TCRE1.5: Quantifying the cumulative carbon emissions consistent with a 1.5C global warming

Pierre Friedlingstein and Richard Millar* University of Exeter * Now at the Committee on Climate Change and University of Oxford

IPCC WG1 SPM : Cumulative emissions of CO2 largely determine global mean surface warming by the late 21st century and beyond

IPCC AR5 WG1 SPM

IPCC AR5 Cumulative Emissions Assessment

- To limit warming to *likely* less than 2° C from CO₂ alone, total emissions need to be limited to less than 1000 GtC.
- Accounting for non-CO₂ forcing as in RCP2.6 reduces the allowed cumulative emissions to about **790** GtC.

IPCC AR5 WG1 SPM

IPCC AR5 Cumulative Emissions Assessment

Historical emissions from the GCP Global Carbon Budget

- Cumulative budget for 1870-2016: 600±65GtC
- About 190GtC left for 2°C (less than 20 years at current rate)

And about nothing left for 1.5° C

Confirmed on the web/twitter/blog-osphere

● ● ● Google	🗙 🈏 (1) Janne Peljo (@JPeljo) Twitt 🗙 🤹 Remaining carbon budget - Mer 🗙 +					
	0% + (i) 🏔 https://www.mcc-berlin.net/en/research/co2-budget.html 🗐 ••• 😎 🏠 👱 III					
Amost Visited 🔊 Latest Headlines	🗦 iGoogle 🛛 Google Scholar @ UExeter Mail E University of Exeter, 🎿 Journal of Climate E 🛃 NatWest Personal b 🗧 Société Générale	\gg				
Working gro	In the Paris Agreement, all countries worldwide decided to limit global warming to well below 2°C					
Publications	(ideally as much as 1.5°C) compared to pre-industrial levels. This is extremely ambitious and	(ideally as much as 1.5°C) compared to pre-industrial levels. This is extremely ambitious and essentially means that we are tightening our carbon budget. In concrete terms, it means that reaching the 2°C target with a medium probability would allow us to emit at maximum only about				
Master These	essentially means that we are tightening our carbon budget. In concrete terms, it means that reaching the 2°C target with a medium probability would allow us to emit at maximum only about					
Cooperation	720 gigatonnes (Gt) of CO ₂ between 2018 and 2100 into the atmosphere (stand 1.1.2018). ¹ However, at present the world is still emitting 40 Gt of carbon dioxide. ⁴ This equals 1,268 metric toppes per second					
The Carbon time left until CO: year month day hou 17 3 21 9 CO2 budget left 692'284'268'760 More →	Clock is ticking a budget depleted w min sec 5 51 39 2°C scenario 2°C scenario 2°C scenario 2°C scenario 1'268 me left until CO ₂ budget depleted vear month day hour min sec 0 0 0 2 17 64 CO ₂ budget left [tons] exhausted by: 215'731'234 Iower estimate Iower estimate					

The clock is ticking. The carbon clock of the Mercator Research Institute on Global Commons and Climate Change (MCC) shows just how little time is left for political decision-makers. Visitors of

ETER https://www.mcc-berlin.net/en/research/co2-budget.html

JNIVERSITY OF

Where did we go wrong ?

E

Where did we go wrong ? "Small" errors matter here

Warming vs cumulative emissions Mind the mess

Warming vs cumulative emissions

Let's check models "performances"

Q1: What is the simulated warming by the time the ESM compatible emissions reached present-day emissions (565 GtC)

Let's check models "performances"

Q2: What are the simulated compatible emissions by the time the ESM reached present-day warming (1°C)

Also inconsistent with the past

No reason to believe that climate & carbon cycle feedbacks would be so different in the near future than in the past !

Same for non-CO2 forcing: it just can't explain it

Can we do better?

Take CMIP5 models

Millar et al, Nature Geo 2017

Normalize ESMs to present-day warming and emissions

Millar et al, Nature Geo 2017

Table 2 | Future cumulative budgets (GtC) from January 2015 for percentiles of the distribution of RCP2.6 simulations of CMIP5 models and various levels of future warming above the modelled 2010-2019 average.

Warming above	Percentiles of CMIP5 models				
2010-2019 average (°C)					
	90%	66%	50%	33%	10%
0.3	89	106	118	133	245
0.4	106	152	173	193	NA
0.5	126	191	214	258	NA
0.6	143	242	303	NA	NA
0.7	170	291	NA	NA	NA
0.8	177	372	NA	NA	NA
0.9	277	NA	NA	NA	NA
1.0	468	NA	NA	NA	NA
1.1	NA	NA	NA	NA	NA

Percentiles correspond to the percentage of CMIP5 models that have greater cumulative emissions for the given level of warming. If an insufficient number of models warm above a particular threshold to calculate a given percentile of the total model distribution then a value of NA is given.

Assume an historical human-induced warming of about 1.0°C, remaining budget (from 2015) is about **190 GtC** (as opposed to **65 GtC** in AR5). **0.1°C** uncertainty on historical warming translates into about **40GtC** uncertainty in remaining budget

b

More consistent with simple extrapolation of the past

Cumulative emissions since 2015 (GtC)

Observed "TCRE" range (GCP CO₂ emissions and HadCRU global temperature). Calculate linear fit. 1.5°C gives a remaining C budget of about 300 GtC left.

Also confirmed by more recent studies

Goodwin et al., Nature Geo 2018

Tokarska and Gillett, Nature CC 2018

Conclusion

IPCC AR5 estimate of remaining carbon budget for **1.5°C** was **60GtC**

Our estimate is about **200 GtC.** This is consistent with observations and also confirmed by recent studies).

That's about **20 years** at current emission level (or **40 years** assuming emissions decrease linearly, **starting now**)

For 2°C, remaining budget is about 400GtC

Last: don't believe everything you find on the web about 1.5°C !

Thank you

