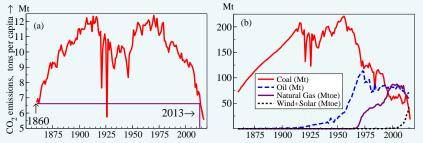
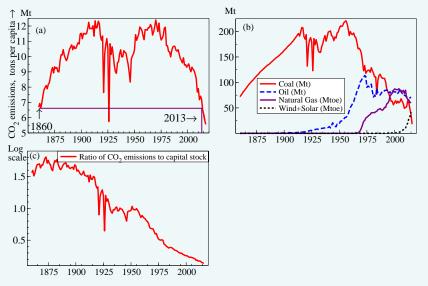


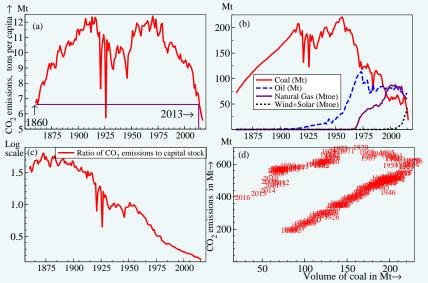
Modelling the UK's CO2 Emissions

David F. Hendry

Nuffield College, INET and Climate Econometrics, Oxford Martin School Research with Jurgen Doornik, Luke Jackson, Andrew Martinez and Felix Pretis http://www.climateeconometrics.org/


BEIS September 2018


CO₂ emissions p.c. below 1860 level, yet real incomes >7-fold higher


CO₂ emissions mainly driven by coal usage till mid-1970s; drop in oil use after crises

CO₂ emissions have fallen by 92% relative to capital stock

CO₂ emissions have no constant relations to individual fuel usages, and all time series are highly non-stationary.

To capture changing relations, the model includes:

(a) the 2 main CO₂ emitters, coal and oil, + capital stock & GDP;
(b) dynamics for adjustments to changes in technology, legislation & fuel prices;
(c) impulse indicators for outliers (e.g., from strike action);

(d) step indicators for major permanent shifts (often policy induced).

To capture changing relations, the model includes:

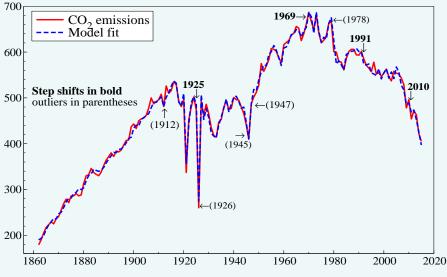
(a) the 2 main CO₂ emitters, coal and oil, + capital stock & GDP;
(b) dynamics for adjustments to changes in technology, legislation & fuel prices;
(c) impulse indicators for outliers (e.g., from strike action);

(c) impulse indicators for outliers (e.g., from strike action);
(d) step indicators for major permanent shifts (often policy induced).

Both linear and log-linear relations were investigated, but linear models were strongly preferred.

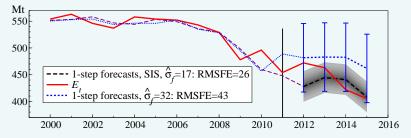
Powerful new modelling tool called indicator saturation: impulse (IIS) and step (SIS).

Indicators (c) & (d) only capture features not explained by (a)–(b).


Mis-specification tests check the selected model is well specified.

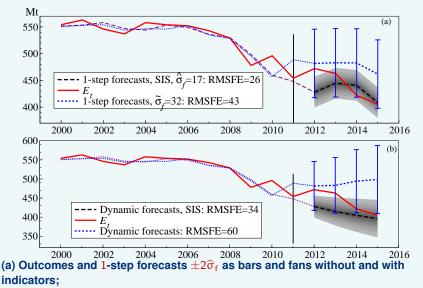
- Found 3 large step indicators, also identifiable with major events:
- **1925:** Act of Parliament creating UK's nationwide electricity grid.
- **1969**: start of conversion from coal gas to natural gas.
- **2010:** follows implementation of the UK's Climate Change Act of **2008** and EU's renewables directive of **2009**.
- We did not impose that policy had an effect-the data tell us it did.
- Also found 1991: emissions higher later than model explains. Long-run equilibrium-correction (cointegrating) relation was:
- $\widetilde{\mathsf{E}}_{\mathsf{t}} = \begin{array}{c} 2.67 \ \text{Coal}_{\mathsf{t}} \ + \ 2.06 \ \text{Oil}_{\mathsf{t}} \ + \ 0.20 \ \text{Capital}_{\mathsf{t}} \ \ 8.23 \ \text{GDP}_{\mathsf{t}} \\ (0.07) \ (0.25) \ (0.05) \ (2.25) \end{array}$
 - $+ \begin{array}{cccc} 41.5 \\ 5_{1925} \\ 6.7 \end{array} \\ \begin{array}{c} 72.4 \\ 5 \\ 16.5 \end{array} \\ \begin{array}{c} 81_{1969} \\ \end{array} \\ \begin{array}{c} 43.4 \\ 5_{1991} \\ 14.0 \end{array}$
- All variables significant at 1% (S_{1991} was marginal at 2.3%). Being at the end of the estimation sample, S_{2010} was left unrestricted.

