Prediction of the impacts of chemical mixtures and how we will use this within LTLS-FE

SL, 20.07.23

The problem

- Completed LTLS-FE IM will predict concentrations of many chemical variables, each potentially exerting a stress on the ecosystem
- For ecological prediction,
- useful to reduce the number of explanatory variables
$>$ Reduce the cocktail of chemical concentrations to the smallest possible number of variables
- Can this be done???
> YES
> There are established methods/models for doing this

- IMPORTANT!

> This only applies to the toxic chemicals - not the nutrients

Background: chemical risk assessment

- A key goal of chemical RA is to generate 'safe concentrations' of chemicals
> Below the 'safe concentration', risk is considered negligible
> 'Safe concentrations' are the basis for Environmental Quality Standards
- The risk assessment is based around data on the toxicity of the chemical to single species in controlled laboratory tests

Toxic endpoint concentration e.g.

10\% effect (L(E)C10)
50\% effect (L(E)C50)

Bowhuril Consulitancy

Background: chemical risk assessment (2)

- How to bring the data for single chemical effects on multiple species together?
> Species sensitivity distribution (SSD)
> Fit statistical distribution (typically lognormal) to the toxic endpoints
- 'Safe concentration' typically taken as the concentration impacting 5% of the species (HC5 - hazardous concentration impacting 5% of species)
- So what...?

Bowhurn ecology

[^0]

Mixtures

- We want to predict the combined impact of multiple chemicals
- There is an approach that allows us to do this, using lognormal SSDs
- Based on the concentration addition concept
- "Adds" chemical concentrations, correcting for the differences in their potency

Bowburn Consultancy

Example

Other information:

- PAFs for the individual chemicals...
- Hotspots of individual chemical risk
- Ranking of chemicals by impact

Data source:

- 'Posthuma database'
- SSD parameters (mean, SD of lognormal distribution)
- $>10,000$ chemicals(!)

UK Centre for
Ecology \& Hydrology

ROTHAMSTED RESEARCH

Background: chemical risk assessment (2)

Calculate PAFs for all chemicals in the mixture

Calculate \mathbf{Z} values for all chemicals in the mixture

Z is the logged chemical concentration, normalised against hazard

Sum the Z values

ROTHAMSTED RESEARCH

Bowhurn Consulitancy

Bioavailability modelling and WHAM- $F_{\text {Tox }}$

Organism effect (single metal) \propto occupancy of binding sites on organism by metal

Occupancy can be modelled using chemical equilibrium principles

Geochemical speciation model e.g. WHAM7

Binding model for organism

BLM
Binding at a specific 'receptor'

WHAM- $F_{\text {Tox }}$

 'Metabolically active' bound metalUses humic acid as surrogate for organism binding

Fractional occupancy (θ)
Binding of multiple metals
Proton (H^{+}) included as toxicant

UK Centre for Ecology \& Hydrology

ROTHAMSTED RESEARCH

British	CARDIFF Geological
UNIVERSITY	
Survey	PRIFYSGOL
CAERDY	

Bowhurn Consulitancy

WHAM- $\mathrm{F}_{\text {Tox }}$: predicting impacts

LTLS
FRESHWATER
ECOLOGY

UK Centre for
Ecology \& Hydrology
ROTHAMSTED RESEARCH

British

Bowburn Consulitancy

Relating toxicity to 'taxon' response

Bowhurn

The 'taxon'

- Theoretical rather than real
> More like a 'niche' in which a taxon may be present
- If the number of 'taxa' used is large then the proportional response (number of taxa present is independent of the number of 'taxa'
$>$ Use a large number of taxa to obtain a proportional response (0-1) - corresponds to msPAF

UK Centre for Ecology \& Hydrology

Results

https://doi.org/10.1016/i.aquatox.2020.105708

Wavy

$$
n_{\mathrm{sp}}=13
$$

from observations on 'control' lakes

LTLS
freshwater
ECOLOGY

UK Centre for
Ecology \& Hydrology

CARDIFF
 prifyscol
 AARDY

Bowburn Consulitancy

Results

UK Centre for
Ecology \& Hydrology

ROTHAMSTED RESEARCH

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDY

Bowhurn
Consultancy

Summary

- We can derive separate 'stress metrics'
> Organic micropollutants
> Metals \& acidity
- Internally consistent measures of combined stress
- At the moment I am not considering combining these further...
> Different derivation methods

[^0]: Reser

