Nitrogen biogeochemistry in stream-lake networks, English Lake District

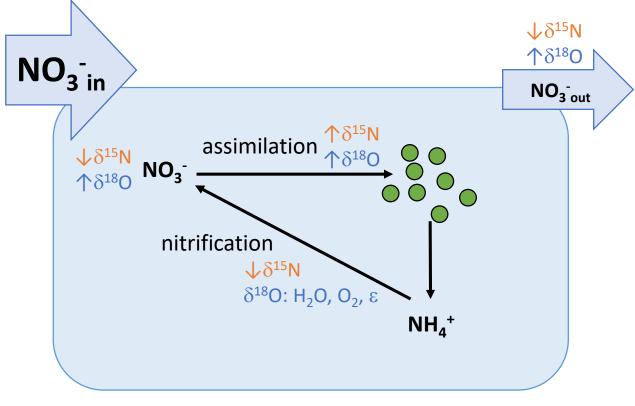
I. Grefe, P.M. Wynn, E.B. Mackay, P.A. Barker, H.K. Grant, M.G. Pereira, S.C. Maberly, B.W.J. Surridge

Cumbrian Lakes Research Forum 2023

i.grefe@lancaster.ac.uk

Connectivity

Hydrological connectivity


- Link between waterbodies
- Material transport
- Biogeochemical transformation

What happens to NO₃⁻ when water flows from a stream into a lake?

ELD lowland lakes

Lake epilimnion

- NO₃⁻ retention in lake: phytoplankton assimilation
- Remineralisation, followed by nitrification
- Epilimnion NO₃⁻ mixture of consumption (assimilation) and production (nitrification) processes
- Water residence time stronger control on NO₃⁻ retention than trophic state or season

ELD upland tarns

 δ^{18} O a better tracer of NO₃⁻ biogeochemistry than δ^{15} N in upland stream-lake networks.

Retention

• Assimilation: negative NO_{3 change}, $\uparrow \delta^{18} O$

Subsidy

• Tarns act like rain gauges, collecting atmospheric NO_3^- deposition: positive NO_3_{change} , $\uparrow \delta^{18}O$

ELD nitrogen biogeochemistry

Lowland lakes

- NO₃⁻ retention related to residence time
- Concurrent uptake and subsidy of NO₃⁻
- Trophic status less important

Upland tarns

- Atmospheric depositions important NO₃⁻ source
- Retention and subsidy related to upstream nutrient concentrations
- Internal N cycling less important