Quantifying ozone impacts on three ecosystem services in the UK

Laurence Jones, Felicity Hayes, Lindsay Maskell, Gina Mills & the participants of the Defra Ozone Umbrella consortium.

Ecosystem services

Products obtained from ecosystems

•Food

•Fresh water

•Fuel/wood

•Fibre

•Biochemical

•Genetic resources

Regulating Services

Benefits obtained from regulation of ecosystem processes

•Climate regulation

•Disease control

- •Water regulation
- •Water purification

•pollination

Cultural Services

Nonmaterial benefits obtained from ecosystems

- •Spiritual and religious
- •Aesthetic
- •Inspirational
- •Educational
- •Sense of place
- •Cultural heritage

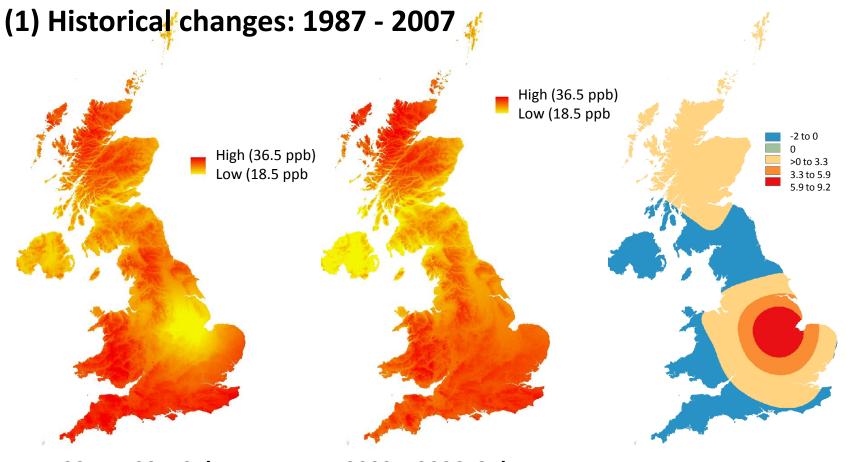
Supporting Services

Services necessary for the production of all other ecosystem services

Soil formation

Nutrient cycling

Primary production


Water cycling

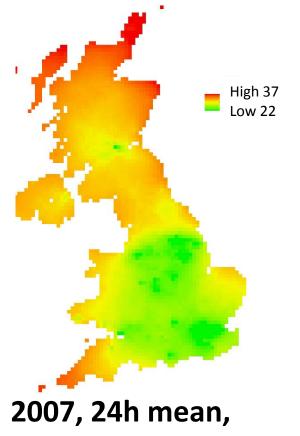
Changing spatial pattern of ozone concentrations

