### Water and Hazards: Hydrologic Extremes and Risk Assessment under Non-stationarity

Arpita Mondal

Department of Civil Engg., Indian Institute of Technology Bombay marpita@civil.iitb.ac.in



Acknowledgment: P P Mujumdar, IISc Bangalore.

HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-STATIONARITY

Dec 2015

#### Non-stationarity: why is it important?



Dec 2015

HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-STATIONARITY

# The context of hydrologic extremes – floods and droughts



HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-STATIONARITY

Dec 2015

### Some challenges in the Indian context

- The seasonality of the Indian Summer Monsoon Rainfall
- **Droughts**: rainfall variability, cheap electricity, over exploitation of water resources, climate change.
- •Floods: rapid growth and urbanization, encroachment of flood plains, non-adherence to standards for water quality, climate change.
- Lack of good quality data for a comprehensive analysis

### Approaches to define extremes



- Block Maxima Approach
  - The maxima M<sub>n</sub> of a sequence of random variables follow the Generalized Extreme Value (GEV) distribution
- Threshold Exceedance (peak-overthreshold) Approach
  - The excesses above a high threshold follow the Generalized Pareto (GP) distribution
- Point Process Approach
  - The excesses above a threshold and their frequencies modeled simultaneously using a non-homogeneous Poisson process

### Non-stationarity in hydrologic extremes

HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-

STATIONARITY

- Historically derived tail quantiles of floods and droughts such as the *N*-year return level (for example, '100-year flood') and the associated uncertainties based on stationarity.
- Whether and when, the future return levels are likely to be significantly different from the observed return levels, taking into account the associated uncertainties?
- Block maxima approach for floods.
- Peak-over-threshold approach for droughts.
- Parameters  $\mu(t)$ ,  $\sigma(t)$  and  $\xi(t)$  vary with time t.



 $Q_p = F^{-1} (1-p)$ , where p = 1/T, T = returnperiod of the flood of magnitude



6

### Droughts in the Colorado River at Lees Ferry



- Observed monthly naturalized streamflows in the Colorado River at Lees Ferry used for the period 1907-2010
- The statistically downscaled T and P as input to VIC run at 1/8° x 1/8° grid (similar to Das *et al*, 2013; Cayan *et al*, 2013)
- 112 projections from 16 GCMs and the 3 IPCC scenarios - A1B, A2 and B1 (Reclamation, 2011)
- Monthly streamflows are converted to a standardized drought index (Ben-Zvi, 1987; Modarres, 2007; Nalbantis, 2008)

$$D_3 = \frac{(R_3 - R_3^{clim})}{\sigma_{R_s^{clim}}}, \quad R_3 = \sum_{i=1}^3 R_i$$

### Floods in the Columbia River at the Dalles



- Warmer climate -> earlier snow melt -> increase in spring peak flows
- Mean runoff projected to increase by 1.2 to 3.7% (Reclamation, 2011)
- Model-simulated historical and future flow projections obtained from the Climate Impacts Group, University of Washinton (Hamlet *et al*, 2013)
- The hydrologic model (VIC) run at 1/16<sup>th</sup> degree grid (Hamlet and Lettenmaier, 2005) with statistically downscaled meteorologic variables
- IPCC A1B and B1 scenarios for 1950-2097

### Time of detection

- Likelihood ratio test for suitability of the non-stationary model
- The observed *N*-year return level  $z_o$  and its associated variance  $\sigma_{z_o}^2$  is constant (stationary). The projected *N*-year return level  $z_f$  and its associated variance  $\sigma_{z_f}^2$  can be constant (stationary) or transient (non-stationary).
- Detection occurs at a future time step f if  $D_f = \frac{z_f z_o}{\sqrt{\sigma_{z_f}^2 + \sigma_{z_o}^2}} \ge Z_{critical}$
- $Z_{critical}$  is the standard normal variate corresponding to the  $(1 \alpha)^{th}$  quantile, where  $\alpha$  denotes the chosen level of significance.

