IBIS ## Conservation Limits of Atlantic salmon (Salmo salar) Julie Miller BSc(Hons) Mres Thursday, 24th October 2013 Stirling European Union European Regional Development Fund Development Fund Investing in your future Special EU Programmes Body Foras Um Chláir Speisialta An AE Boord O Owre Ocht UE Projecks Ireland's EU Structural Funds Programmes 2007 - 2013 Co-funded by the Irish Government and the European Union A project supported by the European Union's INTERREG IVA Programme managed by the Special EU Programmes Body ## What are conservation limits? #### Atlantic salmon - Endangered - Annexe II of the EU habitats directive (92/43/ EEC). - Some rivers: Special Areas of Conservation (SAC) - Freshwater framework directive (2000/60/EC) - NASCO precautionary approach (1998) # What are conservation limits? - Spawning stock level that produces max. sustainable yield - Safe biological limits - Management targets (MT) are derived from conservation limits (CL) - CL/MT depend upon the model used to calculate ## Types of models for CL/MT - Limits derived from reference points of stock-recruitment series - Whole wetted area models - Habitat quantity/quality and egg deposition models # The Foyle Catchment and CL model - 4500km² wetted area - SACs since 2005- 15% of UK population found here - CL/MT and The Foyle Area (Control of fishing) regulations2010 **Figure 1:** Image of the area of Foyle catchment from www.fishpal.com/Ireland/Foyle/Map.asp # GIS and land-based habitat Survey Department of Agriculture for Northern Ireland (DANI) Methodology for habitat classification for salmonids - Grade 1 Nursery habitat -10 eggs/m² - Grade 2 Nursery habitat 5 eggs/m² - Grade 3 Nursery habitat 2.5 eggs/m² - Grade 4 Nursery habitat nil - Correction for potential error etc. 10% - Female fecundity (1000 eggs/kg, avg. ♀- 2.5kg) - Sex ratio (60우:40♂) - Management target derived from CL using correction of 25% (natural mortality/poaching etc.) ### Example- the River Finn | Finn | Area (m²) | Eggs/m ² | Total Eggs | Plus10% | Females | Fish/CL | MT
(+25%CL) | | | | | |------|-----------|---------------------|------------|----------|----------|----------|----------------|----|------|----|------| | 1n | 248698.1 | 10 | 2486981 | 2735680 | 1094.272 | 1823.786 | 2279.733 | | | | | | 2n | 580129.3 | 5 | 2900646 | 3190711 | 1276.284 | 2127.141 | 2658.926 | CI | L | MT | | | 3n | 107724.1 | 2.5 | 269310.3 | 296241.3 | 118.4965 | 197.4942 | 246.8677 Tota | ı | 4148 | | 5186 | Finn fish counter, Killygordon: Angling catch & release Declaration: if the number of salmon migrating upstream of the River Finn counter during each of any 2 of the previous 5 years has not exceeded MT. # Addressing Model assumptions #### Female fecundity **Table 2:** Fecundity values used in models for sensitivity and corresponding source for figure (where a range of figures are shown, the lower, middle and upper values were all used as individual values in the model) | ♀ Fecundity Per kg ⁻¹ | 1,000 | 1,430 | 1000-
2000 | 1,100 | 992-1,543 | 1,878 | |----------------------------------|-------|---------------|---------------|------------------------|-------------------|---------------------| | Source | LA | Shearer(1992) | NASCO(1998) | Cowx &Fraser
(2003) | AST/SNH
(2012) | Moffet et al (2006) | # Addressing Model assumptions #### Egg deposition levels Table 3: Egg deposition sensitivity analysis values and corresponding source | Egg Deposition Per m ² /
Grade | 10 | 6.6 | 7.4 | 2.4
4.4
8.0 | 2.9
4.7
7.4 | 8.5-10.7 | |--|--------------------------------------|---------------|-------------------------------------|--|--|--------------------------------| | Source | LA
(Kennedy
& Crozier
1993) | Shearer(1992) | SALMODEL
(Crozier et al
2003) | Prevost et al
(2003)
(10 th ,median
and 90 th
percentiles) | O'Maoildigh
et al (2004)
(10 th ,median
and 90 th
percentiles) | Crozier &
Kennedy
(1995) | ## Addressing assumption **Table 4:** Table showing the current criteria used by the Loughs Agency to grade habitat #### **Habitat assessment:** - Grading subjective? - Paucity of quantitative studies connecting habit quality to juvenile densi | Nursery Habitat | | | | | | |-----------------|--------------------------|--|--|--|--| | Grade | Criteria | | | | | | | Depth: 50-250mm | | | | | | | Gradient- 0.5-8% | | | | | | | Stable substrate | | | | | | 1 | Gravel/Pebble/Cobble | | | | | | | substrate or 70% bed | | | | | | | area | | | | | | | Moderate/Adequate | | | | | | | Cover | | | | | | 2 | Marginally outside grade | | | | | | 2 | 1 on one count only | | | | | | 3 | Well outside grade 1 on | | | | | | 3 | one or more counts | | | | | ## Addressing weakness - Loch Lomond Fishery Trust had high resolution electrofishing juvenile data AND habitat descriptions using same methodology as LA habitat survey - Initial analysis suggested no difference in juvenile density and grade (K-W chi sq= 1.9557, df =2, p=0.3761) - Bayesian framework approach to see which habitat features influenced salmon density ### The Bayes analysis #### MCMC models #### Parameters: Substrate: 3 levels(Cobble, Gravel, Pebble) Flow: 4 levels (Run, Riffle, Glide, cascade) Depth: 3 levels (>100mm,100-200mm,200-400mm) Cover: 4 levels (Instream, Leftbank, RightBank, Canopy) ## The Bayes results Table 5: MCMC Method 1 criteria for grading | Parameter selection based on subset | | | | | |-------------------------------------|--------------------------------------|--|--|--| | Grade 1 | Pebble >50% | | | | | | 100-200mm depth >50% | | | | | | Glide >50% | | | | | Grade 2 | Gravel + Pebble >50%
0-200mm >50% | | | | | | Run>50% | | | | | Grade 3 | Survey not meeting 1&2 | | | | #### LLFT electrofish: Redefined Grade Method 1 ## Implications and continued work - Needs investment for target rivers to address assumptions scientifically - Continued research on-going in this area via the IBIS project Hannele (see her poster) Kennedy & Crozier (1993) Juvenile Atlantic Salmon, Production & Prediction. Production of Juvenile Atlantic Salmon, Salmo salar. Edited by Gibson, R.J & Cutting, R.E National Research Council Canada NASCO (1998) North Atlantic Salmon Conservation Organisation. Agreement on the adoption of a precautionary approach. Report of the fifteenth annual meeting of the council. CNL(98) 46 pp.4 #### **European Union** European Regional Development Fund Investing in your future Special EU Programmes Body Foras Um Chláir Speisialta An AE Boord O Owre Ocht UE Projecks Northern Ireland Executive www.northernireland.gov.uk Ireland's EU Structural Funds Programmes 2007 - 2013 Co-funded by the Irish Government and the European Union A project supported by the European Union's INTERREG IVA Programme managed by the Special EU Programmes Body