SALTMED

A systems approach to a sustainable increase in irrigated vegetable crop production in salinity-prone areas of the Mediterranean region

Contract number: IC18-CT98-0301

SALTMED

- The project was funded by the European Union between 1998 and 2002
- We started with an initial meeting in Brighton in February 1999
- The project was coordinated from Sussex in the UK and there were four other main Partners

Partners

Consejo Superior de Investigaciones Cientificas, Spain	Professor Jesús Cuartero
The Arab Centre for the Studies of Arid Zones and Dry Lands, Syria	Dr Abdel Rahman Gaibeh Dr Gilani Abdelgawad
Menoufiya University, Egypt	Professor Nabeel Malash
Centre for Ecology & Hydrology, UK	Dr Ragab Ragab

Co-ordinator

- Coordinator Dr Tony
 Yeo (and then
 Professor T J Flowers
- University of Sussex Plant Stress Unit School of Biological Sciences Brighton BN1 9QG United Kingdom

Dr. Tony Yeo

Dr. Abdel Rahman Ghaibeh 1940-2001

Objective

- To increase productivity and sustainability of irrigated vegetable cropping in salinity-prone land
 - the project focused on tomato with field sites in Egypt and Syria
 - the project had relevance to all salt-affected irrigated systems and
 - one hectare in five world-wide

Goals

- To provide Guidelines for farmers of salinity-prone irrigated land
- To enhance the salt tolerance of tomato through the application of physiological criteria to established conventional breeding programmes with the help of molecular markers

Work Packages

EU projects are divided into WorkPackages

- 1. Modelling at field sites
- 2. Laboratory studies on plant salt/water balance and seedling pre-adaptation
- 3. Breeding of elite lines of tomato

Field sites

Egypt

Field sites

Syria

Water regimes

- The experimental design was based on **Drip** (Trickle) and **furrow** irrigation systems
- Water was applied in one of two regimes, either *Mixed*: apply mixed saline and fresh water with different ratios or *Alternate*: apply fresh and saline water separately i.e. fresh water when the crop is at sensitive stage for salinity and saline water when the crop is at a more salinity tolerant stage.

Water regimes

100% fresh (all irrigations with fresh water)
80% fresh and 20% saline
60% fresh and 40% saline
40% fresh and 60% saline
20% fresh and 80% saline
100% saline (all irrigations with saline water)

- In **field** conditions, tomato volume decreased with increasing salinity of the irrigation water for both irrigation methods
- Fruit yield and fruit number were highest with the combination of drip irrigation and mixed management

- In **glasshouses**, salinity reduced the commercial yield, mainly due to a decrease in fruit weight and to a lesser extent by a reduction in fruit number and by increasing blossom end rot in fruits.
- In controlled conditions, tomato plants haloconditioned at the 3 to 5 day-old stage produced more shoot and root biomass than nontreated controls plants

- Of the physiological traits, 'Root Na selectivity', 'Leaf tissue tolerance', 'Leaf-to-leaf tolerance' and the 'K/Na ratio', root Na selectivity showed the highest correlation with dry weight.
- Particular care is required for the PCR based AFLP procedure using tomato

- Professor Cuartero will describe the effects of salinity on
 - Tomato yield, plant water uptake and tomato fruit quality
- He will also discuss overcoming the negative effects through
 - Pre-treatment, increasing relative humidity and choice of cultivars

- A mathematical model, entitled **SALTMED**, was developed that incorporated evapotranspiration, plant water and solute transport, crop yield and biomass production
- There was good agreement between simulated and observed yield for the three years tested confirming the value of SALTMED as a tool for use by experts in the management of salt-prone irrigation systems

- You will here about the experiments used to generate data to check the model and
- Ragab will describe the model in some detail and give you a demonstration of it in action.

This Workshop

- Generated from SALTMED
- Funded by the EU to enable the dissemination of the findings
- After the presentations the Partners will be pleased to try to answer any questions that you might have