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1 What is uncertainty? 

In FEH methods, the standard methods of flood frequency estimation give, for each 
return period T, a single value of flow Q corresponding to the T-year event, QT. This 
is obviously just an estimate; the true value may differ from it. The level of uncertainty 
is how accurate and/or precise we believe the estimate to be. 

2 How do we measure uncertainty? 

Within the FEH methods, we focus on two key approaches to measuring uncertainty 
in the median annual maximum flood (QMED) and the growth curve XT (QT/QMED): 
factorial standard error and confidence intervals. 

2.1 Factorial standard error  

Factorial standard error (fse) is used to describe how much measured values X differ 

from estimated values �̂�. It is defined as the exponential of the standard error (se) 

𝑓𝑠𝑒 = 𝑒𝑠𝑒 = 𝑒
𝜎

√𝑁 (1) 

where σ is the sample standard deviation of �̂�. In estimating QMED, we measure the 

sample standard deviation of the error log(𝑄𝑀𝐸𝐷) − log(𝑄𝑀𝐸�̂�). 

Factorial standard error is used because the error of QT estimates is assumed to 
increase exponentially as flow gets bigger since, for example, we have less 
information on the rarest T-year events i.e. there is greater uncertainty associated 
with a 100-year event than a 2-year event. Also, the QMED catchment descriptor 
equation was developed assuming that log(QMED) has normally-distributed error, so 
QMED is assumed to have increased error as QMED gets bigger. Typically, the true 
standard deviation is not known. Instead, the sample variance, s2, is often used, or 
the standard error is estimated directly via other means. 

2.2 Sample Variance 

The sample variance, s2, is a measure of the variability of a time series. For a time 
series Zi (such as the AMAX series) the sample variance is given by  

𝑠2 =
1

𝑁−1
∑ (𝑍𝑖 −  𝜇)2𝑁

𝑖=1  (2) 

where N is the number of values and µ is the mean of the values. The sample 
standard deviation s is the positive square root of the sample variance. 

2.3 68-95 rule 

In QMED uncertainty estimation, we assume that the error of log(QMED) is normally 
distributed. If a value X is normally distributed, then if µ is the mean, and σ is the 
standard deviation, then 68% of the samples of X lie in the interval (𝜇 −  𝜎, 𝜇 +  𝜎) 
and 95% of the samples will lie in the interval (𝜇 − 2𝜎, 𝜇 + 2𝜎). 
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In practice, if a sample has mean, m, and standard deviation, s, then 68% of samples 
will lie in the interval (𝑚 −  𝑠, 𝑚 +  𝑠) and 95% of the samples will lie in the interval 
(𝑚 − 2𝑠, 𝑚 + 2𝑠). 

2.4 Confidence Intervals 

Confidence intervals (such as those in the figure above) are used for QT to describe 
how likely it is that the estimate is close to the true value. Typically, we use the 95% 
confidence interval. This is the interval that we are 95% sure contains the true value 
of QT. The narrower the interval, the more certain we are of the estimate. 

It is difficult to know an exact value for these intervals, so there are various ways to 
approximate them. If we know the fse, then we estimate an approximate 95% 
confidence interval for QMED by 

(
𝑄𝑀𝐸𝐷𝐸𝑆𝑇

𝑓𝑠𝑒2 , 𝑄𝑀𝐸𝐷𝐸𝑆𝑇 × 𝑓𝑠𝑒2) (3) 
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This can alternatively be described in terms of the standard error: 

(log(𝑄𝑀𝐸𝐷𝐸𝑆𝑇) − 2𝑠𝑒, log(𝑄𝑀𝐸𝐷𝐸𝑆𝑇) + 2𝑠𝑒) (4) 

Alternatively, we can use bootstrapping (Efron & Tibshirani, 1985) or Monte Carlo 
methods (e.g. Metropolis & Ulam, 1949) to estimate the confidence interval.  