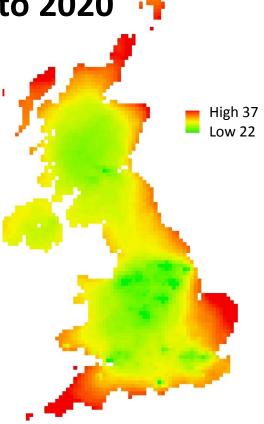
1987 – 1991, 24h mean, March - Sept

Centre for

Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

2002 – 2006, 24h mean, March - Sept


Difference in ppb



Maps provided by Mhairi Coyle

Changing spatial pattern of ozone concentrations

(2) Future predictions, 2007 to 2020

2007, 24h mean, March - Sept

2020, 24h mean, March - Sept

Maps provided by AEA

Experiments within the ozone umbrella

Lancaster University

CEH Bangor

Newcastle University & York University

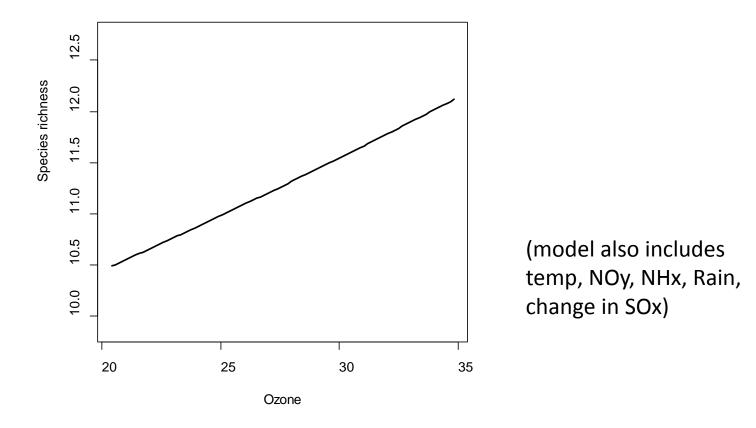
Keenley All

Grassland Species +/- ozone BAP Priority habitats:Acid GrasslandCoastal and Flood Plaingrazing meadow8 ozone treatments

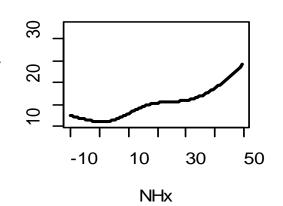
Mesotrophic grassland; Sand-dunes; spring bulbs 2 – 4 ozone treatments

Upland conservation hay meadow Gradient of ozone treatments

Appreciation of biodiversity


- National-scale gradient analysis,
- 1 km data from Countryside Surveys from the years 1990, 1998 and 2007
- Analysis in R using General Additive Mixed models
- Includes: 24h O₃, min temp., max temp., Rain, NOy, NHx, change in SOx for 1990, 1998 and 2007
- Analysis by species richness and broad habitat type

Gradient analysis: all habitats


All area habitats 1990, 1998,

Species richness

20	24	28	32	Species richness #1
	Oz	one		

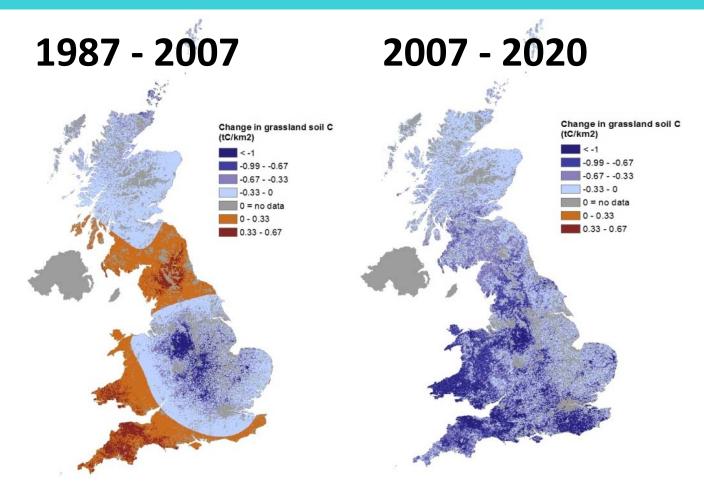
Carbon Sequestration

Carbon sequestration: Input datasets

Site	ExptShortCode	ExptLongName
Bangor	U4_Com	U4 communities 2004 2005
Bangor	CG10_Com	CG10 communities 2005
Bangor	Heath_Com	Heath 2009 2010
Bangor	Viola_Com	Viola communities 2006
Bangor	Calc_Com	Calcareous 2009 2010
York	KF_York	KeenleyFell_York
Bangor	KF_Bang	KeenleyFell_Bangor
Newcastle	MG3b	MG3b mesocosms
Newcastle	SD9b	SD9b sand dune mesocosms
Bangor Newcastle	_ KF_Bang MG3b	KeenleyFell_Bangor MG3b mesocosms

Mesocosms, complex species mixtures (>3 spp)

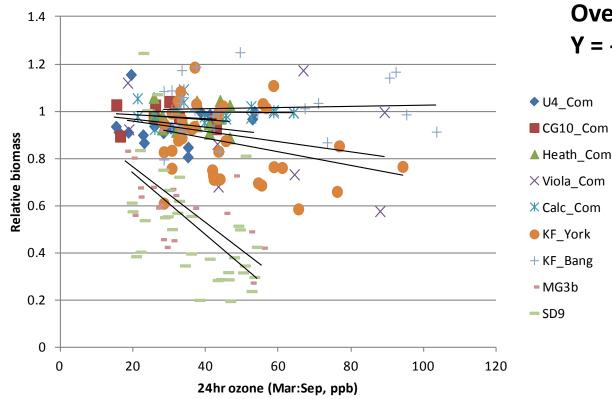
Field –based exposures



Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Change in C sequestration

Changes in carbon sequestration (tC/km²) due to ozone*



* Latest data...

