
Developing a cumulative effects framework (CEF) for key ecological receptors in relation to offshore wind in the UK

UK Centre for Ecology & Hydrology

Scottish Government Riaghaltas na h-Alba gov.scot marinescotland

University of the Highlands and Islands

Project Overview

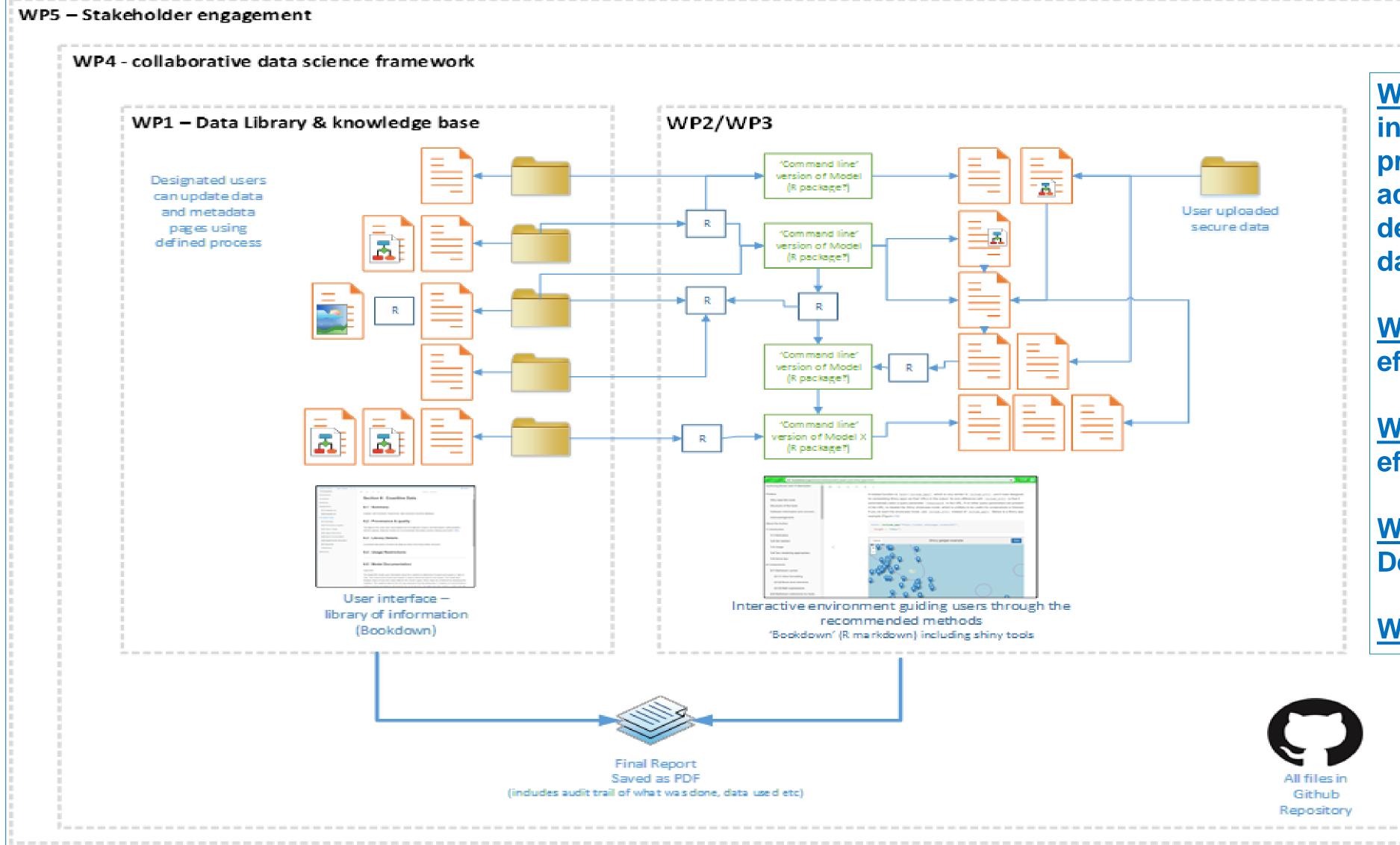
Robust assessment of cumulative effects requires a consistent and transparent approach to the collation and analysis of the best available data.