2.4.1 Bootstrapping 

Bootstrapping is a way of using the observed data to quantify the uncertainty of the 
growth curve. It is performed by taking a large number of copies of the time series, 
concatenating and shuffling the combined list, and splitting it up into the same 
number of “possible” time series. We compute the growth curve for each of the 
possible time series, and for each return period we compute the 95% confidence 
interval as being bounded by the 2.5% and 97.5% quantiles. 

Alternatively, the standard error can be based on the sample standard deviation of 
the bootstrapped samples, using Equation 4 for the 95% confidence intervals. Note 
that this symmetric method can lead to unexpected results where the lower 
confidence interval becomes flat/decreasing as return period increases. An 
advantage of bootstrapping is that it requires no choice of distribution. 

2.4.2 Monte Carlo uncertainty estimation 

An alternative to bootstrapping is to use Monte Carlo methods to estimate the 
standard error for both single-site and pooled flood frequency estimates. In this 
method, a Generalised Logistic (GLO) distribution is fitted using the estimated 
parameters (probably L-moment or pooled L-moment estimates). Many time series of 
the same length as that of the target catchment are sampled from this GLO 
distribution, and are used to either compute the standard error (using the sample 
standard deviation for QT) or to compute confidence intervals using the top and 
bottom 2.5 percentiles. 

Note that unlike other methods, this can lead to different values of standard error for 
different return periods. It also requires a choice of extreme value distribution (e.g. 
GLO, GEV, GPa). 

2.4.3 Delta method 

The delta method is an algebraic method of estimating the standard deviation of QT 
(or QMED or the growth curve). This method is typically used in the theoretical 
development and justification of new methods of estimating QMED and QT e.g. with 
the inclusion of historical data. For the GLO distribution, recall that  

𝑄𝑇 = 𝜉 +
𝛼

𝜅
(1 − (𝑇 − 1)𝜅).  

We can estimate the standard deviation by computing 

𝑠2 ≈ ∇(QT)𝑇 𝑽 ∇(𝑄𝑇) (5) 

where V is the covariance matrix of (𝜉, �̂�, �̂�) and ∇(𝑄𝑇)𝑇 is the vector of derivatives of 
QT  

∇(𝑄𝑇) = [
𝜕𝑄𝑇

𝜕𝜉
,

𝜕𝑄𝑇

𝜕𝛼
,

𝜕𝑄𝑇

𝜕𝜅
 ] (6) 

which is normally computed using numerical solvers.  
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3 Uncertainty within the FEH Statistical 
Methodology 

3.1 Uncertainty for QMED 

3.1.1 GLO-fitted QMED (median) 

For a gauged catchment the factorial standard error of QMED, based on an observed 
AMAX series fitted using the GLO distribution, is given by 

𝑓𝑠𝑒 = 𝑒
2α

√𝑁 (7) 

where α is the GLO scale parameter, and N is the number of recorded AMAX values. 
Here it can be seen that as record length increases, fse decreases. 

For stations with short records, climatic adjustment should be used (Institute of 
Hydrology, 1999: Chapter 20). 

3.1.2 Catchment descriptor equation 

The QMED catchment descriptor equation was fitted using 602 stations (Environment 
Agency, 2008). QMED based on the catchment descriptor equation has an fse of 
1.431, comparing against the “observed” QMED at the stations. This is a fixed value 
that describes the model as a whole, not uncertainty at any particular station. 

3.1.3 Channel dimensions model 

The channel dimensions model uses values of channel width and flow to estimate 
QMED. This model has an fse of 1.60 as documented in FEH Local (Environment 
Agency, 2017) 

3.1.4 Flow variability model 

In the WINFAP package (WHS, 2016a), is a flow variability model, which uses Q5 
and Q10 (gauged daily mean flows exceeded 5% and 10% of the time) to update the 
estimate of QMED. This model, as documented in the WINFAP 4 QMED linking 
equation document (WHS, 2016b) has an fse of 1.31. 

