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Non-stationarity: why IS It Important?
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Abstract Environmental change is a reason of relevant concern as it is occurring at an unprecedented
pace and might increase natural hazards. Moreover, it is deemed to imply a reduced representativity of past
experience and data on extreme hydroclimatic events. The latter concern has been epitomized by the state-
ment that “stationarity is dead.” Setting up policies for mitigating natural hazards, including those triggered
by floods and droughts, is an urgent priority in many countries, which implies practical activities of manage-
ment, engineering design, and construction. These latter necessarily need to b% properly informed, and
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STATIONARITY: WANTED DEAD OR ALIVE?'
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g engineering practice with natural process behavior would appear, on its face, to be a pru-
course of action. However, if we do not understand the long-term characteristics of hydrocli-
w does one find the prudent and reasonable course needed for water management? We
n in light of three aspects of existing and unresolved issues affecting hydroclimatic variabil-
ference: Hurst-Kolmogorov phenomena; the complications long-term persistence introduces
istical understanding; and the dependence of process understanding on arbitrary sampling
ems are not easily addressed. In such circumstances, humility may be more important than
el with well-understood flaws may be preferable to a sophisticated model whoese correspon-

dence to reality is uncertain.
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The context of hydrologic extremes —
floods and droughts

Mysore, KRS Dam,
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Some challenges in the Indian context

=The seasonality of the Indian Summer Monsoon Rainfall

*Droughts: rainfall variability, cheap electricity, over exploitation
of water resources, climate change.

*Floods: rapid growth and urbanization, encroachment of flood
plains, non-adherence to standards for water quality, climate
change.

=Lack of good quality data for a comprehensive analysis
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Daily streamflow (cumec)

Approaches to define extremes

= Block Maxima Approach

veari | | » " Year2 = The maxima M,, of a sequence of
" © - Annual Maxima ] random variables follow the Generalized
14} | Extreme Value (GEV) distribution

1.8

1.6

1.2+

Threshold Exceedance (peak-over-
i 1 threshold) Approach
Threshold ) = The excesses above a high threshold

............. R follow the Generalized Pareto (GP)
. distribution

Point Process Approach

om0 we ae s we 7w s = The excesses above a threshold and their
frequencies modeled simultaneously
using a non-homogeneous Poisson
process

0.2
0
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Non-stationarity in hydrologic extremes

Stationary

= Historically derived tail quantiles of floods 5/
and droughts such as the N-year return

level (for example, ‘100-year flood’) and
the associated uncertainties based on

stationarity.

1)

= Whether and when, the future return oy
levels are likely to be significantly different o =1 (1-p), where p = 1/T, T = return
. - p 1) ]
from the observed return levels, taking INto  period of the flood of magnitude

account the associated uncertainties?

Non-stationarity in the distribution
= Block maxima approach for floods. : %gj >Z

= Peak-over-threshold approach for
droughts. L/
Trend in the
_w location

= Parameters p(t), o(t) and &(t) vary with
time t.

e 4

—
Probability
density function
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Droughts in the Colorado River at Lees

Ferry
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=Observed monthly naturalized streamflows in
the Colorado River at Lees Ferry used for the
period 1907-2010

=The statistically downscaled T and P as input to
VIC run at 1/8° x 1/8° grid (similar to Das et al,
2013; Cayan et al, 2013)

=112 projections from 16 GCMs and the 3 IPCC
scenarios - A1B, A2 and B1 (Reclamation, 2011)

=Monthly streamflows are converted to a
standardized drought index (Ben-Zvi, 1987,
Modarres, 2007; Nalbantis, 2008)

D, = (Rs - Ramm)’

3

R; = R,

O’Rciim
3 i=1
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Floods In the Columbia River at the Dalles

i wnntee______m\Marmer climate -> earlier snow melt ->
§ @ £ ool Increase in spring peak flows
T
& & . .
. fE gl =Mean runoff projected to increase by
PP Y wg e rfos”  1.2103.7% (Reclamation, 2011)
E%B ++®®£ ®+o @'@%@O%— T
Son o @7 0o 25 ¢ «Model-simulated historical and future
190 . »  flow projections obtained from the
: - 12910 19I2E| 19I30 ‘WBIAD 19I5E| 19IBEI 19I7EI WB‘BD 19‘90 ZDIDEI 2DI1D Climate Impacts Group’ University Of
oI YeatyMosimum Sping Sesso 1y Stesrion Washinton (Hamlet et al, 2013)