Three key requirements for developing a Cumulative Effects Framework (CEF):

• A Data Library, including Knowledge Base and Data Store, holding the key knowledge, parameters and data that feed into each of the modelling tools

• An R package that contains functions to run each of the modelling tools, link them together in feasible combinations, and perform a project-level or cumulative assessment

• A user interface that allows non-technical users to generate predicted impacts at a population level for both individual projects and cumulative assessments, with a clear audit trail to provide transparency and reproducibility



Key elements

WP 1: Collation of generic information e.g. biometrics and project level information on activity and key receptors, and development of associated database

WP 2: Estimation of project level effects

WP 3: Estimation of cumulative effects

WP 4: Web Application Development

WP 5: Stakeholder engagement

Session 1: defining populations

Session 2: apportioning

- SNH Apportioning tool
- MSS Apportioning tool
- BDMP

Session 3: displacement

- -Displacement Matrix
- -SeabORD

Overview of tools

Session 4: collision -sCRM

Session 5: PVA - NE/JNCC PVA tool

CEF – TWG Consensus Defaults Session 1 – Defining populations

Defining populations

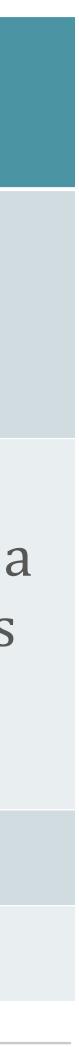
The tools in the CEF need an input table in the (approximate) following format:

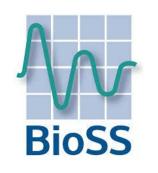
Population	SPA	Long	Lat	Species	Count		Type of count	Wind farm interactions					SeabORD only - list Seabird 2000 subsites
Name	Yes	Х	У	BLKI	1462	2015	AON	WF1	WF2	WF3	WF4	WF5	(select from drop down)
Aa	Yes							No					
Bb	Yes							Yes for assessment and apportioning					
Сс	No							Yes but only for apportioning					
	•••	•••	•••			•••			•••	•••	•••		

Is it possible for the SNCBs to supply the information for these tables for each OWF footprint that will be stored in the Data Library?

If not, is there a simple mapping functionality we could use within the CEF to help users population this table using datasets for SPA boundaries, the SMP, and SB200?

Possible sources of population size/location data


Tool	Source of population size and location data	Could this source be changed within the CEF?		
FAME maps / ORJIP Sensitivity Mapping Tool	Seabird 2000 (sub-sites)	No – would require remodelling of GPS data, which is beyond scope		
SNH Apportioning (as implemented in ORJIP Sensitivity Mapping Tool)	Seabird 2000 (sub-sites)	Probably – can be changed, but depending upon having a comprehensive set of counts that cover all colonies to be considered in apportioning		
SeabORD	Various	Yes, very easily		
NE/JNCC PVA tool	Various	Yes , very easily		



Possible sources: SMP, Seabird 2000, other?

Default data sources to use for SeabORD, Apportioning tools and NE/JNCC PVA tool - should the same source always be used within all of these tools?

Matching of colonies within data sources to SPA boundaries

How to resolve this?

Historic data (SMP, Seabird 2000) do not always align with SPA boundaries

Key issues - 3

Set of colonies to consider for apportioning

Are all colonies/SPAs within foraging range considered?

How is foraging range selected?

source?)

Which year is used? (always the most recent from within the chosen data

Key issues - 4

Matching colonies to those used in producing FAME maps

This is necessary whenever using these maps as inputs to SeabORD, or when using the MSS Apportioning tool

Only relevant for 4 species (kittiwake, guillemot, razorbill, shag)

FAME maps produced using Seabird 2000 subsites, so involves aligning to these



Key issues - 5

Making sure the tools can be aligned to S2k – "futureproofing"

CEF – TWG Consensus Defaults

Session 2 - Apportioning

Session 1: defining populations

Session 2: collision -sCRM

Session 3: displacement -Displacement Matrix -SeabORD

Overview of tools

Session 4: apportioning

- SNH Apportioning tool
- MSS Apportioning tool - **BDMPS**

Session 5: PVA - NE/JNCC PVA tool

Apportioning

For a particular location at sea what percentage of birds originate from each of the possible breeding colonies?