Carbon sequestration: Dose response

Overall function Y = -0.0041 X + 1

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

Carbon sequestration: Calculations

Applying calculations spatially:

Dose response used to predict total NPP at predicted ozone concentrations (MODIS data)

Filtered for squares where > 25% grassland (LCM 2007)

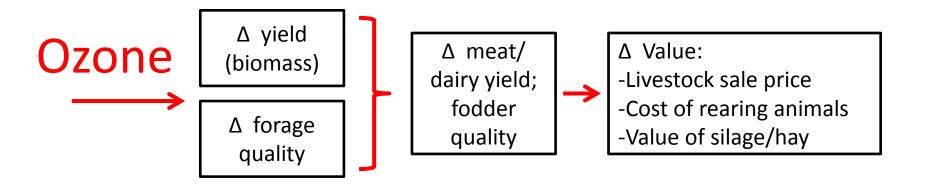
10% of NPP goes to long-term soil C allocation in grasslands

Convert to tCO2e

Use non-traded shadow price of C (2010 price = £51.70 /tCO2) & discounting procedures to calculate value of changing ozone on C in each year

Calculate Net Present Value & Annual Equivalent Value

	Historical - Comparison of 1987 with 2007	Future to 2020 (based on UEP30 scenario) - Comparison of 2007 with 2020
Total loss in C sequestered		
(tons)	188,000	623,000
Total losses (£)	£22.1 million	£94.4 million
Equivalent Annual Net		
loss (£)	£1.6 million	£9.2 million



Pasture Quality

Impact pathway: Pasture quality

	2012 number	Range 2005 – 2012			
Beef cattle > 2 years old	1.7 million	1.7 – 1.8 million			
Dairy cattle > 2	1.8 million	1.8 – 2.0 million			
years old Sheep + lambs*	32 million*	31 – 32 million			

* Value £1.1 billion

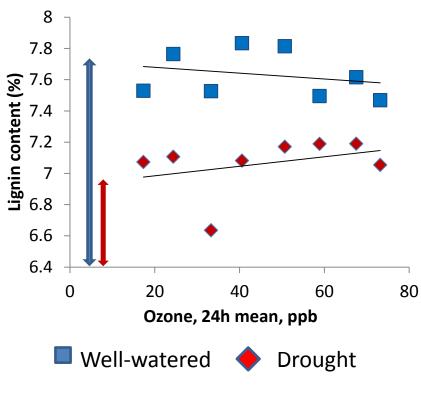
Datasets used

Site	Experiment	Sub-treatments
CEH-Bangor	Calcareous grassland	Well-watered, drought
CEH-Bangor	Dactylis glomerata-Ranunculus acris	Drought, well-watered, wet
CEH-Bangor	Leontodon hispidus – Anthoxanthum oderatum	
CEH-Bangor	Leontodon hispidus-Dactylis glomerata	
CEH-Bangor	Dactylis glomerata-Ranunculus acris	Drought, well watered
CEH-Bangor	Keenley	+/- N(all un-grazed), 2009, 2010 and 2011
Newcastle Uni	Sand dunes	
York University	Keenley	2010, 2011 (all grazed)