—¥IC simulated historical
— Observed

=The hydrologic model (VIC) run at
1/16™ degree grid (Hamlet and
Lettenmaier, 2005) with statistically
downscaled meteorologic variables

=|PCC A1B and B1 scenarios for 1950-

o 2097
1910 1920 1930 1240 1950 1960 1970 1880 1990 2000 2010

Mondal and Mujumdar, J H%rol. Eng., in press.
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Time of detection

= Likelihood ratio test for suitability of the non-stationary model

= The observed N-year return level z, and its associated variance afo IS constant

(stationary). The projected N-year return level z; and its associated variance aj} can be
constant (stationary) or transient (non-stationary).

Ze — 2
f O}Z

- critical
- 2
/a'z ’ -+ %z,

= Z.itical 1S the standard normal variate corresponding to the (1- @)™ quantile, where a
denotes the chosen level of significance.

= Detection occurs at a future time step f if D =

Mondal and Mujumdar, AWR, 2015
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Detection of change in return levels of droughts

Observed monthly Projected monthly
streamflow streamflow
Jh Standardization Jl

Observed monthly Projected monthly
g drought index drought index
(QV
o U, Peak-over-threshold @
% Observed extreme Projected extreme
=1 drought index drought ndex
© . [
= ﬂ Declustering ﬂ
>
§ Observed declustered Projected declustered
o drought index drought index
< Likelihood ratio test
s Z
5 Stationary
=

i Poisson-GP statistical model
Drought return level, from the Constant projected Transient projected

stationary statistical model drought return level drought return level
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Time of detection — droughts in the
Colorado River

Ia) 80-vear return level
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Mondal and Mujumdar, AWR, 2015
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Time of detection — floods In the
Columbia River
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Definition of return period under
non-stationarity

Find the level for which the expected waiting
time for exceedance of this level is m years
(Cooley, 2013; Salas and Obeysekara, 2013)

(T=t)=PM  <r)P(M2<7)...P(Mi—1 £1)P(M; > 1)

t—1

=[] K1 - E(@)

y=1
co t—1

= E[T) =) ([[F(n(1-F(r)

t=1 y=I1

=1+) []F0.

i=1 y=I

Equate with m and solve for r. Not
straightforward!

This interpretation was first presented by
Olsen et al. (1998)

The expected number of events in m years is 1
(Cooley, 2013). This interpretation was first
proposed by Parey et al. (2007)

N = Z (M, > r)
= E[N] = i E[I (M, >r)]
y=1
= i P(M, >r)
y=1

= Z 1 — Fy(r)).
Equate with 1 and solve forr.

Not used in hydrology so far. Fixes the design
life as well as the probability of failure.
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Alternate definitions of risk under
non-stationarity

= The return period T can be misleading. Assumption: observations are
lid! For example, T = 1/p does not hold in the non-stationary case.

= At “each year”, the probability of getting the eventis p. Tisonly a
derived quantity.

= A perhaps viable alternative is the risk of failure. In the iid case (Chow
et al., 1988)

M M
M M
pu=1-]](1-p)=1-(1-p)" =1—(Flxa))". :1—(1—%) .
j=1
= More generally, py=1—-PX; <x;NXs <xgMN...N Xy <xy4]
= 1—Hu(X1 <x4,X2 <x4,...,Xp <x4)

=1— EM[Fj {Id}an(—Id]‘u i FM(IJ}}ﬂ
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The design life level

(Rootzen and Katz, 2013)

= Basic info needed for design: 1) design life period (say, 2011-2060); ii) the
risk of a hazardous event

= Thus, the design life level =T, - T, p\,% extreme level, e.g. 2011-2060 5%
probability rainfall value is, say, 121 mm.

= Estimate the CDF of the size of the largest daily rainfall in 2011-2060 as

ﬁzml—znm{l) — @2{111{1} X ﬁzmz[l) M e G'znﬁﬂ(l}

= The (1-p\y)th quantile of this distribution is an estimate of the design life
level for the risk py,.

