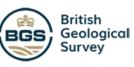


06

0.4

02


SESSION 6 **Designing future farmed landscapes** Junaphily my Junior - MILLAN HILLY 1.0 1.0 1.0 0.8 0.8

0.6

04

06

0.4

Photo: Lete

funded by

Ϋ́́

Research Council

Biotechnology and Biological Sciences Research Council

Chair: Richard Pywell

Tools supporting farmer-led decision making and monitoring

UK Centre for Ecology & Hydrology

Geological

T. August, J. Redhead, V. Bell, M. Brown, R. Pywell

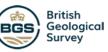
Natural Environment **Research Council**

Biotechnology and Biological Sciences Research Council

Photo: R Pywell

Objectives

Translating ASSIST outputs into useful tools


- Developing a mapping platform to support environmental land management
- Providing visualisations of land management options
- Supporting farmer-led assessment of habitats
- Distributing up-to-date data on soil moisture

e-planner

- Map of relative suitability of land for different options
- Free, web-based app for mobile or desktop
- Supports farm environmental planning

assist-e-planner.ceh.ac.uk

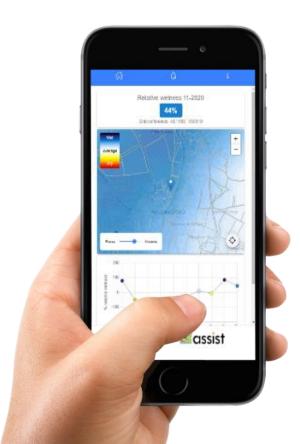
e-surveyor

What does success look like?

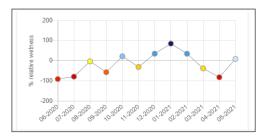
- Computer vision used to support plant identification
- Information associated pollinators
- Data on natural enemies
- Supports structured and unstructured observations

← васк	Report	UPLOAD	
‱ 3/1	2 🗳	234	
Pollinators	count	١	
Species		Counts	
Cat's-ear		62	
Centaurea nigra		154	l
Common Bird's-foot-trefoil		81	
Lady's Bedstraw		15	
Ox-eye Daisy		90	
Red Clover		71	
Supported species groups		٩	
Species		Counts	

e-viewer



- Bringing future farming landscape to life
- Generating 3D landscapes from satellite data
- Create realistic soundscapes
- o Animate land use transitions
- View as images, video or virtual reality



Soil Moisture App

Supporting farmers by providing easy access to maps of soil moisture

- Monthly, 50m resolution maps
- Timeline of changing wetness
- Free, web-based app for mobile or desktop

https://houk-assist.ceh.ac.uk/info

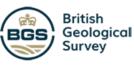
Acknowledgements

Acknowledgements: Jonathan Cooper, Helen Davies, Will Bolton, Rod Scott, Rhian Chapman, Robin Hutchinson, Charlotte Johns, Rich Burkmar