3.1.5 Donor method (one donor) 

𝑓𝑠𝑒 = 𝑒
(√𝑠2(1−𝛼𝑑

2))
 (8) 

Where 𝛼𝑑 = 0.4598𝑒−0.02×𝑑 + (1 − 0.4598)𝑒−0.4785×𝑑 and d is the distance between 
the target catchment and the donor in km, s is the standard error of the QMED 
catchment descriptor equation. In this donor method (and for multiple donors), we 
assume there to be no uncertainty in the measurement of gauged QMED at the 
donor site. Note that this value of α is linked to the QMED donor adjustment formula 

𝑄𝑀𝐸𝐷 = 𝑄𝑀𝐸𝐷𝐶𝐷 (
𝑄𝑀𝐸𝐷𝑑𝑜𝑛𝑜𝑟,𝑜𝑏𝑠

𝑄𝑀𝐸𝐷𝑑𝑜𝑛𝑜𝑟,𝐶𝐷
)

𝛼𝑑

 (9) 

Based on this approach to donor adjustment, the fse gets smaller the closer the 
donor is to the target catchment. 
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3.1.6 Donor method (multiple donors) 

When multiple donors are used to improve the estimate of QMED in a similar fashion 
to above, the product of several adjustments is used giving: 

𝑄𝑀𝐸𝐷 = 𝑄𝑀𝐸𝐷𝐶𝐷 ∏ (
𝑄𝑀𝐸𝐷𝑑𝑜𝑛𝑜𝑟 𝑗,𝑜𝑏𝑠

𝑄𝑀𝐸𝐷𝑑𝑜𝑛𝑜𝑟 𝑗,𝐶𝐷
)

𝛼𝑑,𝑗

 𝐷
𝑗=1   (9b) 

The description of fse is more complex, but works in a similar way to the single donor 
case: 

𝑓𝑠𝑒 = 𝑒(√𝑠2−𝒃𝑇𝜴−1𝒃)
 (10) 

where b is the subject-donor covariance vector, and Ω is the between-donor 
covariance matrix (Kjeldsen et al., 2014). This becomes the same as Equation 8 if 
only one donor is used. 

3.2 Uncertainty for Growth Curve 

3.2.1 Basic Single-site Analysis 

If there is enough data, i.e. more than 14 years of AMAX, we can use direct 
computations of standard error, bootstrapping or Monte Carlo simulation to determine 
uncertainty for QT estimates directly, or for QMED and the growth curve separately.  

3.2.2 Donor method (one and multiple donors) 

The fse is calculated based on the covariance between the target site and the 
donor(s), and between the donors if there is more than one. It combines the error of 
the pooled approach with the donor method for QMED estimation, and so produces a 
generalised estimate of uncertainty of the flood frequency curve. It can be calculated 
based on bootstrapping, but typically uncertainty increases as the average distance 
to the donors increases, but also as the variability between the donors increases. 

There has been work into trying to describe fse across England and Wales under the 
donor method. Kjeldsen (2015) estimated fse at fixed return periods with and without 
the use of one donor (replicated in Table 1). An average fse model incorporating 
return period was published in Environment Agency (2017) for pooled analysis using 
0, 1, 2 and 6 donors. The 6-donor equation is replicated here as Equation 11. 

𝑓𝑠𝑒 ≈ 1.406 + 0.0011𝑦 + 0.0040𝑦2 (11) 

where 𝑦 = − log (− 𝑙𝑜𝑔 (1 −
1

𝑇
)). We use this approximation because calculating an 

exact fse for 6 donors is a complex calculation involving inverting a 6x6 matrix.  

 

Table 1: List of fse for different return periods (from Kjeldsen, 2015). 

 

Return Period fse (0 donor) fse (1 donor) 

2 1.47 1.42 

5 1.48 1.43 

30 1.52 1.47 

100 1.54 1.50 
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3.2.3 Pooled analysis 

As above, the uncertainty associated to a pooling-group estimate of growth curve can 
be obtained either via bootstrapping or Monte Carlo simulation. 

For pooling-group methods, one may come across a “Pooled Uncertainty Measure” 
(PUM) which was used as a metric to determine the performance of the pooling-
group approach. Dependent on return period T, it is given by 

𝑃𝑈𝑀𝑇 =  √
∑ 𝑤𝑖(log 𝑥𝑇,𝑖−log 𝑥

𝑇,𝑖
(𝑝)

)
2

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

  (12) 

where xT,i is the at-site growth curve, xT,i
(p)

 is the pooled growth curve, and wI is a 
series of per-station weights based on record length. PUM is one value for the 
pooling-group method, not a measure of uncertainty for a given pooling-group. It is 
also not a standard measure of uncertainty outside of this application. 