Breeding season – SNH Apportioning and MSS Apportioning Tools

Non-breeding season – BDMPS

MSS apportioning tool is only available for four species: Kittiwake, Guillemot, Razorbill, Shag

SNH and MSS Apportioning Tools

Both of these tools assume that the percentage of birds arising from each colony y at a particular location x is proportional to:

Size of colony y x Relative abundance of birds from colony y at location x

Relative abundance is derived from:

a) **SNH tool** - an assumption that relative abundance is proportional to (1 / distance by sea to colony squared)

b) **MSS tool** - estimated colony-specific utilisation distributions, derived by modelling multi-colony GPS data (Wakefield et al., 2017)

Defaults for apportioning tools

SNH and MSS apportioning tools rely on specification of:

- a) Data on locations and sizes of **all** colonies
- b) Foraging range

c) Any **exclusion rules** (e.g. colonies that are within the foraging range, but should *not* be included in apportioning)

For MSS apportioning tool (a) the colony locations follow Seabird 2000 sub-sites, (b) foraging ranges are as in Wakefield et al. (2017), and (c) there are no exclusion rules SNH apportioning tool – what choices should we make for each of these?

BDMPS

BDMPS is both spatial and temporal

- spatial scale fixed

- but the population sizes in each region are required should these be set as defaults (based on Furness report)?
- Do they need to be updated?

Temporal variation relates to seasons -

- These are likely to differ across the UK
- migration

- Should these be set as defaults in the CEF? By region?

There may be overlap between seasons, e.g., March may be both migration and breeding seasons 'extended breeding season' = longest breeding season, March included in breeding but not in

- 'migration-free breeding season' = shorted breeding season, March included in migration only

CEF – TWG Consensus Defaults Session 3 – Displacement

Inconsistencies in 'displacement' and 'avoidance' rates

The displacement matrix, SeabORD and the sCRM all require an input parameter that captures 'macro-avoidance' in some form:

from the area and not enter the footprint post-construction

However, there are important inconsistencies in how these parameters are specified and used within the two modelling approaches:

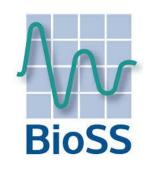
In SeabORD:

- to forage within it
- susceptible (will not forage within or fly through an OWF footprint), or they are susceptible to neither

the percentage of birds seen in the footprint pre-construction that would be displaced entirely

The <u>displacement rate</u> is the proportion of individuals within a population that will not enter an OWF footprint

SeabORD also specifies a '<u>barrier rate</u>' – the proportion of individuals who are displacement-susceptible that are also barrier-susceptible; this is usually set to 100% so all birds are either both displacement **and** barrier



Inconsistencies in 'displacement' and 'avoidance' rates

Displacement matrix and sCRM:

- and on the water); whilst the <u>avoidance rate in sCRM approaches is applied</u> only to birds in flight
- capture *only macro avoidan*ce (birds not entering the OWF footprint at all)
- relation to how flux rate is estimated)

The <u>displacement rate in the matrix approach applies to **all birds** observed within an OWF footprint (in flight</u>

The <u>avoidance rate</u> used in sCRM calculations encompasses *three different scales of avoidance: micro, meso and macro*. However, the <u>displacement rate</u> used within the matrix approach is intrinsically assumed to

The <u>avoidance rate</u> used within sCRM models *incorporates a correction* to account for model error (e.g., in

Situations in which SeabORD may be used:

- **Species:** kittiwake, guillemot, razorbill, puffin
- Locations:
 - Utilisation Distribution (UD)
 - FAME colony-level maps may also be used for colony UDs, but only for:
 - Kittiwake
 - Guillemot
 - Razorbill
 - - may not be reflective of current habitat use

Ideally anywhere where there is good local GPS tracking data that can used to derived a colony

The use of at-sea maps for deriving colony UDs for SeabORD (e.g., puffins) is difficult because: - SeabORD models only breeding birds, at-sea survey data comprises all birds The SNH apportioning tool must be used to create a colony-level UD At-sea survey data is variable in terms of the time period in which it was collected and

Key issues

1. What default rates should be used?

- Displacement and barrier rates in SeabORD
- Displacement rate in the matrix
- Avoidance rate in the sCRM
- Mortality rate from displacement in matrix
- Buffer distances