Graphical outcome of modelling



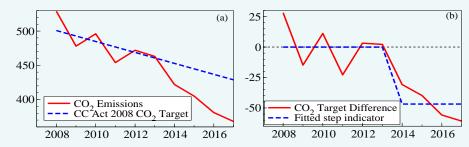
Actual and fitted values for total UK CO₂ emissions.

System 1-step and dynamic forecasts



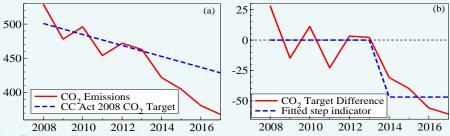
(a) Outcomes and 1-step forecasts $\pm 2\widehat{\sigma}_f$ as bars and fans without and with indicators.

System 1-step and dynamic forecasts



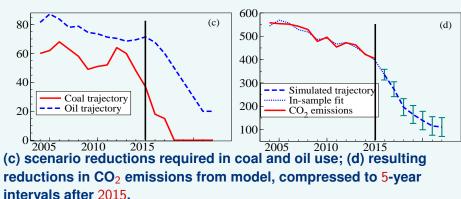
(b) Outcomes and h-step forecasts $\pm 2\widehat{\sigma}_{f}$ as bars and fans without and with indicators.

Testing the UK's achievement of its 2008 Climate Change Act targets


5-year targets converted to annual magnitudes, starting 20Mt above and ending 20Mt below average, scaled by 0.8 as share of CO₂ in all UK greenhouse gases.

Testing the UK's achievement of its 2008 Climate Change Act targets

5-year targets converted to annual magnitudes, starting 20Mt above and ending 20Mt below average, scaled by 0.8 as share of CO₂ in all UK greenhouse gases.


(a) Tested difference between targets and outcomes being zero from 2009: null of "emissions=targets" strongly rejected with a negative mean of -18Mt pa, & t-test of -2.67 (p < 0.03): panel (a). (b) SIS found step of -46.8 in 2013 with t = -5.9: panel (b). Similar approach could evaluate if countries meet their Paris Accord NDCs.

 CO_2 emissions to drop to 120 Mt pa. from 1990 base of 590 Mt. Simulated a scenario with no coal and 70% fall in oil use to around 20 Mt p.a., implicitly with a 75% reduction in CO_2 emissions from natural gas & 50% from agriculture, construction and waste (currently c 100 Mt p.a.).

 CO_2 emissions to drop to 120 Mt pa. from 1990 base of 590 Mt. Simulated a scenario with no coal and 70% fall in oil use to around 20 Mt p.a., implicitly with a 75% reduction in CO_2 emissions from natural gas & 50% from agriculture, construction and waste (currently c 100 Mt p.a.).

Need to add back CO₂ embedded in net imports for full appraisal.

- UK climate policy has been effective:
- large reductions in CO₂ emissions have had only a small aggregate cost, but local losses have not been properly addressed;
- 'stranded assets' could be a potential problem if legislation imposes lower CO_2 emissions targets.

UK climate policy has been effective:

large reductions in CO₂ emissions have had only a small aggregate cost, but local losses have not been properly addressed;

'stranded assets' could be a potential problem if legislation imposes lower CO₂ emissions targets.

Thank you

References I

Castle, J. L., J. A. Doornik, D. F. Hendry, and F. Pretis (2015). Detecting location shifts during model selection by step-indicator saturation. *Econometrics* 3(2), 240–264.

Castle, J. L. and N. Shephard (Eds.) (2009). The Methodology and Practice of Econometrics.

Committee-on-Climate-Change (2018a). An independent assessment of the UK's Clean Growth Strategy—from ambition to action.

https://www.theccc.org.uk/publication/independent-assessment-uks-clean-growth-strategy-ambition-action/

Committee-on-Climate-Change (2018b). Reducing UK emissions, Progress Report to Parliament. https://www.theccc.org.uk/publication/reducing-uk-emissions-2018-progress-report-to-parliament/

Doornik, J. A. (2009). Autometrics. See Castle and Shephard (2009), pp. 88-121.