3.3 Combined Uncertainty 

If QMED and the growth curve XT are computed separately, then the uncertainty of 
QT can be related to the uncertainty of QMED and XT, but it is not simply the sum or 
product of the two uncertainties: 

𝑉𝑎𝑟(𝑄�̂�) = 𝑄𝑇
2𝑉𝑎𝑟(𝑄𝑀𝐸�̂�) + 𝑄𝑀𝐸𝐷2𝑉𝑎𝑟(𝑋�̂�) + 2 𝑄𝑀𝐸𝐷 𝑋𝑇𝐶𝑜𝑣(𝑄𝑀𝐸�̂�, 𝑋�̂�) (13) 

Where �̂� is the estimate of the true value X. Var(QMED) can be computed using fse, 
but the covariance term is highly complex to compute, involving joint probabilities of 
both QMED and XT. In the theoretical case where QMED is completely independent 
of the growth curve, the “Cov” term is zero. 

4 How is uncertainty implemented in 
WINFAP? 

4.1 Single-site Analysis 

The growth curve 95% confidence intervals are based on the standard error 
computed using bootstrapped samples using Equation 4 to give the curves. 
Currently, sampling error, which could be included in estimates of at-site uncertainty, 
is not included in WINFAP due to insufficient information of measurement precision 
and accuracy at the gauging station. 

4.2 Enhanced Single-site Analysis 

Enhanced Single-site analysis (ESS) uses a combination of gauged flow 
measurements along with pooling-group estimates. The associated uncertainty is 
complex, as it has to combine the measurement uncertainty of the gauged records 
with the uncertainty of the modelled part. This is quite complex (see Combined 
Uncertainty), but in principle could be estimated using Monte Carlo methods. In 
general, we can assume that pooled uncertainty is higher than single-site uncertainty, 
and both are expected to be higher than enhanced single-site uncertainty. 
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4.3 Pooled analysis 

Uncertainty is not currently shown for pooled analysis in WINFAP 4. 

5 How is uncertainty implemented in 
ReFH2? 

The ReFH2 rural design event model was assessed relative to the enhanced single-
site statistical model for return periods from 2 to 1000 years in 285-420 catchments, 
depending on return period (Wallingford HydroSolutions, 2019). The fse of the 
ReFH2 model using FEH13 rainfall inputs was similar to but slightly higher than that 
of the pooled statistical method, also assessed relative to the enhanced single-site 
estimates. Uncertainty in a peak flow estimate is not shown within the software. 

6 Uncertainty in FEH rainfall models 

6.1 Kriging Variance 

In FEH99 and FEH13, depth-duration-frequency (DDF) models are fitted at rainfall 
gauging stations and then extended to the rest of the UK via kriging which smoothly 
“fills in the gaps”. This introduces some uncertainty at ungauged sites between 
gauging stations. There is also modelling uncertainty from the DDF model itself, 
however in FEH Vol. 2, the standard deviation of RMED (2-year return period rainfall 
event) is approximated by the square root of the kriging variance. 

6.2 Growth curves 

Growth curves for rainfall (for a fixed duration and location) have 95% confidence 
intervals computed via bootstrapping in an identical approach to above. 

7 Notes on sources of error 

7.1 Sampling Error 

In addition to having uncertainty about how well the model fits the observed values, 
we can also consider the uncertainty in how well the model fits the true flow. This 
comes from the fact that we don’t have an infinite number of observations to perfectly 
describe the true flow. This interacts in a complicated way with the total uncertainty of 
QMED and QT. 

7.2 Measurement Error 

In addition to sampling error, there is measurement error, which also is a part of the 
possible uncertainty relating to flood frequency estimation. This includes 
shortcomings in precision and accuracy of flow measurement, which can also lead to 
bias. 
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