#### Mondal and Mujumdar, AWR, 2015

### Detection of change in return levels of droughts



# Time of detection – droughts in the Colorado River



HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-STATIONARITY

# Time of detection – floods in the Columbia River



HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-STATIONARITY

# Definition of return period under non-stationarity

Find the level for which the expected waiting time for exceedance of this level is *m* years (Cooley, 2013; Salas and Obeysekara, 2013)  $P(T = t) = P(M_1 \le r)P(M_2 \le r) \dots P(M_{t-1} \le r)P(M_t > r)$  $= \prod_{y=1}^{t-1} F_y(r)(1 - F_t(r))$  $\Rightarrow E[T] = \sum_{t=1}^{\infty} t \prod_{y=1}^{t-1} F_y(r)(1 - F_t(r))$  $= 1 + \sum_{i=1}^{\infty} \prod_{y=1}^{i} F_y(r),$ 

Equate with m and solve for *r*. Not straightforward!

This interpretation was first presented by Olsen et al. (1998)

The expected number of events in *m* years is 1 (Cooley, 2013). This interpretation was first proposed by Parey et al. (2007)

$$N = \sum_{y=1}^{m} I(M_y > r)$$
  

$$\Rightarrow E[N] = \sum_{y=1}^{m} E[I(M_y > r)]$$
  

$$= \sum_{y=1}^{m} P(M_y > r)$$
  

$$= \sum_{y=1}^{m} (1 - F_y(r)).$$

Equate with 1 and solve for *r*.

Not used in hydrology so far. Fixes the design life as well as the probability of failure.

| Doc | ົ່  | <u>01</u> | Б. |
|-----|-----|-----------|----|
|     | . 2 | υı        | 0  |
|     |     |           |    |

# Alternate definitions of risk under non-stationarity

- The return period T can be misleading. Assumption: observations are iid! For example, T = 1/p does not hold in the non-stationary case.
- At "each year", the probability of getting the event is p. T is only a derived quantity.
- A perhaps viable alternative is the *risk* of failure. In the iid case (Chow et al., 1988)

$$p_M := 1 - \prod_{j=1}^M (1-p_j) = 1 - (1-p)^M = 1 - (F(x_d))^M = 1 - \left(1 - \frac{1}{T}\right)^M.$$

• More generally, 
$$p_M = 1 - \mathbb{P}[X_1 \le x_d \cap X_2 \le x_d \cap \ldots \cap X_M \le x_d]$$
  
=  $1 - H_M(X_1 \le x_d, X_2 \le x_d, \ldots, X_M \le x_d)$   
=  $1 - C_M(F_1(x_d), F_2(x_d), \ldots, F_M(x_d)),$ 

### The design life level (Rootzen and Katz, 2013)

- Basic info needed for design: i) design life period (say, 2011-2060); ii) the risk of a hazardous event
- Thus, the design life level =  $T_1 T_2 p_M$ % extreme level, e.g. 2011-2060 5% probability rainfall value is, say, 121 mm.
- Estimate the CDF of the size of the largest daily rainfall in 2011-2060 as

 $\hat{F}_{2011-2060}(x) = \hat{G}_{2011}(x) \times \hat{G}_{2012}(x) \times \cdots \times \hat{G}_{2060}(x)$ 

- The (1- $p_M$ )th quantile of this distribution is an estimate of the design life level for the risk  $p_M$ .
- This is a special case of the risk-based design advocated by Serinaldi (2014).

### An example application – Krishna River at Paleru Bridge



The stationary model  $M_0 \sim \text{GEV}(\mu, \sigma, \xi)$  can be rejected against the non-stationary model  $M_1 \sim \text{GEV}(\mu(t), \sigma, \xi)$ , where  $\mu(t) = \mu_0 + \mu_1 t$ , at high confidence.

Diagnostic checks show that the non-stationary model is appropriate.