- Feinstein, C. H. (1972). National Income, Expenditure and Output of the United Kingdom, 1855–1965. Cambridge: Cambridge University Press.
- Hendry, D. F. and J. A. Doornik (2014). Empirical Model Discovery and Theory Evaluation. Cambridge, Mass.: MIT Press.
- Hendry, D. F. and F. Pretis (2016). Quantifying the uncertainty around break dates in models using indicator saturation. Working paper, Economics Department, Oxford University.
- Johansen, S. and B. Nielsen (2009). An analysis of the indicator saturation estimator as a robust regression estimator. See Castle and Shephard (2009), pp. 1–36.

Mitchell, B. R. (1988). British Historical Statistics. Cambridge: Cambridge University Press.

Pfeiffer, A., R. Millar, C. Hepburn, and E. Beinhocker (2016). The '2° C capital stock' for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy. Applied Energy 179, 1395–1408.

Stage 1: selecting indicators in the general model

Following this path, we **first** find for T = 1862-2011, testing constancy over 2012-2015:

$$\begin{split} E_t &= \begin{array}{c} 0.51 \\ 0.07 \end{array} E_{t-1} + \begin{array}{c} 2.44 \\ 0.11 \end{array} C_t - \begin{array}{c} 1.14 \\ 0.19 \end{array} C_{t-1} + \begin{array}{c} 1.03 \\ 0.26 \end{array} K_t - \begin{array}{c} 0.92 \\ 0.25 \end{array} K_{t-1} \\ &+ \begin{array}{c} 1.67 \\ 0.26 \end{array} O_t - \begin{array}{c} 0.689 \\ 0.25 \end{array} O_{t-1} + \begin{array}{c} 2.24 \\ 2.1 \end{array} G_t - \begin{array}{c} 6.34 \\ 2.1 \end{array} G_{t-1} \\ &+ \begin{array}{c} 54.6 \\ 11947 \end{array} H_{1947} + \begin{array}{c} 85.9 \\ 122 \end{array} S_{1925} - \begin{array}{c} 119 \\ 200 \end{array} S_{1926} + \begin{array}{c} 52.8 \\ 133 \end{array} S_{1927} \\ &+ \begin{array}{c} 51.9 \\ 111 \end{array} S_{1945} - \begin{array}{c} 49.6 \\ 111 \end{array} S_{1946} - \begin{array}{c} 34.0 \\ 8.6 \end{array} S_{1969} - \begin{array}{c} 36.3 \\ 36.3 \end{array} S_{1983} \\ &+ \begin{array}{c} 45.3 \\ 133 \end{array} S_{1984} - \begin{array}{c} 19.2 \\ 19.2 \\ 19.2 \end{array} S_{1991} + \begin{array}{c} 46.9 \\ 32010 - \begin{array}{c} 37.3 \\ 221 \end{array} \end{split}$$

$$\begin{split} \widehat{\sigma} &= 10.1 \ \ \mathsf{R}^2 = 0.994 \ \ \mathsf{F}_{\mathsf{ARCH}}(1,148) = 3.87 \\ \mathsf{F}_{\mathsf{AR}}(2,127) &= 2.13 \ \ \mathsf{F}_{\mathsf{RESET}}(2,127) = 3.86^* \ \ \mathsf{F}_{\mathsf{nl}}(6,141) = 8.72^{**} \\ \chi^2_{\mathsf{nd}}(2) &= 8.73^* \ \ \mathsf{F}_{\mathsf{Het}}(3,120) = 0.87 \ \ \mathsf{F}_{\mathsf{Chow}}(4,129) = 0.68 \end{split}$$

One impulse and **ten** step indicators selected despite $\alpha_1 = 0.001$. Residual non-Normality suggests using a less tight criterion for IIS.

Similar analysis applies to using both IIS and SIS: N > T is no barrier for a multi-path algorithm that selects in large feasible blocks.

Using both IIS and SIS, we found **one** impulse (1947) and **10** step indicators, many of which can be combined as differences.

Similar analysis applies to using both IIS and SIS: N > T is no barrier for a multi-path algorithm that selects in large feasible blocks.

Using both IIS and SIS, we found **one** impulse (1947) and **10** step indicators, many of which can be combined as differences.

Step Date	Value	99% Lower	99% Upper	99% Range (±)	Coverage
1925	86	1925	1925	0	1.000
1926	-119	1926	1926	0	1.000
1927	54	1927	1927	0	0.991
1945	52	1944	1946	1	1.000
1946	—50	1945	1947	1	1.000
1969	-34	1967	1971	2	0.998
1983	-36	1982	1984	1	0.993
1984	45	1983	1985	1	0.999
1991	-19	1986	1996	5	0.991
2010	47	2009	2011	1	0.999

Confidence intervals for the selected break dates (see Hendry and Pretis, 2016).

