

WORKSHOP PLANNING

WORKSHOP	WHEN	WHO
A User Stories	August	Government, consultants, developers
B Database Content	September	Specialists
C Database QA	Late Oct/early Nov	Specialists
D Interface	End Nov/early Dec	End users

WORKSHOP PLANNING

WORKSHOP	WHEN	WHO
A User Stories	August	Government, consultants, developers
B Database Content	September	Specialists
C Database QA	Late Oct/early Nov	Specialists
D Interface	End Nov/early Dec	End users

WORKSHOP A

AIM: Understand the functionality required from the project outputs.

Objectives:

- Refined user stories
- o Improved understanding of functionality requirements
- o Improved understanding of outputs required
- Future additions/refinements

tionality requirements outs required

BREAKOUT SESSIONS

14:00-16:00 **Pre-allocated**

Breakout session	Chair	Scribe	Co-chair
Birds I	Julie Black	Tom Evans	Adam Butler
Birds II	Aonghais Cook	Katharine Keogan	Francis Daunt
Birds III	Kate Searle	Aly McCluskie	Orea Anderson
Mammals I	Carol Sparling	Carl Donovan	Ross Culloch
Mammals II	Esther Jones	Sarah Canning	John Harwood

MS Cumulative **Effects Framework**

USER STORIES

University of the Highlands and Islands ilthigh na Gàidhealtachd

UK Centre for Ecology & Hydrology

USER STORIES

I want to ----- (action)

So that ------ (benefit)

USER STORY 1.a

Consultant (MacArthur Green)

Undertaking in-combination seabird impact assessment (for HRA)

- worst-case, assessed (consented) version.
- manner
- Simplify review of HRA by SNCBs etc.

Seabird in-comb HRA

- Avoid debate about 'correct' values to use for wind farms A, B, etc.

- Potential to apply methodological updates retrospectively to older wind farms - Potential to update wind farm parameters to reflect actual design rather than

Preserve uncertainties in raw data (where available) through the stages of impact - Combine uncertainties across project's in consistent, robust and transparent

Rapidly update whole impact prediction based on requested changes.

USER STORY 1.b

Consultant (MacArthur Green)

Undertaking cumulative seabird impact assessment (for EIA)

- worst-case, assessed (consented) version.
- manner
- Simplify review of HRA by SNCBs etc.

Seabird CIA

- Avoid debate about 'correct' values to use for wind farms A, B, etc.

- Potential to apply methodological updates retrospectively to older wind farms - Potential to update wind farm parameters to reflect actual design rather than

Preserve uncertainties in raw data (where available) through the stages of impact - Combine uncertainties across project's in consistent, robust and transparent

Rapidly update whole impact prediction based on requested changes.

USER STORIES 1a and 1b. FUNCTIONALITY

- Central repository for all seabirds wind farm data no need to review older project assessments to find values for inclusion (work already done).
- Contain agreed tables of data for each wind farm:
- wind farm design parameters (rotor number, dimensions etc) need to be defined as 'assessed', 'consented', 'as-built', etc.
- seabird monthly densities in flight and on the sea
- assessment method parameters, e.g. collision model parameters (avoidance rate, etc.)
- impact assessment outputs (e.g. monthly collisions)

UK Centre for Ecotogy & Hydrogynd extract all levels of data, including,

Wind form data tables

USER STORIES 1a and 1b. FUNCTIONALITY

- View and extract all levels of data, including,
- Wind farm data tables;
- sCRM results;
- Displacement modelling results;
- PVA results.

the tool.

– Use any one part of the CEF tool, e.g. only output data tables, or CRM results, etc. or all parts of

11

USER STORIES 1a and 1b. OUTPUTS

- Legally robust, agreed, cumulative impact assessment; Report of all inputs; Report each output;
- SCRM monthly predictions;
- Seasonal displacement predictions;
- agreed metrics (as a csv file).