2. Should displacement and avoidance rates be the same?

3. SeabORD has other inbuilt parameters that will have been calibrated against data, and will not be available for users to change

SeabORD parameters

Baseline – size and mass	Source	Change default?
Breeding adult body mass (at start of chick rearing period)	From literature/empirical data	Yes, but recalibrate prey availability
Initial chick body mass	From literature/empirical data	Yes, but recalibrate prey availability
Maximum chick mass gain per day	From literature	No, requires additional calibration against time-energy budgets
Baseline - energetics and prey		
Adult daily energy expenditure	From literature	No, requires additional calibration against time-energy budgets
Chick daily energy requirement	From literature	No, requires additional calibration against time-energy budgets
Maximum prey intake rate	Fixed in calibration	No, requires additional calibration against time-energy budgets
Intake rate function parameters	Fixed in calibration	No, requires additional calibration against time-energy budgets
Assimilation efficiency	From literature	No, requires additional calibration against time-energy budgets
Energy gained from prey	From literature	No, requires additional calibration against time-energy budgets
Energy density of the bird's tissue	From literature	No, requires additional calibration against time-energy budgets
Energy cost of nesting at colony	From literature	No, requires additional calibration against time-energy budgets
Energy cost of flight	From literature	No, requires additional calibration against time-energy budgets
Energy cost of resting at sea	From literature	No, requires additional calibration against time-energy budgets
Energy cost of foraging	From literature	No, requires additional calibration against time-energy budgets
Energy cost of warming food	From literature	No, requires additional calibration against time-energy budgets
Baseline - demography		
Baseline adult survival rates	From literature/empirical data	Yes, but recalibrate mass-survival relationship
Length of chick rearing period	From literature/empirical data	No, requires additional calibration against time-energy budgets
Body mass below which adult is assumed dead (as proportion of mean mass)	From literature	No, requires additional calibration against time-energy budgets
Body mass below which adult abandons chick (as proportion of mean mass)	Fixed in calibration	No, requires additional calibration against time-energy budgets
Body mass below which chick is dead (as proportion of initial mass)	From literature	No, requires additional calibration against time-energy budgets
Time threshold for unattendance at nest before chick dies	Fixed in calibration	No, requires additional calibration against time-energy budgets
Adult mass-survival relationship - slope parameter	From literature	Potentially could be changed?
Baseline - behaviour		
Flight speed	From literature	No, requires additional calibration against time-energy budgets
Time step to use for modelling foraging	From literature/empirical data	No, requires additional calibration against time-energy budgets

CEF – TWG Consensus Defaults

Session 4 - scrM

Stochastic CRM: MS tool

- 1. Band Option(s)
- 2. Flight Heights: Project specific data?
- 3. Nocturnal activity; Garthe & Hüppop 2004 sCRM

Band Options

Option 1: basic Band model using site specific data for proportion of birds at risk height.

Option 2: basic Band model using generic data for proportion of birds at risk height.

Option 3: extended Band model using generic data for flight height distributions.

Option 4: extended Band model using site specific data for flight height distributions.

Flight Heights

Band Option 3: generic flight height information (Johnston et al 2014)

Band Option 2: generic flight height information (PCH)

Band Option 1: PCH from boat surveys? Not available all projects...

Nocturnal activity

Garthe & Hüppop 2004 rankings (on a scale of 1-5).

sCRM tool: Proportion of daytime activity (0-1). With SD of this proportion.

Other evidence? (e.g. northern gannet: Furness et al. 2018, nocturnal activity 8% of daytime, SD 9.1)

CEF – TWG Consensus Defaults

Session 5 - PVA

Inputs for NE/JNCC PVA tool

- 1. Baseline demographics
- 2. Initial population size(s) and year(s)
- 3. First and final year of ORE operation

Annual effects of OREs – within the CEF derived from outputs from other tools (sCRM, Displacement Matrix, SeabORD)

1. Baseline demographics


Rate	Geographic level	Source
Productivity	Colony specific where possible, otherwise generic	Colony specific: SMP; Generic: Horswill & Robinson (2015)
Adult survival	Colony specific where possible, otherwise generic	Horswill & Robinson (2015)
Juvenile survival	Colony specific where possible, otherwise generic	Horswill & Robinson (2015)
Age at first breeding	Generic	Horswill & Robinson (2015)
Maximum brood size	Generic	Horswill & Robinson (2015)

