

Prediction of the impacts of chemical mixtures and how we will use this within LTLS-FE

SL, 20.07.23

The problem

- Completed LTLS-FE IM will predict concentrations of many chemical variables, each potentially exerting a stress on the ecosystem
- For ecological prediction,
- useful to reduce the number of explanatory variables
 - Reduce the cocktail of chemical concentrations to the smallest possible number of variables
- Can this be done???

> YES

- There are established methods/models for doing this
- IMPORTANT!
 - > This only applies to the toxic chemicals not the nutrients

Background: chemical risk assessment

- A key goal of chemical RA is to generate 'safe concentrations' of chemicals
 - > Below the 'safe concentration', risk is considered negligible
 - > 'Safe concentrations' are the basis for Environmental Quality Standards
- The risk assessment is based around data on the toxicity of the chemical to single species in controlled laboratory tests

Background: chemical risk assessment (2)

- How to bring the data for single chemical effects on multiple species together?
 - Species sensitivity distribution (SSD)
 - Fit statistical distribution (typically lognormal) to the toxic endpoints
- 'Safe concentration' typically taken as the concentration impacting 5% of the species (HC5 – hazardous concentration impacting 5% of species)

UK Centre for

Ecology & Hydrology

British

Survey

Geological

ROTHAMSTED

RESEARCH

CARDIFF

UNIVERSITY

PRIFYSGO

Kowniiri

Consultancy

• So what...?

.TLS

RESHWATER

ECOLOGY

Mixtures

- We want to predict the *combined* impact of multiple chemicals
- There is an approach that allows us to do this, using lognormal SSDs
- Based on the concentration addition concept
- "Adds" chemical concentrations, correcting for the differences in their potency

LTLS FRESHWATER ECOLOGY

UK Centre for Ecology & Hydrology

Example

Other information:

- PAFs for the individual chemicals...
 - Hotspots of individual chemical risk
 - Ranking of chemicals by impact

Data source:

- 'Posthuma database'
 - SSD parameters (mean, SD of lognormal distribution)
 - > 10,000 chemicals(!)

Bowburn

Consultancy

Background: chemical risk assessment (2)

1.0

0.8

Calculate PAFs for all chemicals in the mixture

Standard (log)normal distribution

Calculate **Z values** for all chemicals in the mixture

Z is the logged chemical concentration, normalised against hazard

 $msZ = \log_{10} \sum 10^{Z_i}$ Sum the Z values 1.0 Standard (log)normal distribution Calculate the PAF 0.8 corresponding to the msZ 0.6 PAF 0.4 - the msPAF 0.2 0.0 -2 -1 0 2 3 -3 1 z

LTLS FRESHWATER ECOLOGY

UK Centre for Ecology & Hydrology

BGS BGS Survey

Bioavailability modelling and WHAM-*F*_{TOX}

Binding

model for

organism

Organism effect (single metal) ∝ occupancy of binding sites on organism by metal

Occupancy can be modelled using chemical equilibrium principles

BÐ

Geochemical speciation model e.g. WHAM7

WHAM-F_{TOX} BLM 'Metabolically Binding at a active' bound specific 'receptor' metal Uses humic acid as surrogate for organism binding **Fractional occupancy** (θ) Binding of multiple metals Proton (H⁺) included as toxicant

LTLS FRESHWATER ECOLOGY

WHAM-F_{TOX}: predicting impacts

SE

0.0

3.4

0.7

1.3

35

347

24

Relating toxicity to 'taxon' response

Fixed relationship between $F_{TOX,i}$ and effect (the probability of finding the 'taxon', Pr_i)

if $F_{TOX,i} < F_{TOX, LT} \rightarrow Pr_i = 1$ ('taxon' present) if $F_{TOX,i} > F_{TOX, UT} \rightarrow Pr_i = 0$ ('taxon' absent) if $F_{\text{TOX, LT}} < F_{\text{TOX, i}} < F_{\text{TOX, UT}} \rightarrow Pr_i = 0 - 1$

Predicted number of 'taxon', $n_{sp} = \Sigma Pr_i$

 $F_{\text{TOX, LT}}$, $F_{\text{TOX, UT}}$ fixed, independent of 'taxon', obtained from laboratory data

The 'taxon'

- Theoretical rather than real
 - > More like a 'niche' in which a taxon may be present
- If the number of 'taxa' used is large then the proportional response (number of taxa present is independent of the number of 'taxa'
 - Use a large number of taxa to obtain a proportional response (0-1) corresponds to msPAF

Tipping et al., Aquat. Toxicol 231, 105708 (2021). https://doi.org/10.1016/j.aquatox.2020.105708

Results

 $n_{\rm sp} = 13$

from observations on 'control' lakes

UK Centre for

British Geological BGS Survey

Results

Summary

- We can derive separate 'stress metrics'
 - Organic micropollutants
 - Metals & acidity
- Internally consistent measures of combined stress
- At the moment I am *not* considering combining these further...
 - Different derivation methods

