Characterising the Hydromorphology of Irish Lakes

Scottish Freshwater Group 4 April 2013

Katherine Webster websterk@tcd.ie

Trinity College Dublin and EPA Ireland

Lake Hydromorphology and the WFD

- 1. Lake typology includes area and depth.
- 2. Quality element for ecological status.
- 3. Morphology and hydrologic condition are supporting elements for ecology.
- 4. Required for developing risk assessments for eutrophication and abstraction pressures.
- 5. Influence effectiveness of POM's and the timescale of 'recovery'.

Characterisation of Hydromorphology

- 1. Landscape limnology conceptual framework
- 2. Hydromorphology metrics
- Relationships between hydromorphology and lake water quality.

Photo by R. Little EPA Ireland

Lakes as Bounded Ecosystems

Landscape Limnology

Landscape limnology is the <u>spatially-explicit</u> study of <u>lakes, streams, and wetlands</u> as they interact with <u>freshwater, terrestrial, and human landscapes</u> to determine the effects of <u>pattern on ecosystem processes</u>.

Landscape Limnology Conceptual Diagram

Characterisation of Hydromorphology

- 1. Landscape limnology conceptual framework
- 2. Hydromorphology metrics
- Relationships between hydromorphology and lake water quality.

Photo by D. Tierney, EPA Ireland

Hydromorphology Metrics- Morphology

- 1. Morphology (bathymetry)
 - a. Lake depth surveys for ~ 500 lakes
 - b. Standard protocol with geoprocessing in ArcGIS

Volume & mean depth Area/volume x depth Basin shape and slope Perimeter, shoreline complexity

Water residence time

Hydromorphology Metrics – Connections

- 2. Hydrologic Connections
 - a. Position in the flow system and lake order
 - 1) Isolated (no inlets/outlet)
 - 2) Headwater (no inlets/outlet)
 - 3) Drainage ST (inlets/outlets, no upstream lakes)
 - 4) Drainage ST/LK (inlets/outlets, upstream lakes)

Hydromorphology Metrics – Connections

- 2. Hydrologic Connections
 - b. Aquatic connectivity
 - 1) Stream network density & density of upstream lakes
 - 2) Soil permeability / groundwater connectivity

Hydromorphology Metrics: Hydro Regime

3. Hydrologic Regime (in progress!!)

- a. Precipitation (monthly grids)
- b. River flow (daily flow for ~ 100 sites)
- c. Lake outflow (daily flow for ~30 sites)
- d. Lake level (daily for ~ 40 sites)

Characterisation of Hydromorphology

- 1. Landscape limnology conceptual framework
- 2. Hydromorphology metrics
- Relationships between hydromorphology and lake water quality.

Photo by R. Little, EPA Ireland

Study Lakes

186 WFD monitoring lakes

Wide range of characteristics

- WRT: 0.35 (0.002 9.1) yrs
- LK Area: 647 (22-116505) ha
- Hydrologic type
 - 8 Isolated
 - 16 Headwater
 - 36 Drainage STR
 - 126 Drainage STR/LK

Study Lakes Water Quality

Median values from 4-5 years of summer and spring values

	Median	Range
Alkalinity	37	1.7 - 282
Total P	13	4 - 143
Chlorophyll	4.7	0.4 – 43
Colour	43	6 - 167

- Drainage STR
- Drainage STR/LK

Lakes

Lake Landscape Predictors

GOAL: Identify hydromorphology metrics that best explain variance in lake water quality.

Hydromorphology

Lake area, mean depth, order, water residence time

Catchment area, slope, stream density, lake density; CA:LK area ratio

Soil permeability (~Groundwater?)

Runoff

Lake Landscape Predictors

GOAL: Compare hydromorphology to geomorphology and anthropogenic features.

Hydromorphology	Geomorphology	Anthropogenic			
Lake area, mean depth, order, water residence time	Catchment elevation	Population density, Drinking water supply			
Catchment area, slope, stream density, lake density; CA:LK area ratio	Land cover: mixed/broadleaf forest, grassland	Land use: low-intensity AG, high-intensity AG, coniferous (managed) forest			
Soil permeability	Soils: alluvium, sand+gravel, blanket peat, fen+raised bog, till, exposed bedrock	Soils: cut peat			
Runoff	Bedrock: basalt, igneous, sedimentary, limestone	Presence of zebra mussels			

Exploratory Data Analysis

randomForest package in R

- Constructs 500 regression trees via bootstrapped samples of the response data and the predictors
- 'Importance' values for each predictor based on how often it is included in the 500 trees and tree position.