NATURAL ENVIRONMENT RESEARCH COUNCIL

Sample preparation

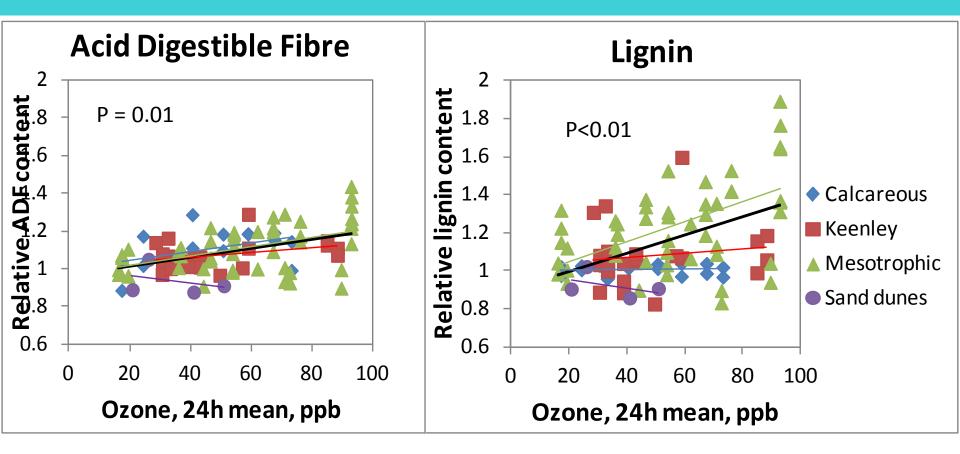
Stored samples from previous 'grassland' experiments All had different ozone treatments Different years and different subtreatments


Samples were recombined (after previous sorting per species...), cut with shears and thoroughly mixed Each 'sample' was 100g+ > 200 samples were sent for forage quality analysis

Approx. 1/3 of samples from CEH Bangor

Standardisation of data

e.g. Calcareous grassland solardomes


Quality parameters

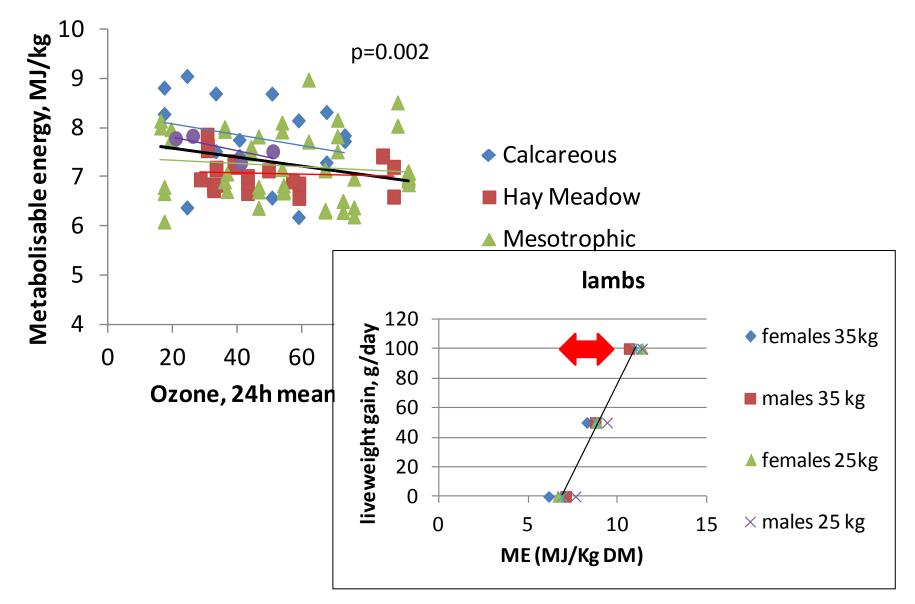
All datasets were standardised by calculating the value at 0 ppb (by regression), and expressing the measured values relative to this.

'Yield' calculated (e.g. for protein) This is a combination of % in the sample, and above-ground biomass.