			Populations in H&R (2015) with data for:			
Species	MBS	AFB	Adult survival	Juvenile survival		
Arctic Skua	2	4	Foula	Fair Isle		
Atlantic Puffin	1	5	Fair Isle, IoM, Skomer	Canada		
Common Guillemot	1	6	Canna, Colonsay, IoM, Skomer	IoM		
Common Tern	4	3	USA	Germany		
Northern Fulmar	1	9	Eynhallow	Antarctica		
Great Black-Backed Gull	3	5	Non-UK	Non-UK		
Great Cormorant	4	3	Denmark	Denmark		
Herring Gull	3	5	IoM, Skomer	IoM, Skomer		
Black-Legged Kittiwake	2	4	IoM, Foula, Skomer	North Shields		
Lesser Black-Backed Gull	3	5	IoM, Skomer	Skomer		
Little Tern	1	2	Non-UK	Non-UK		
Northern Gannet	1	5	Bass Rock, Ailsa Craig	Bass Rock, Ailsa Craig		
Razorbill	1	5	IoM, Skomer, Shiants	Canada		
Sandwich Tern	3	3	UK?	UK?		
European Shag	4	2	IoM	IoM		

1. Baseline demographics

Questions:

- What amount of productivity data in the SMP is sufficient to use colony-level a rather than generic rates?
- What if productivity data are only available for part of an SPA? b)
- Should colony-level data only be used within the SPA they originate from, or **C)** should they also be used at nearby colonies? If the latter, how nearby?
- Should colony-specific rates for adult/juvenile survival always be used when **d)** these are available?

2. Initial population sizes

Possible sources: SMP Seabird 2000 Other

Note: aim will be to future-proof the CEF to be able to use S2K data in future, but timescales mean this will not be one of the data sources in the initial version of the CEF

3. First and last year of ORE operation

Needed for each project within the Data Store

Project specifications (e.g. number of turbines) are currently assumed to be constant between the first and last year of operation

Assumption is that effects become zero after the last year of operation

SYNTHESIS: what have we agreed?

Session 1: defining populations

Session 2: apportioning

- SNH Apportioning tool
- MSS Apportioning tool
- BDMPS

Session 3: displacement

-Displacement Matrix

Overview of tools

Session 4: collision -sCRM

Session 5: PVA - NE/JNCC PVA tool

Synthesis Defining populations

Defining populations

Some sort of mapping functionality within the CEF to help users populate table, using datasets for SPA boundaries, the SMP, and SB200

Crude but generically applied approach to matching SMP count sections with SMP boundaries

Acknowledged that Seabirds Count will be in SMP: future proofed approach

CEF – TWG Consensus Defaults Synthesis Apportioning

Colonies/Apportioning

Are all colonies/SPAs within foraging range considered? YES. Might include non-UK colonies

How is foraging range selected? Based on Woodward et al. 2019, details TBC

Which year is used? CEF makes suggestions, user to choose

spatial scale fixed


Look at updating regions based on SMP? *I.e. more interactive version of BDMPS*

Temporal variation relates to seasons:

- Generic seasons within each region
- evidence for different timings))

Synthesis Displacement

Key issues

- 1. What default rates should be used?
 - Displacement and barrier rates in SeabORD:
 - Displacement rate in the matrix:
 - Mortality rate from displacement in matrix

USER DEFINED. NO DEFAULT SHOULD BE SUPPLIED

2. Should displacement and avoidance rates be the same? NOT ESSENTIAL. Flag if non-sensible combinations applied.

3. Buffers. Preference to use project data where possible. Ideally facility to apply different displacement rate to buffer.

Synthesis sCRM

Stochastic CRM: MS tool

1. Band Option(s): All available. Constrain to 'BASIC' (option 1 or 2), or 'EXTENDED' (option 3 or 4).

suitable.

3. Nocturnal activity: Garthe & Hüppop 2004 sCRM: suggestions please!

2. Flight Heights: Project specific data incorporated where available and

Synthesis PVA

1. Baseline demographics

Default position is to carry over from existing tool. CEF team to flag with PVA PSG if issues arise when applying in cumulative context.

CEF to update PVA tool to allow different effects over time (ORE on/off grid).

CEF team to ask RUK for project-specific timelines.