### Design flood level under non-stationarity

| ujumdar, under preparation | Return<br>period (or,<br>design life) | Stationary<br>return level | Highest<br>effective<br>return level<br>(1965-2002) | Expected<br>waiting time<br>based return<br>level (trend<br>to stop at<br>end of design<br>life)* | Expected<br>number of<br>events based<br>return level* | Design life<br>level (10%<br>risk)* |  |
|----------------------------|---------------------------------------|----------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|--|
| N N                        | (cumec)                               |                            |                                                     |                                                                                                   |                                                        |                                     |  |
| al anc                     | 50 years                              | 6.97                       | 10.63                                               | 13.65                                                                                             | 12.64                                                  | 27.01                               |  |
| /lond                      | 100 years                             | 7.64                       | 13.63                                               | 19.85                                                                                             | 17.93                                                  | 37.33                               |  |

\* Design life is assumed to begin at 2000

### Some points of concern



Koutsoyiannis, 2011

HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-STATIONARITY

### The problem of 'looking at the data'



Source: Google Images



von Storch (1995)

Is the Mexican Hat man-made? Null hypothesis: 'Mexican hat is of natural origin'

•Test statistic  $t(p) = \begin{cases} 1 & \text{if } p \text{ forms a Mexican Hat} \\ 0 & \text{otherwise} \end{cases}$  for any pile of stones p

•For getting the distribution of t(p) under null hypothesis, examine a large number of  $n = 10^6$  pile of stones.

- But the Mexican Hat is famous for good reasons: there is only one p with t(p) = 1.
- Thus, the distribution of t(p) not affected by man is given by

prob {t(p)=k} = 
$$\begin{cases} 10^{-6} & \text{for } k = 1\\ 1 - 10^{-6} & \text{for } k = 0 \end{cases}$$

Hence, we reject null hypothesis if t(Mexican Hat) = 1.
 Hence, the Mexican Hat is man-made!

## Questions to pursue....

- How can we arrive at a unifying framework for risk assessment of hydrologic hazards such as floods and droughts under non-stationarity?
- Non-stationarity ⇒ deterministic relationship: can the future be deterministically known?
- Hypothesis of non-stationarity not independent of data!
- Complex models ⇒ less bias + more uncertainty: how to optimize this trade-off?
- How can these approaches based on *induction* be combined with physics-based *deduction*?
- What are the implications of these risk concepts for a large and complex basin such as the Ganga River Basin?

### Relevant publications for this topic

#### **Book chapter:**

**Mondal, A.** and P. P. Mujumdar (2015), Extreme value analysis for modeling non-stationary hydrologic change, *Contingent Complexity and Prospects for Water Diplomacy: Understanding and Managing Risks and Opportunities for an Uncertain Water Future*, Eds. Shafiqul Islam and Kaveh Madani, Anthem Water Diplomacy Series (under review).

#### Journal articles:

**Mondal, A.** and P. P. Mujumdar (2015), Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India, *Journal of Hydrology*, 521, pp. 217-231.

Mondal, A. and P. P. Mujumdar (2015), Return levels of hydrologic droughts under climate change, *Advances in Water Resources*, 75, pp. 67-75.

**Mondal, A.** and P. P. Mujumdar (2015), Detection of change in flood return levels under global warming, *ASCE Journal of Hydrologic Engineering* (under review, manuscript# HEENG-2711).

Dec 2015

## Thank you!

## Coupled Human And Natural Systems Environment (CHANSE) for water management under uncertainty in the Indo-Gangetic Plain

- Submitted to Newton-Bhaba Call on Sustaining Water Resources for Food Energy & Ecosystem Services in India (MINISTRY OF EARTH SCIENCES)
- Leaders: Imperial College, London (PI: Dr. Ana Mijic) and IIT Bombay (PI: Dr. Subimal Ghosh)
- British Geological Survey
- Exeter University

- Bhagalpur Univresity
- UNESCO

Water

- Indian Institute of Science Bangalore
   Council of Energy, Environment and
- Indian Institute of Tropical Meteorology, Pune
- ATREE, Bangalore

HYDROLOGIC EXTREMES AND RISK ASSESSMENT UNDER NON-STATIONARITY