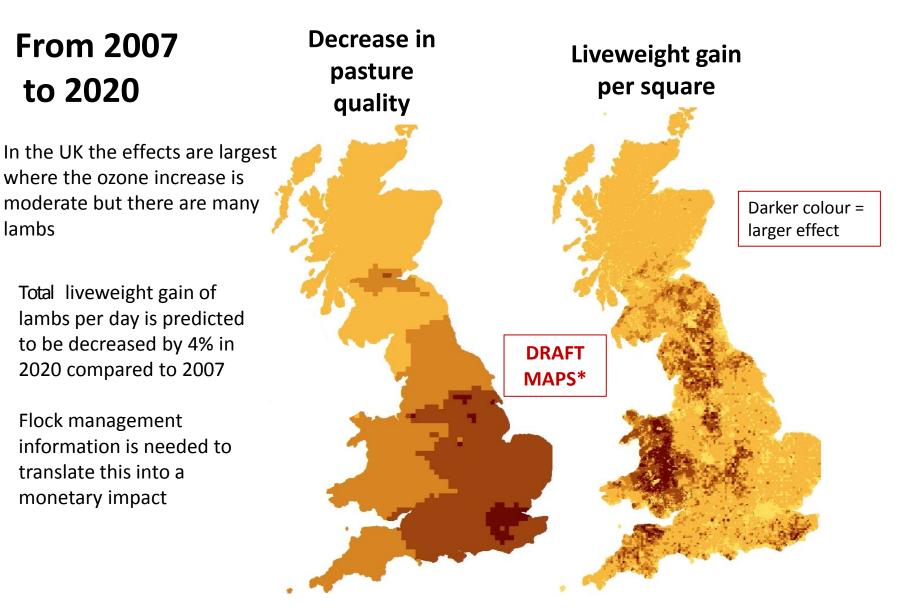
Forage Quality

No significant effects on "desirable" characteristics

"Undesirable" pasture characteristics increase with increasing ozone

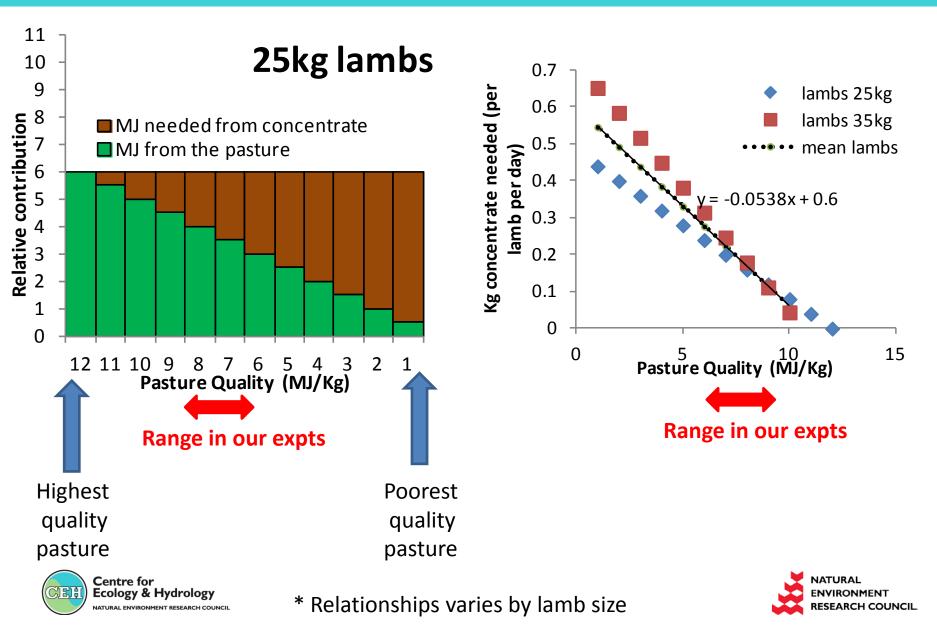

• Pattern is repeatable across grassland types

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

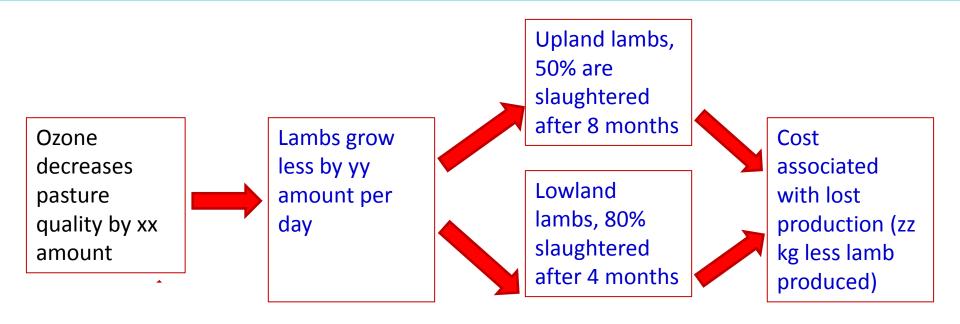


Forage quality

Metabolisable energy (sheep)



