Hydro-JULES WP5: Hydrological Applications: the State of the Art

Jamie Hannaford Leader, Hydrological Status and Outlooks Group, CEH

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

Derwent Valley Reservoirs, 28th July 2018. (Katie Muchan)

Hydrological Applications and Evaluation

5.1: Enabling science for hydrological applications

5.2: Exploit data assimilation techniques for multiple observational sources

5.3: Participate in international benchmarking and intercomparisons

Centre for Ecology & Hydrology TURAL ENVIRONMENT RESEARCH COUNCIL

British Geological Survey ATURAL ENVIRONMENT RESEARCH COUNCIL

5.1: Enabling Science for Hydrological Applications

- Objective: advance hydrological forecasting for the UK at seasonal scales to support the development and application of HydroJULES outputs
- Team: Vicky Bell, Katie Smith, Cecilia Svensson

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Focus: Hydrological Outlook UK

- Launched Oct 2013
- Produced monthly as an operational product
- Provides forecasts of river flow and groundwater levels for the next 1 – 3 months and beyond

Prudhomme, et al. (2018). Hydrological Outlook UK: an operational streamflow and groundwater level forecasting system at monthly to seasonal time scales (Hydrological Sciences Journal)

Hydrological Outlook UK

Method	Description	Scale	Forecast horizon	Example forecast	
1) Flows modelled using dynamic rainfall ensemble	Probabilistic forecasts using GloSea5 rainfall ensemble	National across Great Britain (1km grid)	1 and 3 months	Lowest rainfail forecast 1 st quartile Median	3 rd quartile Highest rainfall forecast
2) Persistence and analogy	Statistical based on persistence and historical analogues	Catchments over UK	1 and 3 months	River flow outlook for Jan 2017 Fercat flow Recettlie Re	month river flow outlook starting Jan 2017 Microk usegory magn. (door) mage I High eq. 13 Mean March 132.02 Mean March 202.02 Benermal 0.28.07.2 Benermal 0.28.07.2
3) Ensemble	Probabilistic	Catchments	Up to 12	Just and a second	e Low →088 Expected probability etas
Streamflow	forecasts using	over	months		- 10 miles
Prediction (ESP)	historical rainfall ensemble	England & Wales			alle all all all
Prudhomme, et al. (2018). Hydrological Outlook UK: an operational streamflow and groundwater level forecasting system at monthly to seasonal time scales					ate de

(Hydrological Sciences Journal)

Summary of forecast skill When? Who? **Method** Where? **Example skill maps** 1.) Flows At 1 to 3mn lead North and Bell et al. 3-mn: Aut/Wint modelled using time, most skilful West (2018)dynamic rainfall for Aut/Wint AutW in 3-month ensemble 1-mn: July Forecast type W. mean South and Svensson 2.) Persistence At 1 to 3mn lead Sh. w. mean Doreiet and analogy time, most skilful East (2016)Correlation 0.8 0.5 for Summer 0.23 No forecast 6-mn: January South and 3.) Ensemble At 3 to 12mn lead Harrigan et **Streamflow** time, most skilful East al. (2018) **Prediction** for Aut/Wint (ESP) At 1mn lead time, Note: different metrics and most skilful for hindcast periods, but darker/ Summer larger symbols = more skilful

Unlocking the potential of forecasts

 $\begin{array}{c} 12\text{-month ESP forecast from September 2018}\\ Catchment: Dove at Kirkby Mills (27042) \end{array}$

Potential of gridded approach: Relative dryness maps (Ali Rudd, Vicky Bell)

Centre for Ecology & Hydrology Exploring the ESP ensemble (Maliko Tanguy, Nikos Mastrantonas)

Maximising the impact of UK research on drought & water scarcity

Planned new developments

- Develop new forecast products (flow, soil moisture) using new higher spatial and temporal seasonal weather predictions (from UK Met Office).
- Evaluate skill and influence of higher resolution on uncertainties; feedback into HydroJULES development
- Improved integration of Outlook approaches (Met forecasts, ESP, statistical analogues)
- Long-term: evaluation (and incorporation?) of Outlooks based on HydroJULES modelling
- Long-term: International applications (with SUNRISE, HydroSOS)

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

5.2: Data Assimilation

- Objective: exploit the potential for wider use of data assimilation techniques for state-updating and parameter estimation
- Team: Simon Dadson, Jon Evans, Maliko Tanguy, Phil Harris

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

Exploiting new datasets

Real-time, wide area soil moisture <u>https://cosmos.ceh.ac.uk/</u>

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

moisture (Evans et al. 2016, *Hyd Proc*)

Earth Observation soil moisture vs COSMOS-UK soil

Exploiting new datasets

Real-time, wide area soil moisture <u>https://cosmos.ceh.ac.uk/</u>

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

0.8

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

0.8

CHIMN CHIMN Soil moisture [m³ m⁻³] Έ 0.6 0.6 JULES SM [m³ 0.4 0.4 N: 496 0 0.2 RMSE: 0.02 JULES CRS r2:0.75 0.0 0.0 2013 2012 0.0 0.6 0.8 0.2 0.4 CRS SM [m3 m3] 0.8 0.8 SHEEP SHEEP Soil moisture [m³ m⁻³] E 0.6 0.6 JULES SM [m³ 0.4 0.4 N: 386 0.2 0.2 RMSE: 0.02 r²:0.66 0.0 0.0 2012 2013 0.0 0.2 0.6 0.8 0.4 CRS SM [m3 m3]

JULES soil moisture vs COSMOS-UK soil moisture (Evans et al. 2016, *Hyd Proc*)

Planned new developments

- Development of 1km² near-real-time gridded soil moisture product combining Earth Observation and COSMOS UK
- Explore soil moisture dry-down processes and land-atmosphere coupling, to improve model process descriptions and enhance skill in hydrological simulation
- Prototype data assimilation using range of techniques (ensemble Kalman filters and 4-D variational methods for hydrological state updating)

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

5.3: Evaluation and Benchmarking

- Objective: develop evaluation framework/protocol and benchmarking configurations to support and quantify the project advances during its lifetime.
 Participate in world-leading model intercomparison programmes.
- Team: Alberto Martinez, Emma Robinson, Toby Marthews

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Evaluation system

- International LAnd Model Benchmarking project (www.ilamb.org)
- Compare gridded model outputs to observation/reference datasets
- Calculates a series of standard metrics pixel by pixel.
- We will customise ILAMB (new metrics relevant to time/space scales and new datasets, e.g. COSMOS))

Evaluation

Example output for Earth2Observe (Alberto Martinez)

National Centre for Atmospheric Science Example benchmark: JULES soil moisture outputs from CHESS at 1km² (CHESS-Land)

Planned new developments

- Development of HydroJULES evaluation framework at the national scale using ILAMB as a baseline and incorporating relevant metrics/datasets
- Routine testing of new HydroJULES development with the evaluation framework. Easy access and use for HydroJULES collaborators.
- Coupled/uncoupled routine testing of HydroJULES developments adapted by JULES using the existing UK ocean-land-atmosphere coupled model system UKCx (Lewis et al, 2018).
- Extension of the evaluation framework to the global scale and participation in international model intercomparison

National Centre for Atmospheric Science

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Summary

- The demand for timely and robust hydrological predictions grows ever greater in a changing world
- WP5 will provide a framework (testbeds, tools, case studies...) to demonstrate, test and evaluate HydroJULES modelling outputs in realworld applications
- But it's not just the 'end of the pipe': application requirements will drive model design and development in an iterative process

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science

