Investigating the impacts of a small-scale hydropower scheme upon salmonids

> PhD student: Robert Brackley⁺ Supervisors: Colin Bean[‡], Rhian Thomas[†]

[†] The University of Glasgow, [‡] Scottish Natural Heritage

Thursday, 27th March 2014 **University of Stirling**

European Union European Regional Development Fund

Investing in your future

Special EU Programmes Body Foras Um Chláir Speisialta An AE Boord O Owre Ocht UE Projecks

Northern Ireland Executive ww.northernireland.gov.uk

Ireland's EU Structural Funds

A project supported by the European Union's INTERREG IVA Programme managed by the Special EU Programmes Body

Outline

- Background to UK small hydropower development: growth, drivers, conflicts and impacts
- Archimedean screw turbines a hot topic
- Research objectives
- Current work, challenges and some results
- Future plans

Background to UK hydropower development

- In the UK most hydropower development occurred in the 1930s to 1970s
- Large –scale schemes using large impoundments, high heads and long diversions to generate many megawatts of power
- The resulting alterations to catchment hydrology and introduction of impounding barriers have been catastrophic for some migratory fish populations

This has led to the recent interest in small-scale hydropower schemes as a potentially more benign alternative

Hydropower impacts

- Effects on migratory fish species loss of longitudinal connectivity to spawning and feeding grounds
- Physical barriers
- Behavioural barriers: false attraction flows and changes to hydrology
- Mechanical damage, damage from rapid acceleration/deceleration, shear stress, gas embolism, cavitation

Small hydropower growth in the UK

- Driven by global concerns over fossil-fuel dependency and climate change: legislated in Europe as the EU Renewables directive
- Government incentives: feed-in tariffs a major driver for small-scale renewables development, esp. <100kW
- Environment Agency identified 25935 existing obstructions as potential candidates for development in England and Wales*.

Potential impacts at small scale schemes

Impact	Mitigation
 Barrier to fish movements - physical as well as behavioural constraint associated increase in predation risk Fish attraction to outflow 	Fish passes Environmental flows Reduce attraction flow Physical/behavioural barriers at outflow
 Mechanical damage to fish and others by entrainment through turbines 	'Fish friendly' turbines, physical/behavioural barriers at intake Seasonal operation
 Change of in-stream habitats Altered flow regime and variability Loss of depth and wetted area for aquatic biota Change in sediment deposition — implications for spawning fish 	Environmental flows
Effects beyond directly altered reachMaterial and energy fluxes	
Cumulative effects of multiple schemes in series 	Catchment-scale planning Environmental flows

Archimedean screw turbines

*

- Low head (>1m), high flow (0.6 6 cumecs)
- Diameters from 0.8 to 5m
- 2 to 5 blades
- Intake velocities: ~1m/s
- Rotational speeds of 20 to 65rpm

Environment Agency good practice guidelines:

Neither fish screen nor bypass required if...

No of blades	Fixed speed		Variable speed	
	Minimum	Maximum	Minimum	Maximum
	Dia. m	rpm	Dia. m	rpm
5	3.0	24	2.3	29
4	2.2	30	1.6	36
3	1.4	40	1.1	48

*E.A. Hydropower good practice guide (2011)

Research objectives

Principal research aims for migratory fish

• Upstream migrants:

Is there a problem of attraction and delay at the hydro outflow? At what conditions do fish ascend past such schemes?

• Downstream migrants:

What proportion of fish are exposed to turbine passage?Are fish damaged from passage through Archimedean screw turbines?Is there a problem of delay to migration in the hydro intake channel?How are the above related to site design, operational conditions and environmental conditions?

Approaches

- Telemetry: Radio and PIT tracking to assess behaviour of upstream and downstream migrating salmonids in the vicinity of the scheme
- Relate behaviour to hydrodynamics, turbine operation, scheme layout, environmental conditions...
- Turbine passage trials to test for damage to downstream moving fish

Fish monitoring at Craigpot hydro

PIT telemetry

- Passive integrated transponder
- An unpowered tag which responds by induction to an electromagnetic field generated by current passed through a loop antenna
- Emits its own unique code which is detected and stored by a logger, along with time of detection
- Fish are tagged surgically under anaesthesia and released so that approaches <1m to the PIT antenna may be recorded

Smolt PIT tagging 2013

- 18 salmon and 6 brown trout smolts were PIT tagged during 2 months continuous rotary screw trapping
- 2 salmon smolts and one brown trout were re-detected in the turbine channel
- Smolt speed of 0.61m/s between intake and outflow antennas (c.f. U_{max} = 1.2m/s)

Autumn parr PIT tagging

156 salmon and 20 trout parr PIT tagged during Oct and Nov

Adult radio tracking data

summary

- 8 of 22 radio tagged fish visited/ascended Craigpot hydro
- Four descended as kelts

Fish 18 downstream

Future work

- Salmon smolt turbine trials
 - Characterise and quantify potential damage
 - External signs
 - Scale loss
 - Blood biochemistry correlates for tissue damage
- Repeat of wild smolt tracking work
- Extension of adult salmon tracking study to another AST hydro scheme in the upper Don, and to a new installation near Selkirk

Acknowledgements

Colin Adams Mick Bestwick (Highland Eco-Design) Jennifer Dodd Don Rivers Tust: Jamie Urguhart, Ian Morrison Don District Salmon Fishery Board: Jim Kerr, Martyn Webster, Stephen Murphy, John Davison Alistair Duguid **David Fettes** Darren Green **IBIS** students IBIS staff: Lindsay Wilson and Hannah Taylor Kemnay Angling Club: Gordon Macdonald, Robbie Menzie, Marc Coull Xavier Lambin Loch Lomond Fisheries Trust Martyn Lucas Alisdair Macdonald Dave Mann (Mannpower Consulting) Jessica Monhart Sam Martin Kate O'Connor **Gary Sutherland** Brian Shaw Jimmy Turnbull Jamie Wallace(Highland Eco-Design) Stuart Wilson John Webb And many more....

Any Questions? IBIS

European Union

European Regional Development Fund Investing in your future

Special EU Programmes Body Foras Um Chláir Speisialta An AE Boord O Owre Ocht UE Projecks

Northern Ireland Executive

www.northernireland.gov.uk

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

A project supported by the European Union's INTERREG IVA Programme managed by the Special EU Programmes Body