MS Cumulative Effects Framework

Workshop B Sept 14th 2020

UK Centre for Ecology & Hydrology

University of the Highlands and Islands Oilthigh na Gàidhealtachd agus nan Eilean

the strate Pag

Tender for Production of Cumulative Effects Framework for Key Ecological Receptors: Ref: CORR/5536 Organogram for proposed UKCEH team and sub-contractors

Project Overview

Robust assessment of cumulative effects requires a consistent and transparent approach to the collation and analysis of the best available data.

Three key requirements for developing a Cumulative Effects Framework (CEF):

• A Data Library, including Knowledge Base and Data Store, holding the key knowledge, parameters and data that feed into each of the modelling tools

• An R package that contains functions to run each of the modelling tools, link them together in feasible combinations, and perform a project-level or cumulative assessment

• A user interface that allows non-technical users to generate predicted impacts at a population level for both individual projects and cumulative assessments, with a clear audit trail to provide transparency and reproducibility

Project Work Packages

on activity and key receptors, and development of associated database

WP 2: Estimation of project level effects

WP 3: Estimation of cumulative effects

<u>WP 4: Web Application Development</u>

<u>WP 5:</u> Stakeholder engagement

<u>WP 1:</u> Collation of generic information e.g. biometrics and project level information

CEF and Workshop B

- Workshop B to cover data requirements feeding into data store and knowledge base
- Engagement with participants: Have we identified the right parameters? What data are out there that we should be using? > How can we access this data?

Workshop C – Data Sign-off

- Workshop C to run c. mid-November
- Purpose:
 - Presentation of data store and knowledge base
 - Stakeholder sign-off on contents

Technical Working Groups (TWGs) - BIRDS

- Series of c. 5 TWGs for ornithology
- Will run between Workshop B (Data Requirements) and Workshop C (Data Sign-off)
- Will run mid-Sept to mid-Nov
- Small group of key users
- Advising on technical details:
 - Density data and spatial layers
 - OWF project specifications
 - Consensus defaults
 - Cumulative effects/integrating displacement and collision
 - Uncertainty

TWGs (MAMMALS)

- Series of c. 2 TWGs for marine mammals
- Will run between Workshop B (Data Requirements) and Workshop C (Data Sign-off)
- Will run mid-Sept to mid-Nov
- Small group of key users
- Advising on technical details:
 - Project level effects
 - > Other marine mammal species

mmals ata Requirements) and Workshop C

Workshop D – Demonstrator version

- Workshop D to run c. mid-December
- Purpose:
 - Presentation of "demonstrator" version of the CEF
 - within it
 - shortly after Workshop D

> Final discussion of structure of the CEF, and how tools will be used

Final sign-off on the agreed methodology for the project will follow

1	1	1

MS Cumulative Effects Framework

Framework

WP5 – Stakeholder engagement

Cumulative Effects Framework

- 1. Framework
- 2. Data Library
- 3. Final assessment including record of analysis
- 4. User interface via web browser

Cumulative Effects Framework

- 1. Framework
- 2. Data Library
- 3. Final assessment including record of analysis
- 4. User interface via web browser

Data Library: store + knowledge base

Data Library

Core data

- Key datasets / tool inputs
- Alternative versions
- Defined procedures for updating core data store
- Avoid duplication (common values stored in a simple format)
- Metadata + additional information
 - Online 'manual'
- User-supplied data
 - Specific assessment

MS Cumulative **Effects Framework**

Data Store: Parameters

Jniversity of the Highlands and Islands high na Gàidhealtachd

UK Centre for Ecology & Hydrology

Data Store

- Hold data necessary to run tools for CEF
 - Marine Scotland Apportioning Tool
 - ORJIP Sensitivity Mapping Tool
 - Stochastic Collision Risk Model
 - Displacement Matrix
 - SeaBORD
 - Natural England PVA Tool
 - iPCoD
 - Agent Seal

For CEF

Project Scope

- Collate data in format necessary for each tool
- E.g processed survey data from within wind farm footprints
- Beyond the scope of this project to collate raw survey data

or each tool within wind farm footprints o collate raw survey data

Data

- Data will be stored in a simple (e.g. "Tidy" format)
- Metadata file associated with each dataset created using R Markdown

Exc	el									
Fil	e	Hor	ne	Ir	nser	t F	orm	ulas	Data	Review
9	~ Ľ] ~	\$	3	Cali	bri		~ 1	1 ~	B
A1			~	f_{x}	SP.	д				
	Α			В		С		D	E	
1	SPA		Subs	ite_r	Re	ceptor	FR	_metric	Foraging	range
2			Gen	eric	Со	mmon	ΙMe	ean		3.2
3			Gen	eric	Re	d-throa	d Me	ean		4.5
4			Gen	eric	Eu	ropean	Me	ean	NA	
5			Gen	eric	Le	ach's st	¢Με	ean		657
6			Gen	eric	No	orthern	ΙMe	ean		134.6
7			Gen	eric	M	anx she	٤Me	ean		136.1
8			Gen	eric	No	orthern	(Me	ean		120.4
9			Gen	eric	Eu	ropean	Me	ean		9.2
10			Gen	eric	Co	rmorar	n Me	ean		7.1
11			Gen -	eric	Bla	ack-legg	Me	ean		54.7

Foraging Range Data

Summary

This databaset contains information related to assable of program states from a service. The review searched published from an in order to identify stated as which help published braging meng data and used these data to calculate generic foreigning image estimates (Mean, Mean Meanman and Neoimann). These data are used in the cambrid the effects framework to upperconcentration.

