Future Ganga: Science Needs for Water Security

BY:

PUSKAL UPADHYAY

DIRECTOR (MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION)

ADDITIONAL MISSION DIRECTOR (NATIONAL MISSION FOR CLEAN GANGA)

Ganga River Basin

"River basin is a 'geographical unit' enclosing an area drained by streams and channels that feed a river at a particular point."

Need for River Basin Management: Ganga Basin

- Ganga Basin comprises of 11 states
- Mainstem flows through 5 states
- Pollution in Bihar cannot be managed until upstream states are managed
- Hence efforts between States cannot be disjointed – a basin level planning is required
- Ganga Action Plan (GAP) I & II successfully created 961 MLD treatment capacity but with limited visible change
- Learning from GAP A holistic river basin approach required to manage the river Ganga

Significance of Ganga Basin in India

UPPER STRETCH OF GANGA RIVER BASIN

Upper Stretch Gangotri to Haridwar Length : 294 km Characteristics:

- ✓ River flows on steep bed
- Turbulent flow with high velocities
- Centre for pilgrim tourism & spiritual activities
- Mahaseer and Trout key species

Challenges:

- Disruption of natural flow due to several HEPs/ dams
- ✓ Deforestation
- Loss of native medicinal and herbal plants
- ✓ Highly sensitive and fragile ecosystem and biodiversity
- \checkmark High inflow of tourists
- Retreating Glaciers

LOWER STRETCH OF GANGA RIVER BASIN

Lower Str<mark>etch</mark> Varanasi to Ganga Sagar Length : 1134 km Characteristics:

- Heavy sediment transport and deposition
- Meandering river and frequent change in channel path
- ✓ Active breeding sites of Gangetic Dolphins, etc.
- Sunderbans a UNESCO
 World Heritage Site & home to Bengal Tiger

Challenges:

- Encroachment of river bed, sand mining, etc.
- Frequent floods and droughts
- Large point and non-point pollution load
- International disputes on flows and interventions

Efforts Towards Ganga Conservation

A Shift Towards Basin Based Approach

- Launched in 1985
- Focus on Main stem of River Ganga
- 25 Towns Covered
- 260 schemes completed

GAP II

- Extended from GAP I in 1993
- Merged with NRCP
 in 1996
- Taken up works on four tributaries – Yamuna, Gomti, Damodar & Mahananda

NRCP

- Launched in 1995
- Covered 41 major Rivers of the country
- 8 Ganga basin rivers taken up viz Betwa, Chambal, Gang.a, Mahananda, Mandakini, Ramganga, Yamuna

NGRBA

- Separate Authority for Ganga created in 2009
- Chaired by Prime Minister of India
- NMCG as an implementing body at center and SPMGs at states

Namami Gange

- Project under Separate Ministry for Ganga Rejuvenation
- All 11 Basin states covered
- Conservation measures for all tributaries of Ganga

- GAP :Ganga Action Plan
- NRCP : National River Conservation Plan
- NGRBA :National Ganga River Basin Authority
- MMCG :National Mission for Clean Ganga
- SPMGs :State Program Management Groups

'Namami Gange' – Holistic approach

- Duration: **5 Years 2015-16 to 2019-20**
- Cost (2015-16 to 2019-20): **Rs. 20,000 crores**
- Includes ongoing projects and new initiatives
- Four-fold increase over the expenditure in the past 30 years
- Primary focus on **pollution abatement**
- Moving from 'River Cleaning' to 'River Rejuvenation'

River Surface Cleaning

Industrial Pollution

Rural Sanitation

Crematoria

Connecting People with River

Water Quality Monitoring

Biodiversity Conservation

Municipal Sewage Management

Efforts initiated under Namami Gange

100% sewerage treatment infrastructure for **118 Towns**

Strict enforcement for Industrial pollution

Improved wood-based crematoria

Public Awareness/ Rural Sanitation

River Front Development

Massive Afforestation Drive

Treatment of drains

River Surface Cleaning

Suggested Areas for scientific interventions with the NGRBA/ National Mission for Clean Ganga

