IBIS

Conservation Limits of Atlantic salmon (Salmo salar)

Julie Miller BSc(Hons) Mres Thursday, 24th October 2013 Stirling

European Union
European Regional
Development Fund

Development Fund
Investing in your future

Special EU Programmes Body Foras Um Chláir Speisialta An AE Boord O Owre Ocht UE Projecks

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

A project supported by the European Union's INTERREG IVA Programme managed by the Special EU Programmes Body

What are conservation limits?

Atlantic salmon

- Endangered
- Annexe II of the EU habitats directive (92/43/ EEC).
- Some rivers: Special Areas of Conservation (SAC)
- Freshwater framework directive (2000/60/EC)
- NASCO precautionary approach (1998)

What are conservation limits?

- Spawning stock level that produces max. sustainable yield
- Safe biological limits
- Management targets (MT) are derived from conservation limits (CL)
- CL/MT depend upon the model used to calculate

Types of models for CL/MT

- Limits derived from reference points of stock-recruitment series
- Whole wetted area models
- Habitat quantity/quality and egg deposition models

The Foyle Catchment and CL model

- 4500km² wetted area
- SACs since 2005- 15% of UK population found here
- CL/MT and The Foyle Area (Control of fishing) regulations2010

Figure 1: Image of the area of Foyle catchment from www.fishpal.com/Ireland/Foyle/Map.asp

GIS and land-based habitat Survey

Department of Agriculture for Northern Ireland (DANI) Methodology for habitat classification for salmonids

- Grade 1 Nursery habitat -10 eggs/m²
- Grade 2 Nursery habitat 5 eggs/m²
- Grade 3 Nursery habitat 2.5 eggs/m²
- Grade 4 Nursery habitat nil

- Correction for potential error etc. 10%
- Female fecundity (1000 eggs/kg, avg. ♀- 2.5kg)
- Sex ratio (60우:40♂)
- Management target derived from CL using correction of 25% (natural mortality/poaching etc.)

Example- the River Finn

Finn	Area (m²)	Eggs/m ²	Total Eggs	Plus10%	Females	Fish/CL	MT (+25%CL)				
1n	248698.1	10	2486981	2735680	1094.272	1823.786	2279.733				
2n	580129.3	5	2900646	3190711	1276.284	2127.141	2658.926	CI	L	MT	
3n	107724.1	2.5	269310.3	296241.3	118.4965	197.4942	246.8677 Tota	ı	4148		5186

Finn fish counter, Killygordon: Angling catch & release Declaration: if the number of salmon migrating upstream of the River Finn counter during each of any 2 of the previous 5 years has not exceeded MT.

Addressing Model assumptions

Female fecundity

Table 2: Fecundity values used in models for sensitivity and corresponding source for figure (where a range of figures are shown, the lower, middle and upper values were all used as individual values in the model)

♀ Fecundity Per kg ⁻¹	1,000	1,430	1000- 2000	1,100	992-1,543	1,878
Source	LA	Shearer(1992)	NASCO(1998)	Cowx &Fraser (2003)	AST/SNH (2012)	Moffet et al (2006)

Addressing Model assumptions

Egg deposition levels

Table 3: Egg deposition sensitivity analysis values and corresponding source

Egg Deposition Per m ² / Grade	10	6.6	7.4	2.4 4.4 8.0	2.9 4.7 7.4	8.5-10.7
Source	LA (Kennedy & Crozier 1993)	Shearer(1992)	SALMODEL (Crozier et al 2003)	Prevost et al (2003) (10 th ,median and 90 th percentiles)	O'Maoildigh et al (2004) (10 th ,median and 90 th percentiles)	Crozier & Kennedy (1995)

Addressing assumption

Table 4: Table showing the current criteria used by the Loughs Agency to grade habitat

Habitat assessment:

- Grading subjective?
- Paucity of quantitative studies connecting habit quality to juvenile densi

Nursery Habitat					
Grade	Criteria				
	Depth: 50-250mm				
	Gradient- 0.5-8%				
	Stable substrate				
1	Gravel/Pebble/Cobble				
	substrate or 70% bed				
	area				
	Moderate/Adequate				
	Cover				
2	Marginally outside grade				
2	1 on one count only				
3	Well outside grade 1 on				
3	one or more counts				

Addressing weakness

- Loch Lomond Fishery Trust had high resolution electrofishing juvenile data AND habitat descriptions using same methodology as LA habitat survey
- Initial analysis suggested no difference in juvenile density and grade (K-W chi sq= 1.9557, df =2, p=0.3761)
- Bayesian framework approach to see which habitat features influenced salmon density

The Bayes analysis

MCMC models

Parameters:

Substrate: 3 levels(Cobble, Gravel, Pebble)

Flow: 4 levels (Run, Riffle, Glide, cascade)

Depth: 3 levels (>100mm,100-200mm,200-400mm)

Cover: 4 levels (Instream, Leftbank, RightBank, Canopy)

The Bayes results

Table 5: MCMC Method 1 criteria for grading

Parameter selection based on subset				
Grade 1	Pebble >50%			
	100-200mm depth >50%			
	Glide >50%			
Grade 2	Gravel + Pebble >50% 0-200mm >50%			
	Run>50%			
Grade 3	Survey not meeting 1&2			

LLFT electrofish: Redefined Grade Method 1

Implications and continued work

- Needs investment for target rivers to address assumptions scientifically
- Continued research on-going in this area via the IBIS project Hannele (see her poster)

Kennedy & Crozier (1993) Juvenile Atlantic Salmon, Production & Prediction. Production of Juvenile Atlantic Salmon, Salmo salar. Edited by Gibson, R.J & Cutting, R.E National Research Council Canada NASCO (1998) North Atlantic Salmon Conservation Organisation. Agreement on the adoption of a precautionary approach. Report of the fifteenth annual meeting of the council. CNL(98) 46 pp.4

European Union

European Regional
Development Fund
Investing in your future

Special EU Programmes Body Foras Um Chláir Speisialta An AE Boord O Owre Ocht UE Projecks

Northern Ireland Executive

www.northernireland.gov.uk

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

A project supported by the European Union's INTERREG IVA Programme managed by the Special EU Programmes Body