www.assist.ceh.ac.uk #ASSISTagri

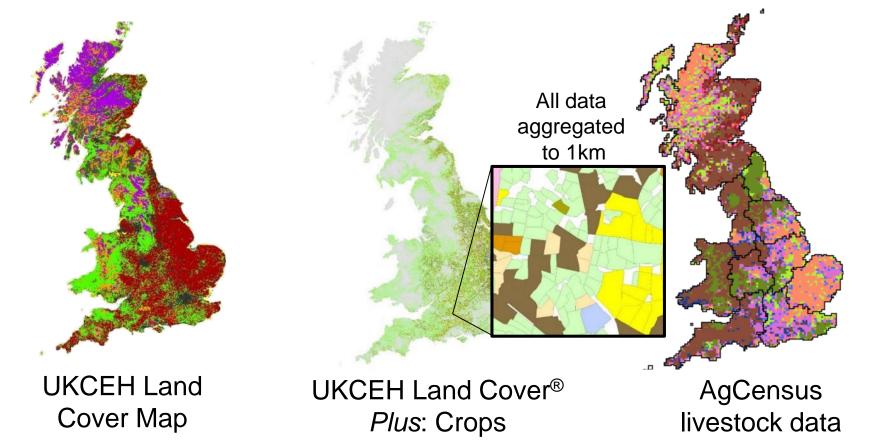
funded by

Biotechnology and Biological Sciences Research Council

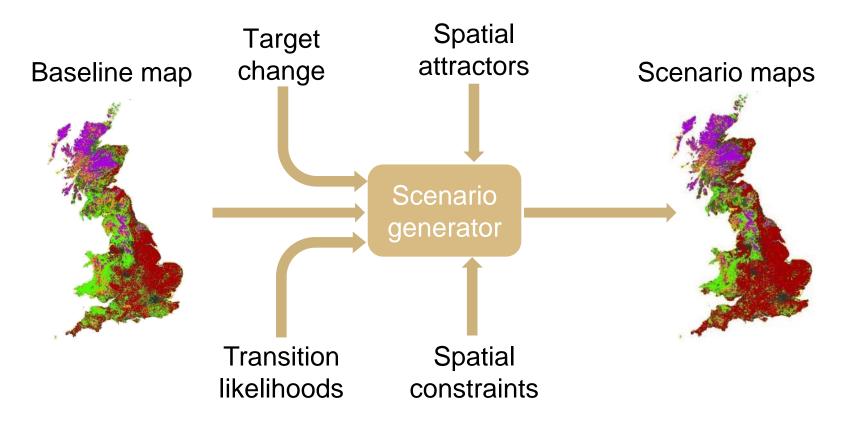

Natural Environment Research Council

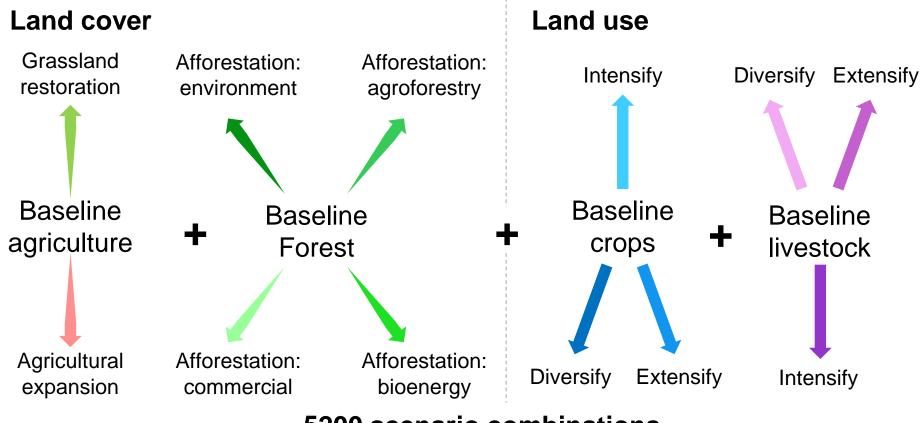
Tools for exploring impacts of future agricultural land use scenarios

John Redhead, Rod Scott, Mike Brown, Gary Powney, Richard Pywell

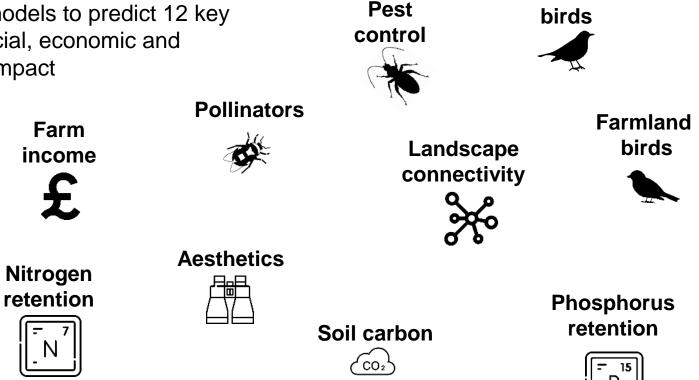

Biotechnology and Biological Sciences Research Council

- ASSIST has a wealth of data of current status and impacts of agricultural land use
- Use to create an intuitive, graphical tool for exploring future scenarios and impacts
- To engage stakeholders with ASSIST challenges (farmers, agribusiness, policy)
- ASSIST Scenario Exploration Tool (ASSET)