- Study of Gangetic Aquifer for better management of Ecosystem Services and a clean and dynamic river system.
- Pilot testing of the 'Resource Recovery and Reuse' business models for reducing point and non-point pollution loads
- Estimation of environmental flows and strategies to meet the deficits under current and future scenarios.
- Development of a "Ganges Basin Book" which shall have peer-authored and reviewed chapters to address the following questions:
 - How much resources are sustainably available in the basin, where and when; and in foreseeable future?
 - Who have access to these resources and at what cost and which policies, institutions and mechanisms shall lead to improved benefit sharing and a healthy river system?
 - Which technologies, policies and institutions shall lead to higher achievements, a cleaner river system, reduced poverty and vulnerability and resilient ecosystems through the improved use of the resources?

Science needs in-ALTERNATIVE WASTE WATER TREATMENT

- Energy Alternatives in Remote Habitats where power supply is unreliable
- Efficient Disinfection Systems to reduce F. Coli and T. Coli
- Different approaches for large cities and small towns
- Land Availability as a constraint
- Lower O & M requirement
- Reduced cost
- Recycling and Reuse
- Treating the water to the next use- Water Cascading
- Segregation of black, gray and storm water
- Sludge/waste management reuse

Science needs in-RIVER WATER QUALITY MONITORING

- Deploying of framework for integrated river monitoring for simulating river water quality for estimation of Waste Load for major discharges in
 - Upper Reaches (U/S of Haridwar)
 - Middle Reaches (Haridwar to Allahabad)
 - Lower Reaches (D/S of Allahabad)
- Developing the available mobile/GPS/Sensor based monitoring systems on test beds.
- Piloting rapid monitoring technology for appropriate pathogen indicator Assessment on identified river stretches
- Monitoring for assessment of Arsenic pathways in a selected basin stretch.
- River water quality assessment using Bio-monitoring and Toxicological Studies in selected stretches of River basin.

Science needs in-INDUSTRIAL POLLUTION ABATEMENT

• Four focus industries:

- Paper & Pulp
- Distilleries & Sugar Mills
- Tanneries
- Textile
- Reduction in fresh water consumption
- Increased reuse of treated effluent with greater cost effectiveness
- Low cost chemical recovery

Science needs in-APPLICATION OF REMOTE SENSING & GIS IN RIVER CONSERVATION

- Unknown population growth in the cities along the river
- Loss of natural water bodies encroachment
- Better management to use excess water flow in scarce seasons
- Application of Remote sensing to identify hotspots in river basin
- Can we index certain areas which contribute more to water demand and pollution?
- Impacts on biodiversity satellite tracking for biodiversity migration, dispersal patterns –e.g. miniature tags for monitoring small fishes
- Ground water depletion recharge systems impact of agriculture green revolution sensor network deployment
- Identifying and estimating ground water abstraction
- Water quality standards overlooks river health how to define river health in terms of which parameters geomorphology
- Data mining & inter-institutional collaboration e.g. WRIS
- Integrating data from different sources -Mobile Apps, ground observations and remote sensing (optical, thermal, radar, etc.) for monitoring water quality

Science needs in- other areas

- Improved irrigation techniques to improve water use efficiency and lower cost
- Identify best combination of crop type & rotation patterns to promote better growth
- Improved and cost effective techniques for in-situ treatment of sewage flowing through drains
- Cost effective decentralized sewage treatment techniques
- Improved cremation practices to reduce wood consumption
- Promotion of comprehensive urban wastewater management through PPP model,
- Strategy support for the planning and implementation of the overall programme,
- Development of platform to foster capacity building and to facilitate information sharing between both Governments and relevant authorities.
- Knowledge exchange to use innovative technologies such as proposed 25km Thames Tideway Tunnel to capture most polluting sewer overflows which would otherwise spill into the river"

Thank You