A framework for assessing heavy metal impacts on ecosystem services

L Jones, F Hayes, D Spurgeon, S Lofts, T Blett*

Centre for Ecology and Hydrology *Air Resources Division, National Park Service, USA

ECOLOGICAL IMPACTS

- Natural sources
- Industrial contamination
- Point source industrial emissions
- Sewage sludge
- Legacy deposition

CASCADE EFFECTS

Spurgeon et al. 2005, Environ. Sci. Technol. 39, 5327-5334

BIO-ACCUMULATION

NITROGEN APPROACHES

Eutrophication

Jones et al. 2014, Ecosystem Services 7, 76-88

NITROGEN APPROACHES

Clark et al. in prep,

FEGS – FINAL ECOSYSTEM GOODS AND SERVICES

Blett et al. 2015. Air Quality and Ecosystem Services Workshop Report, NPS

CONCEPTUAL MODEL OF IMPACTS

POPULATING THE IMPACT CHAINS

POPULATING THE IMPACT CHAINS

POPULATING THE IMPACT CHAINS

density

Earthworm

Plant richness Earthworm density

Plant richness

INTERIM RESULTS SUMMARY

- 111 unique impact chains
- 13 services

Mechanisms/pathways

- Earthworms
- Fungal
- Bacterial
- Rhizobacteria
- Rhizobium (N-fixers)
- Plants
- Aquatic impacts direct toxicity
- Biomagnification

Reduced animal production (milk, meat)
Reduced animal products (milk, meat) fit for human consumption
Reduced crop production
Reduced crops fit for human consumption
Reduced drinking water (quality)
Increased/Reduced climate regulation
Reduced flood regulation
Reduced soil purification
Reduced human use impacts (amenity)
Reduced human use impacts (hunting, food)
Reduced human use impacts (recreational fishing, food)
Increased/Reduced human non-use impacts
Reduced human health

POTENTIAL OUTPUTS – N IMPACT CHAINS

Clark et al. in prep

CONCLUSIONS

- Rigorous way to assess evidence-based impacts on ES
- Allows subsequent hand-over to economists (if required)
- Majority of metal impacts are negative, but some positive
- Magnitude of impact along chains often unknown

Dibaeis baeomyces

Snottites

Thank you !

