Future Ganga: Science needs for water security India-UK workshop, 2-4 December, 2015, Delhi

Water and Hazards

Rajiv Sinha Department of Earth Sciences IIT Kanpur

River Hazards in the Ganga basin

- What do we know about the process and impacts?
- What has been done for their mitigation?
- What needs to be done for mitigation and prevention?

The Ganga Basin: Modern climatic factors

Monsoonal climate –
2000 mm in 3 mths

Precipitation 2x
 W to E in Plains

Slopes variable

(Sinha et al., 2005, Himalayan Geology)

Complex spatial response of rivers

Consequences:

- Stream power variable ⇒ water & sediment discharge, slope
- Changes river's equilibrium profile ⇒ Incision / Aggradation
- Geomorphic diversity across the plains

Spatial Variability in River Energy

Tectonics and Climate in the Ganga dispersal systems

Tectonic +Climate → Stream power

(Sinha et al., 2005, Geomorphology)

Consequences:

- Complex spatial response of rivers
- Changes river's equilibrium profile → Incision / Aggradation
- Differential sensitivity to external forcings such as climate change

Sediment Output Variability

Active floodplain Inactive floodplain

Valley Margin

Mid channel bar

Transverse bar

Alluvial island

Chute channel Secondary channel

Ox bow lake

Flood channel

Marshy/Wetland

Meander cutoff

Meander Scrolls

Abandoned point bar

Sand patches

Bankfull level

Abandoned braid bar

Point bar Confluence bar

Side bar

Alluvial Island

Geomorphic Diversity

Aggradational valleys Migratory rivers

Geomorphic

Why is this diversity important?

Uttar Pradesh

Uttarakhand

Kandur

Nator

- Implications for flood management
- Morphological control on river dynamics
- Defines specific habitat conditions and stresses the need of their maintenance
- Differential response to external forcings e.g. climate change
- Important for knowledge-based design and purposeful interventions

The furious Kosi: August 2008

River disasters: Natural or humaninduced?

Excessive sediment flux and embankments have caused excessive aggradation of river bed and frequent breaching and extensive flooding

> Unplanned management and encroachment of river space, construction of river projects and dumping of sediments

Uttrakhand, 2013

(Dis) connectivity over the Kosi Megafan

46/3030

\$80000

:580000

Waterlogging and Drainage Congestion

Waterlogged area is positively correlated to the density of intersection point – results in major drainage congestion and longer periods of inundation (Kumar et al., 2014, Geomorphology)

Sediment Management: a central problem!

Major Research Questions

- How to define the resilience and threshold of geomorphic system to floods and its relationship to other river processes such as river dynamics and bank erosion?
- How do we develop the best engineering practices for flood management in sediment-charged Himalayan rivers?
- How to quantify sediment dynamics in high and middle mountains and its linkage with basin properties? Impact on infrastructures?
- How to assess the impact of floods on **ecological services**?
- How do we develop effective floodplain zoning and policy options for the Ganga basin taking into account biophysical as well as socio-economic factors?
- How can we develop an efficient flood warning system and building codes against flood resistant buildings?
- How can we map vulnerability and resilience to flooding and standardize the methodology to help the policy managers?