Fourth, transforming to a model in differences and the lagged cointegration relation from (1), then re-estimating, revealed a significant non-normality test, so IIS was re-applied at 0.1%, which yielded (for 1861–2011, testing constancy over 2012–2015):

$$\begin{split} \Delta E_t = & 1.65 \ \Delta O_t + & 2.45 \ \Delta C_t + & 0.93 \ \Delta K_t - & 0.43 \ Q_{t-1} - & 60.2 \\ & (0.23) \ & + & 41.7 \ S_{2010} + & 71.1 \ \Delta^2 S_{1925} - & 41.6 \ \Delta S_{1983} + & 51.5 \ \Delta S_{1945} \\ & + & 56.5 \ \mathbf{1}_{1947} - & 30.9 \ \mathbf{1}_{1912} + & 34.0 \ \mathbf{1}_{1970} + & 30.7 \ \mathbf{1}_{1978} \qquad (3) \\ & \widehat{\sigma} = & 9.44 \ R^2 = & 0.94 \ F_{\text{ARCH}}(1, 149) = & 1.77 \\ F_{\text{AR}}(2, 136) = & 0.56 \ F_{\text{RESET}}(2, 136) = & 6.20^{**} \ F_{\text{nl}}(6, 126) = & 2.14^* \\ & \chi^2_{\text{nd}}(2) = & 3.76 \ F_{\text{Het}}(3, 133) = & 1.18 \ F_{\text{Chow}}(4, 138) = & 1.11 \end{split}$$

Changes in oil, coal and the capital stock all lead to changes in emissions, which then equilibrates back to the long-run relation in (1). Q_{t-1}^2 was marginally significant if added, and markedly reduced the significance of the RESET test.

Data definitions

E,	=	CO ₂ emissions, millions of tonnes (Mt)	[1], [2].				
0 _t	=	Net oil usage, millions of tonnes	[3]: 1 tonne = 0.984 imperial tons.				
C _t	=	Coal volumes in millions of tonnes	[4].				
Gt	=	real GDP, \$10 billions, 1985 prices	[5], [7], [8]a (1993), [10].				
K _t	=	capital stock, <i>\$</i> billions, 1985 prices	[6], [7], [8]c (1972,1979,1988,1992)				
1 _{abcd}	=	impulse indicator of unity in year abcd					
Sabed	=	step indicator of unity up to year abcd					
Δx_t		$(x_t - x_{t-1})$ for any variable x_t					
		$\Delta x_t - \Delta x_{t-1}$					
Source							
	-	Institute http://www.wri.org/our-work/project/cait-climate-data-	explorer				
		.uk/government/collections/final-uk-greenhouse-gas-emissions					
[2] Office for National Statistics (ONS)							
https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2015;							
[3] Crude oil and petroleum products: production, imports and exports 1890 to 2015 Department for Business, Energy and							
Industrial Stra							
		Brief http://www.carbonbrief.org/analysis-uk-cuts-carbon-record					
	[5] ONS https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts#timeseries;						
[6] ONS							
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/bulletins/capitalstocksconsumptionoffixedcapital/2014-11-14#capital							
[7] Mitchell (1988) and Feinstein (1972);							
[8] Charles Bean (from (a) Economic Trends Annual Supplements, (b) Annual Abstract of Statistics, (c) Department of							
Employment Gazette, and (d) National Income and Expenditure);							
[9] UN Statistical Yearbook and Christopher Gilbert;							
[10] ONS, Blue Book and Annual Abstract of Statistics and Economic Trends Annual Supplement.							

228.6
205.7
215.4
214.3
161.3
157.2
139.0
117.0

Table 3: Pounds of CO₂ emitted per million British thermal units (Btu) of energy produced. Source: US Department of Energy https://www.eia.gov/tools/faqs/faq.php?id=73&t=11.

Power generating technology costs \pounds /MWh	Low	Central	High
Nuclear PWR (Pressurized Water Reactor)(a)	82	93	121
Solar Large-scale PV (Photovoltaic)	71	80	94
Wind Onshore	47	62	76
Wind Offshore	90	102	115
Biomass	85	87	88
Natural Gas Combined Cycle Gas Turbine		66	68
CCGT with CCS		110	123
Open-Cycle Gas Turbine		162	170
Advanced Supercritical Coal Oxy-comb. CCS	124	134	153
Coal IGCC with CCS (b)	137	148	171

(a) New nuclear power: guaranteed strike price of £92.50/MWh for Hinkley Point C in 2023
(b) IGCC =Integrated Gasification Combined Cycle