Scholar 

  • Rogora, M., Mosello, R., & Marchetto, A. (2004). Long-term trends in the chemistry of atmospheric deposition in Northwestern Italy: the role of increasing Saharan dust deposition. Tellus, 56B(5), 426–434.

    Article  CAS  Google Scholar 

  • Rogora, M., Arisci, S., & Marchetto, A. (2012). The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy. The Science of the Total Environment, 417–418, 214–223.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution, 137(1), 165–176.

    Article  Google Scholar 

  • Skjelkvåle, B. L., Stoddard, J. L., & Andersen, T. (2001). Trends in surface water acidification in Europe and North America (1989–1998). Water, Air, & Soil Pollution, 130(1), 787–792.

    Article  Google Scholar 

  • Stevens, C. J., Gowing, D. J. G., Wotherspoon, K. A., Alard, D., Aarrestad, P. A., Bleeker, A., et al. (2011). Addressing the impact of atmospheric nitrogen deposition on Western European grasslands. Environmental Management, 48(5), 885–894.

    Article  CAS  Google Scholar 

  • Stoddard, J. L., Jeffries, D. S., Lukewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401(6753), 575–578.

    Article  CAS  Google Scholar 

  • Stoddard, J. L., Traaen, T., & Skjelkvåle, B. L. (2001). Assessment of nitrogen leaching at ICP-Waters sites (Europe and North America). Water, Air, & Soil Pollution, 130(1), 781–786.

    Article  Google Scholar 

  • Stoddard, J. L., Kahl, J. S., Deviney, F. A., DeWalle, D. R., Driscoll, C. T., Herlihy, A. T., et al. (2003). Response of Surface Water Chemistry to the Clean Air Act Amendments of 1990 (No. EPA 620/R-03/001) (p. 78). United States Environmental Protection Agency (US EPA).

  • Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., et al. (2012). Introduction to the European Monitoring And Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmospheric Chemistry and Physics, 12(12), 5447–5481.

    Article  Google Scholar 

  • Waller, K., Driscoll, C. T., Lynch, J., Newcomb, D., & Roy, K. (2012). Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition. Atmospheric Environment, 46, 56–64.

    Article  CAS  Google Scholar 

  • Wright, R. F., Larssen, T., Camarero, L., Cosby, B. J., Ferrier, R. C., Helliwell, R., et al. (2005). Recovery of acidified European surface waters. Environmental Science & Technology, 39(3), 64A–72A.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to all Focal centres that submit data to the ICP Waters programme centre, making large regional assessments of the environmental state of nutrient poor, acid-sensitive lakes, and rivers possible. We also thank the Norwegian Environment Agency and the Trust fund under UNECE for economic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind A. Garmo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garmo, Ø.A., Skjelkvåle, B.L., de Wit, H.A. et al. Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut 225, 1880 (2014). https://doi.org/10.1007/s11270-014-1880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1880-6

Keywords

Navigation