= This is a special case of the risk-based design advocated by Serinaldi
(2014).
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An example application — Krishna River at
Paleru Bridge

e

R
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"= Krishna River Basin

Paleru Bridge Gauge Station i
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Years

The stationary model My~ GEV (U, o, £) can be rejected against the non-stationary
model M; ~ GEV (u(t), o, &), where u(t) = Yot Yy t, at high confidence.

=

Diagnostic checks show that the non-stationary model is appropriate.
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Design flood level under non-stationarity

S

E Expected

[q0] ey .

S : waiting time

qs)_ Return : nghgst based return B e Design life
- ) Stationary effective number of (100
= D02 (97 return level | return level S ({irsie events based S (05
c design life) to stop at risk)*

S (1965-2002) : return level*

= end qf design

'g |Ife)

=

>

E (cumec)

3 50 years 6.97 10.63 13.65 12.64 27.01

©

§ 100 years 7.64 13.63 19.85 17.93 37.33
=

* Design life is assumed to begin at 2000
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Some points of concern

A typical stochastic hydrology lecture

3
£ 300 -
Time Series Analysis T 200
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Koutsoyiannis, 2011
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The problem of ‘looking at the data’

=|s the Mexican Hat man-made? Null hypothesis: ‘Mexican
hat is of natural origin’

1 if p forms a Mexican Hat

. for
O otherwise

==m " (oSt Statistic  t(p) :{

any pile of stones p

=For getting the distribution of t(p) under null hypothesis,
examine a large number of n = 10° pile of stones.

=But the Mexican Hat is famous for good reasons: there is

Source: Google Images

F.Ijlag?gimate Only onep with t(p) =1
il =Thus, the distribution of t(p) not affected by man is given
by

i) 107% fork=1
Prob t(p)=k} 3 {1 —107% fork=0

=Hence, we reject null hypothesis if t(Mexican Hat) = 1.
Hence, the Mexican Hat is man-made!

von Storch (1995)
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Questions to pursue....

= How can we arrive at a unifying framework for risk assessment of
hydrologic hazards such as floods and droughts under non-stationarity?

= Non-stationarity = deterministic relationship: can the future be
deterministically known?

= Hypothesis of non-stationarity not independent of data!

= Complex models = less bias + more uncertainty: how to optimize this
trade-off?

=How can these approaches based on induction be combined with
physics-based deduction?

= What are the implications of these risk concepts for a large and
complex basin such as the Ganga River Basin?
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Relevant publications for this topic

Book chapter:

Mondal, A. and P. P. Mujumdar (2015), Extreme value analysis for modeling
non-stationary hydrologic change, Contingent Complexity and Prospects for
Water Diplomacy: Understanding and Managing Risks and Opportunities for
an Uncertain Water Future, Eds. Shafiqul Islam and Kaveh Madani, Anthem
Water Diplomacy Series (under review).

Journal articles:

Mondal, A. and P. P. Mujumdar (2015), Modeling non-stationarity in intensity,
duration and frequency of extreme rainfall over India, Journal of Hydrology,
521, pp. 217-231.

Mondal, A. and P. P. Mujumdar (2015), Return levels of hydrologic droughts
under climate change, Advances in Water Resources, 75, pp. 67-75.

Mondal, A. and P. P. Mujumdar (2015), Detection of change in flood return
levels under global warming, ASCE Journal of Hydrologic Engineering (under
review, manuscript# HEENG-2711).
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Thank you!

Coupled Human And Natural Systems Environment (CHANSE) for water
management under uncertainty in the Indo-Gangetic Plain

= Submitted to Newton-Bhaba Call on Sustaining Water Resources for Food Energy
& Ecosystem Services in India (MINISTRY OF EARTH SCIENCES)

= L eaders: Imperial College, London (PI: Dr. Ana Mijic) and IIT Bombay (PI: Dr.
Subimal Ghosh)

=British Geological Survey = Bhagalpur Univresity

= Exeter University = UNESCO

= |[ndian Institute of Science Bangalore = Council of Energy, Environment and
= Indian Institute of Tropical Water

Meteorology, Pune
= ATREE, Bangalore
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