PVA abundance prediction per time step per run AND currently

USER STORY 2 Mammal CIA and HRA

Role:	Consultan	
Action:	Carry out windfarms consent ap	
Benefit:	 An und interes Provide Approp popula 	

it on behalf of developer

- lerstanding of the predicted long-term effects on the population of t to inform the EIA and HRA
- e the competent authority with enough information to carry out an oriate Assessment on the potential effect on the Moray Firth SAC tion

- an assessment of the population consequence of impacts from offshore s on the Scottish east coast bottlenose dolphin population to include in a pplication for a specific proposed offshore wind farm project.

USER STORY 2. Functionality

- Ability to enter predicted project level effects for current and future planned projects within the management unit
 - Ability to include auditory injury
 - Ability to include disturbance
 - Ability to include direct mortality
- Ability to explicitly consider the temporal pattern of the different activities
- Ability to incorporate stochasticity demographic and environmental
- Ability to incorporate uncertainty in input parameters and in effects estimation

USER STORY 2. Functionality

- Ability to consider vulnerable portion of the population (if appropriate based on movement of individuals and spatial scale of impacts)
- Produce outputs that describe the predicted future effects of the combined activities on future population trajectories
- Ability to create generate clear and understandable graphical outputs and summary statistics
- Produce outputs that meet the requirements of statutory advisors and regulators

USER STORY 2. OUTPUTS

Annual predicted population size for multiple simulations of impacted and unimpacted population, with associated uncertainty

Record of settings selected to allow others to recreate/provide audit trail

Selected graphical outputs

USER STORY 3 Bird planning/leasing round

Role:	Seabed Leasing authority
Action:	Understand <i>kittiwake</i> head
Benefit:	Design plan areas which can environmental impacts with integrity (when considered

room in *southern north sea*

n foreseeably navigate the consenting process; hin acceptable limits and no adverse effect on site l in combination with existing plans and projects).

USER STORY 3. FUNCTIONALITY

- Central repository for all seabirds-windfarm data. Agreed values for
- Wind farm design parameters ____
- Seabird monthly densities in flight and at sea —
- Default Model parameters
- Default regional population size and SPA citations —
- Collision and displacement effects apportioned appropriately to linked SPAs ____

USER STORY 3. FUNCTIONALITY

Interface needs

- Select regions, (or SPAs), of concern
- Input plan areas and generic windfarm design parameters ____
- Choose between 'as built' or 'as consented' windfarm designs for existing projects —
- Simple to run and ability to save user inputs/choices
- Run multiple scenarios simultaneously
- Clear and understandable outputs —

USER STORY 3. OUTPUTS

- Breakdown of estimated effects; number of kittiwakes colliding, number displaced.
 Summarised by (month or season). With and without plan area
- For SPAs with functional link to plan area: SPA population impacts and predicted trajectories.
 With and without plan area
- Quantified uncertainty; collision, displacement, demographic impacts/population trajectory.
 Detailed summary of user choices, inputs and 'behind the scenes' decisions, defaults,
- Detailed summary of user choices, inpu assumptions etc.

MS Cumulative **Effects Framework**

SPECIES LISTS

University of the Highlands and Islands ilthigh na Gàidhealtachd

UK Centre for Ecology & Hydrology

FORMAT

- Species, data modules
- What is missing
- Effects or impacts mechanism
- Priority species

EMAIL TO US

By 28th August

MS Cumulative **Effects Framework** WINDFARM DESIGN

University of the Highlands and Islands thigh na Gàidhealtachd

UK Centre for Ecology & Hydrology

Wind turbine design is evolving.....

Year of Operation

CONSENTED VS AS-BUILT

- Larger turbines so.....
- Need fewer of them so.....
- Lower impacts
- Leads to spare 'capacity' within consent
- Legal position of this capacity?
- How likely is this capacity to be used?

within consent acity? y to be used?

CONSENTED VS AS-BUILT

CEF can't solve this question

CEF wind specifications module

Further discussion in Workshop B and/or TWG