Random Forest Results – %Variance

WQ Variable	Hydro- morph	Geo- morph	Anthro- pogenic	All
Alkalinity	58.5	76.8	53.9	82.3
Total P	32.9	42.6	36.4	42.4
Chlorophyll	31.2	47.2	25.1	47.4
Colour	36.9	32.6	10.6	38.5

Importance – Hydromorphology

Alkalinity	Alkalinity Total P		CHL		Colour
$R^2 = 58.5$	<i>R</i> ² = 32.9		$R^2 = 31.2$		$R^2 = 36.9$
Runoff	Runoff		Perm low		Perm low
CA slope	Perm high		Runoff	C	CA stream dens
CA stream dens	CA slope		CA:LK area	Perm high	
Perm low	Perm low		CA slope	LK mean depth	
CA:LK area	CA:LK area		Perm high	CA area	
Perm high	CA stream dens		Lake area		
CA area					

Negative (very low correlation) Positive (very low correlation)

Importance – Geomorphology

Alkalinity	Total P	CHL	Colour
$R^2 = 76.8$	$R^2 = 42.6$	$R^2 = 47.2$	$R^2 = 32.6$
Bed limestone	Till	Till	Blanket Peat
Blanket Peat	Bed basalt	Bed basalt	Bed exposed
CA elevation	CA elevation	Blanket Peat	CA elevation
Fen + Raised Bogs	Bedrock exposed		

Negative Positive

Importance – Anthropogenic

Alkalinity	Total P	CHL	Colour
$R^2 = 53.9$	$R^2 = 36.4$	$R^2 = 25.1$	$R^2 = 10.6$
Ag low intensity	Ag low intensity	Ag low intensity	Conifer forest
Peat cut	Peat cut	Pop density	Ag low intensity
Pop density	Pop density	Peat cut	Pop density

Negative Positive

Importance – All predictors

Alkalinity		,	Total P	CHL		Colour	
<i>R</i> ² = 82.3			$R^2 = 42.4$	$R^2 = 47.4$			<i>R</i> ² = 38.5
Bed limestone		е	Till	Till			Perm low
Ag low intensity		ty E	Bedrock basalt Bedrock basalt		t	Conifer forest	
	Runoff Ag low intensity		/	Perm low		Blanket Peat	
Peat cut			Runoff	Ag	, low intensit	:y	CA elevation
Blanket Peat			CA elevation				CA stream dens
	CA slope Pea		Peat cut				

Negative Positive

TP – CHL Relationship

Conclusions

- Runoff, soil permeability, stream density and catchment slope were most important hydromorphology metrics.
- Hydromorphology metrics were secondary in importance compared to geomorphology for alkalinity, TP, and chlorophyll....
- 3. But, were more important for colour and CHL:TP.
- Lake-specific features water residence time, landscape position – not important.
- 5. Need to consider lake-specific features nested within landscape units.

Photos by W. Trodd, EPA Ireland

Spatial Complexity of the Irish Landscape

http://www.met.ie/climate/rainfall.asp

http://www.met.ie/climate/sunshine.asp

www.eea.europa.eu/data-and-maps/figures/corine-landcover-2000-by-country-3/clc00_ie_national.eps

Hydromorphology relationships nested within landscape units?

Acknowledgements

Collaborators:

TCD – Ian Donohue, Caroline Wynne, Jorge Garcia Molinos EPA – Deirdre Tierney, Rebecca Quinn, Gary Free, Bryan Kennedy UCD – Mike Brennan

Funding: EPA STRIVE Research Grant to Trinity College Dublin, School of Natural Sciences

Technical Assistance on Bathymetry: Aisling Reilly Hugh MacMahon

References

Hydrologic Regime

- Olden et al. 2012. Ecohydrology.
- Kennart et al. (2010). Freshwater Biology.
- Snelder, T.T. and D.J. Booker (2012). River Res. Appl.
- River Analysis Package (RAP) Marsh, N. A. Stewardson M. J. Kennard, M. J. (2003) River Analysis Package, Cooperative Research Centre for Catchment Hydrology, Monash University Melbourne. [http://www.toolkit.net.au/rap]

Landscape Limnology / Lake Hydrologic Position

- Soranno et al. (2010). Bioscience.
- Martin and Soranno. (2006). Limnology and Oceanography