Ozone impacts on liveweight gain



* To be corrected for pasture location

Pasture quality vs supplementary feed

Calculation Pathway

Economic valuation

		Loss in live weight gain		Additional feed needed	
		1987 - 2007	2007 - 2020	1987 - 2007	2007 - 2020
upland	%	0.7	3.5	0.1	0.6
lowland	%	0.4	4.2	0.1	0.7
Total change in annual net loss*	£million	89.1	86.2	57.3	59.4

UK 1.1 billion for sheep and lambs , 2011 production value £3.46 per kg deadweight (Dec 2012 price)

*Mean change in value per year , calc from kg of sheep in UK that are eaten (50% upland, 80% lowland) x discount factor x price/kg, added for upland and lowland

New Defra contract (thank you!)

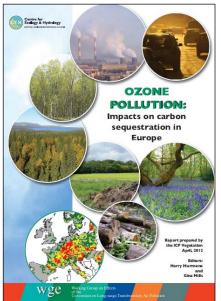
Assessment of the Impacts of Air Pollution on Ecosystem Services: Gap Filling and Research Recommendations

Work Package 1 – summarise evidence gaps

- •Critical review of impact pathways to identify evidence gaps
- •Evaluating knowledge gaps and the feasibility of addressing them

Work Package 2 – develop the assessment for selected ecosystem services

- For example:
- Spatially explicit calculation of nitrogen impacts on biodiversity, and subsequent valuation
- Ozone impacts on crops


Work Package 3 – identify and prioritise further research requirements

ICP Vegetation State of Knowledge Report

Ozone Pollution: Impacts on Ecosystem Services and Biodiversity

- 1. Introduction
- 2. Ecological processes and supporting services
- 3. Provisioning services
- 4. Regulating Services
- 5. Cultural services
- 6. Placing an economic value on effects
- 7. Conclusions and recommendations
- 8. Annex 1 : Contributions from participants
- 9. Annex 2: O₃ and stomatal conductance

Ecosystem Services Summary (1)

Biodiversity:

Route to valuation not yet clear Dose-response relationships with species richness are not consistent; closely follow temperature gradient

Carbon sequestration:

For grassland soil, £1.6 and £9.2 million annual equivalent losses due to lost C sequestration (provisional data) Where services can be taken through to valuation, we will estimateUncertainty & calculate Damage cost figures per unit 7mo. 24hr mean ozone.

Ecosystem Services Summary (2)

Pasture quality

Overall, there was a decline in forage quality in terms of metabolisable energy value and therefore animal production

Differences in farming practices make attributing a monetary value difficult, but losses have been calculated of ~£90 million per year based on reduction in liveweight gain , which could be offset by ~£60 million per year for more feed

To do:

Finalise maps Uncertainty analysis Finalise C sequestration in grasslands Complete report (by end of April).

Thank you to Defra for supporting this study

Valuation based on liveweight gain

Liveweight Gain	Historical (1987 – 2007)	Future (2007- 2020)
Upland		
Total Weight Reduction	0.7%	3.5%
Equivalent Annual Net Benefit	£26,708,916	£25,877,895
Lowland		
Total Weight Reduction	0.4%	4.2%
Equivalent Annual Net Benefit	£62,359,768	£60,338,956
Total change in Annual Net Benefit (all lambs)	£89,068,684	£86,216,851

Valuation based on supplementary feed

Additional Concentrate Feed Required	Historical (1987 – 2007)	Future (2007- 2020)
Upland		
Additional Concentrate Required	0.1%	0.6%
Equivalent Annual Net Benefit	£18,304,901	£18,9447,561
Lowland		
Total Weight Reduction	0.1%	0.7%
Equivalent Annual Net Benefit	£39,022,697	£40,404,075
Total change in Annual Net Benefit (all lambs)	£57,327,598	£59,351,636