Generating scenarios


= 5200 scenario combinations

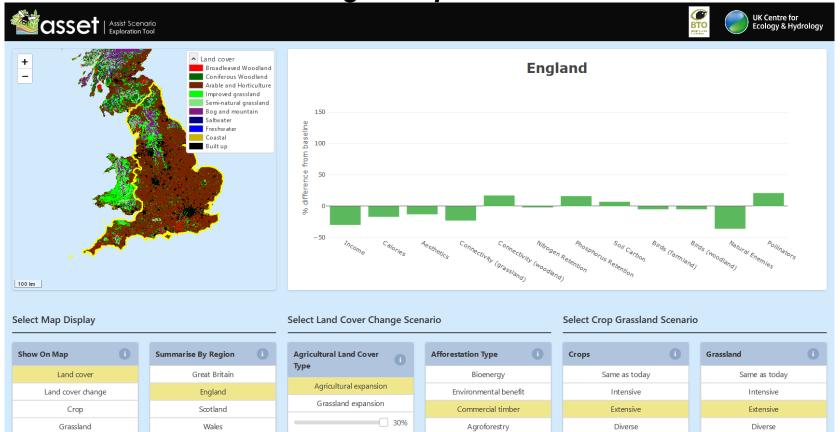
Nutrition

(Kcal)

Use validated models to predict 12 key 0 indicators of social, economic and environmental impact

Woodland

- All scenarios and models pre-run to produce a data cube
- Web-based tool to explore scenario maps and impacts
- Summaries by region
- Links to models and data sources


eip.ceh.ac.uk/asset

Extreme land sharing example

Select region from map

30%

Extreme land sparing example

- Used for public, stakeholder and policymaker interaction
- Basis for VR worlds built on scenarios
- Scenario impacts explored in detail¹

¹Redhead, J.W, Powney, G., Woodcock, B.A & Pywell, R.F. (2020) Effects of future agricultural change scenarios on beneficial insects, J. Env. Man., 265, 110550

Acknowledgements

UKCEH: Jim Bacon, Jon Cooper, Simon Wright, Tom August, Lucy Ridding, Bruno Osorio, Jeannette Whittaker, Susan Jarvis, Pete Henrys, Emily Upcott, Mike Wilson, Ben Woodcock

BTO: Gavin Siriwardena

Rothamsted Research: Taro Takahashi, Martin Blackwell

Defra: Andy Cuthbertson, Luke Spadavecchia

UK Centre for Ecology & Hydrology

Department for Environment Food & Rural Affairs

www.assist.ceh.ac.uk #ASSISTagri

funded by

Natural Environment Research Council

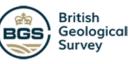

Managing Trade-offs Between Food Production, **Biodiversity And The Environment**

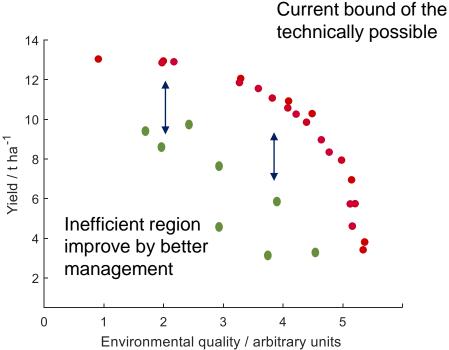
Photo: Graham Shephard

UK Centre for Ecology & Hydrology

KK

Natural Environment **Research Council**

ЧĶ

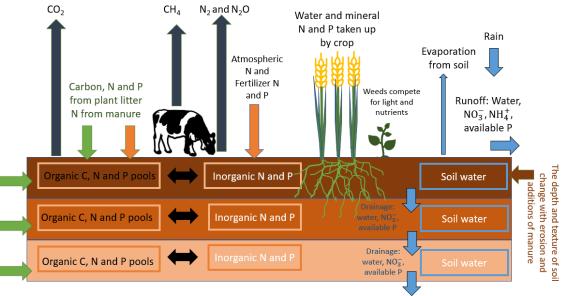

Biotechnology and Biological Sciences Research Council

funded by RRes: A.E Milne, H. Metcalfe, R.T. Sharp, J. Storkey, A.P Whitmore UKCEH: V. Bell, D. Cooper, P. Henrys, S. Jarvis, J. Redhead, J.M. Bullock

Trade-offs between food production, biodiversity and the environment.

