

Ozone and nitrogen interactions in birch trees

Felicity Hayes¹, Gina Mills¹, Harry Harmens¹, Richard Falk^{2,3}, Vicent Calatayud⁴

CEH-Bangor UK, CEH-Wallingford UK, University of Exeter UK, Fundación CEAM Spain

Éclaire project and talk overview

- How will climate change alter the threat of air pollution on ecosystems?
- Measurements, models, innovative risk assessment and the economic implications
- Focus on N and O_3 and their interaction with other pollutants
- 'new' experiments, and existing datasets from current/recent experiments at complementary sites and ecosystems across Europe

- Physiological measurements on birch trees with combined ozone and nitrogen treatments
- How these will be used to model impacts

SEVENTH FRAMEW

Experiment set-up and aims

Centre for Ecology & Hydrology Natural environment research council Birch in 7 ozone treatments and 4 nitrogen regimes

Stomatal conductance, Photosynthesis, A/Ci curves

Whole tree carbon and ozone fluxes

- Does nitrogen modify the response of birch to ozone?
- □ Does nitrogen and/or ozone affect the DO₃SE parameterisations for birch?
- Do fluxes of ozone and carbon become uncoupled?
- Are canopy (whole tree) alterations in fluxes a consequence of individual leaf physiological responses, or via reduced biomass?

Ozone Regime – Peaks affected more than background

Ozone Regime – Peaks affected more than background

Tree size

Decrease in tree height, stem diameter and leaf number with increase in ozone exposure

There was no effect of nitrogen (although only the first year of study)

Nitrogen

- Towards the end of the ozone exposure, leaves from the highest nitrogen treatment had elevated stomatal conductance and elevated chlorophyll content
- The DO₃SE model (models fluxes of ozone into a leaf based on climatic and other variables) can be tweaked to account for the effect of N on g_{max}
- Initially this has been run by running the model for each nitrogen treatment separately

CEH Bangor unpublished data Ross-Albert, Calatayud, Falk, Harmens, Hayes and Mills

Accounting for nitrogen in DO₃SE

CEH Bangor unpublished data Ross-Albert, Calatayud, Falk, Harmens, Hayes and Mills

Other factors influencing stomatal conductance

Leaf Level Effects – young leaves

ATURAL ENVIRONMENT RESEARCH COUNCIL

SEARCH COUNCIL

Leaf Level Effects – young vs old leaves

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL No evidence of an effect of either ozone or nitrogen on the A_{sat} of young leaves (leaf 3)

Slightly reduced photosynthesis (and stomatal conductance) with increasing ozone for older leaves

Vicent Calatayud, Fundación CEAM, Spain

Is this: Adaptation

Re-allocation of resources to new leaves at the expense of older leaves?

Or

Ozone damage is very slow and cumulative?

Ozone injury on birch – early season only

Whole-tree measurements

Within a solardome (with ozone on) and using a custom built tree-chamber in the light and in the dark:

Fluxes of carbon dioxide Ozone fluxes (humidity for some measurements)

Technological challenges, particularly for ozone

Whole-tree measurements

Whole-tree measurements

2nd October

- Reduced CO₂ uptake with increasing ozone matches the reduction in leaf number
- Smaller effect on water vapour fluxes
- Larger water vapour fluxes at high nitrogen correspond to the higher gs measured on individual leaves

Comparing single leaves and whole trees

By eye – a reasonable match between leaf level gs and whole-tree ozone uptake in response to soil moisture

Not sure whether whole tree ozone and CO₂ uptake in response to soil moisture are matched or not (more data needed)

COUNCIL

Further thoughts on uncoupling of gs and Pn

Coupling between photosynthesis and stomatal conductance may also be affected by other factors such as leaf age.....

..... but not as simple as 'just' nitrogen content of the leaves (used here as a possible surrogate for RUBISCO content)

What next - Plants?

All trees have overwintered outside, with nitrogen treatments maintained

Trees will be re-exposed to ozone in 2013 – will we see cumulative effects or

adaptation?

- Will we see nitrogen effects at the wholetree level?

More measurements at leaf- and whole-tree level over a range of ozone, nitrogen and environmental conditions

What next – using the data?

Modelling within éclaire

- Further investigation of whether O₃ alters stomatal conductance (thereby affecting CO₂ and O₃ fluxes)
- Direct effect of ozone on photosynthesis
- 'costs' associated with detoxification
- uncoupling of photosynthesis from stomatal conductance

Possible solution = modify Ball-Berry stomatal predictions independently of photosynthesis

Coupled models over-predict decreases in transpiration compared to the uncoupled model. This affects atmospheric water vapour and surface hydrology (particularly in the tropics and mid-latitude)

Lombardozzi et al. 2012. Oecologia 169:651-659 Lombardozzi et al., 2012. Biogeosciences 9: 3113-3130

Summary and Conclusions

There are interactions between ozone and nitrogen at the leaf-level Only ozone effects were apparent at the whole tree (growth) level after 1 season

'Patterns' of physiological responses at the leaf-level matched those at whole tree level, but no reliable functions exist to scale between these

Effects on individual leaves, coupled with reduced numbers of leaves, resulted in decreased fluxes of carbon dioxide, ozone and water at the whole-tree level

Fluxes of carbon dioxide, water and ozone may be uncoupled by elevated ozone, and possible with other environmental variables such as soil moisture, and plant factors e.g. leaf age