Data Source and authors

Data are taken from a literature envire carried out by the BTO (with additional input from the REPR) under contract to NRAS, working on banking of the Clown Estain. The literature issuch covered papers and reports published up to April 2018, including both pan-inversed papers and gray filerature. Additional data from the BTO and from the REPR FAME and STAR projects were also included for some spocials. Generic foreigning intege estimations were calculated using data see also included for analysis. Census foreigning intege estimations were calculated using data see also included for available methods for each species. For most spocies the foreigning range estimates are based on the bart foreigning range estimates is provided in the original report - this is wrinkible for each species, dispending on the number of studies and the viriability across different sites. Site -species for signals that available related in this densem (provided the SPA essenting) for each species (aspecies) and the species). The review define assess data quality for site-species (aspecies) foreigning intege to instructions on the sambar (provided the number of birds tracked (singer simple sizes will generally little to integer a site assess will applie for such species (beinging ranges bat includes information on the number of studies and the number of birds tracked (singer simple sizes will generally little to integer assess estimates).

References

Woodward, I.D., Boundo, C.B., Owin, E. & Cook, A.S.C.P. 2019. Desir-based revision of satebood foraging marges cased for HRA screening. Report of work carried out by the BTO on behalf of NRAS and the Crown Estate. BTO, Therbord.

Folder01: v1.0 original data created 11/09/2020 by lan Wo

Update details

No updates

Terms of Use These data are published in a publicly available report and are therefore freely available to use, subject to standard copyright terms.

Data set attribution

How to cite use of this dataset (TBC)

Data Store Location

This may not be necessary for and users, Data Store structure will be hidden but it might be useful.

Section: Current default folder

Display

Related or additional info

The 2019 review that produced the foreiging ranges used in this dataset updated provices results an earlier roview published in 2012 (Quepts et al. 2012. Seekind foreiging ranges as a preliminity for identifying candidate Marine Protected Amas. Biological Conservation 158: 53-61). The field descriptions are as follows:

Subsetup.comps. The name of the adults for which the longing ango data were collected. The word "Connect" will be used in this field if the data refer to generic foreiging range estimates for the spaces. Receptor: Epicies name.

Cole, Medice: The foreiging range metric - can be 'Mean', 'WeekWeek' or 'Week'
Corective, course: The foreiging range (km).

Keywords Seabirds, foraging ranges

> **British Trust for** Ornithology

Tool	Data needs			
Marine	Colony locations			
Scotland	Densities			
Apportioning Tool	Development footprint			
	Apportioning %ages			
ORJIP Sensitivity Mapping Tool	Breeding season definition			
	Abundance maps from MERP			
	Apportioning %ages			
	Colony locations			
	Development footprint			

Data needs
Body length
Wingspan
Flight speed
Flight height distribution / % at Collision r
Avoidance Rate
Bird densities
Flight type (flap/glide)
Nocturnal activity
Development latitude
N turbines
Rotor diameter
Wind farm width
% time operational
N Blades, Pitch, blade width

Tool	Data needs
SeaBORD	Adult & Chick body mass at start of breeding
	Chick mass gain
	Adult & Chick energy expenditure
	Maximum prey intake rate
	Assimilation efficiency
	Energy gained from prey
	Energy density of tissue
	Energetic cost of flight/foraging etc.
	Length of chick rearing period
	Minimum body mass for chick/adult
	Minimum nest attendance
	Colony size & location
	Development footprint
	Displacement rate

Tool	Data needs
Displacement	Breeding season period
Matrix	Bird density
	Displacement rate
	Mortality rate for displaced birds
PVA Tool	Juvenile, Immature & Adult Survival Rates
	Maximum brood size
	Age at first breeding
	Productivity rates
	Population size
	First & Last year of operations

Data Inputs MAMMALS

Tool	Data needs
iPCoD	Demographic parameters for each species
	Abundance for each species/MU
	Project level impact estimates (Disturban
	Project details – timing of impacts
AgentSeal	Habitat preference map
	Location of haul out and proportion of sea
	Number of seals
	Energetics parameters
	Diet parameters

s and MU

nce, auditory injury, collisions)

als at each

understand • assess • mitigate

Data Inputs

- Some tools more complex than others
- Some commonalities in the data needs (e.g. density data)
- Other data more unique to specific tools

hers needs (e.g. density data) ic tools

Points for discussion

- Any glaring omissions?
- Best sources for these data?
 - Reviews (e.g. Woodward et al. 2020, Horswill & Robinson 2018)
 - Environmental Statements
 - MERP
- How do we balance generic & site-specific data?

• What data should be in the data & what should be provided by users?

To consider over lunch....

- How do we set a quality threshold for including data (e.g. density data) • Best sources for species baseline data (e.g reviews/papers etc.) • As assessed, as consented & as built wind farm parameters
- - Which to include?
 - Where to access?