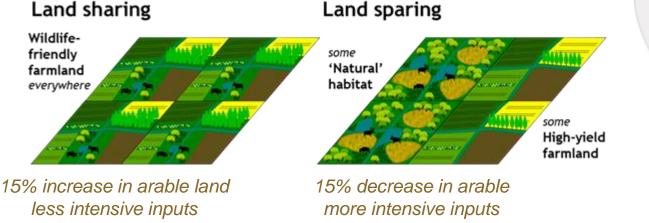
- Trade-offs between agricultural production and environmental quality are well documented
- These can be depicted using a Pareto front
- Sufficient data are rarely available to assess trade-offs

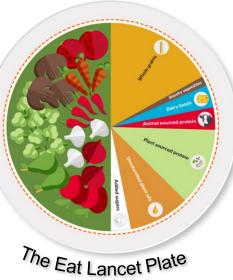
assist Developing agroecosystems models


- o Simulates over 18 key crops
- Soil-water dynamics
- o Carbon and nutrient dynamics
- Gas fluxes
- Trait based weed model
- Pesticide impacts (EIQ)
- Estimate production in kcal, protein and fat
- Part of the LTLS framework

from dead roots

arbon, N and P

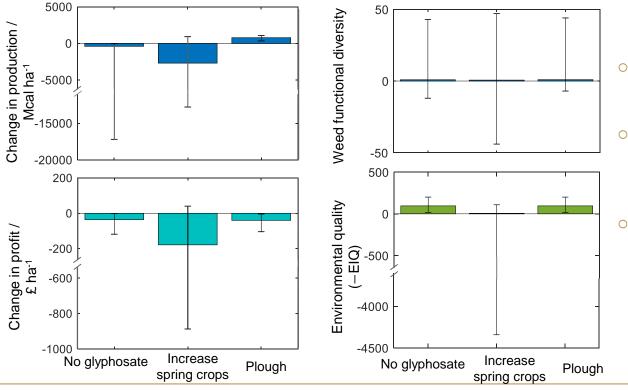



Drainage: water, NO₃, available P

Trade-offs evaluated under various scenarios

- Life without glyphosate
- Impacts of aligning production with healthier diets
- Land use change: using scenarios from ASSET

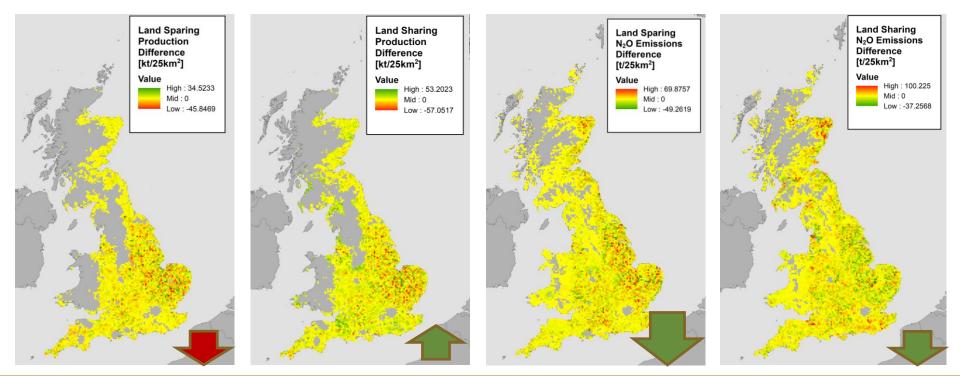
Thank you to Dr Tom Finch for Image, https://community.rspb.org.uk/ourwork/b/science/posts/sparing-or-sharing



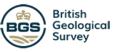
Trade-offs under life without glyphosate

- Ploughing maintains food production ...but we get less profit
- Removing glyphosate increases average weed functional diversity but the response is highly variable
- Environmental impact quotient improves except when more spring crops are introduced

For more details see Metcalfe et al., (2022)



For more details see Sharp et al., (2022b)


Conclusions

- Our analysis shows that aligning agriculture with objectives related to health or environment leads to trade-offs
- In our simulations we took a broad approach to aligning with these objectives and we see substantial trade-offs.
- To increase the chance of win-wins we must adopt multiple agroecological approaches, such as those developed in ASSIST

Acknowledgements

The co-authors: Helen Metcalfe, Ryan Sharp, Jon Storkey, **Andy Whitmore** UKCEH: Vick Bell, David Cooper, Pete Henrys, Susan Jarvis, J. Redhead, **James M. Bullock**

The ASSIST teams at Rothamsted, UKCEH and BGS

The Funders:

www.assist.ceh.ac.uk #ASSISTagri

Biotechnology and Biological Sciences Research Council

Natural Environment Research Council