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Executive Summary 

This report describes in details the basic concepts, needs and data treatment for the approaches we will 
implement under WP-5 dedicated to “ecologically-relevant low doses effects to non-human species”. 
It gives the preliminary list of the potential sets of selected species and endpoints, and the method and 
tools for establishment of dose (rate) - responses relationships for life traits and for DEBTox 
parameterisation. A preliminary state-of-the-art is also established to explain the reasoning we are 
proposing for understanding mechanisms underlying molecular mode of action of radiation exposures, 
together with a brief review of the various omic tools available for gaining insights into modes of 
actions. Common guidance for scaling any of our experiments is illustrated through the presentation of 
the pilot study we decided in order to test our ability to share experiments among partners (hypothesis 
- choice of species & endpoint – experimental design – scaling the range and space of dose rates - data 
treatments). 
Within this global framework of WP-5, our experimental work will be done on the basis of a limited 
set of experiments designed to test umbrella hypotheses as follows: 

1. Chronic irradiation by internal alpha- or external gamma emitter leads to 
physiological/metabolic changes at the individual level caused by: 

 (i) increase in maintenance costs,  
(ii) decrease in assimilation,  
(iii) increase in energetic costs for somatic growth  
(iv) increase in energetic costs for reproduction,  
(v) direct hazard to embryos.  

This umbrella hypothesis will drive Task 5.3 devoted to DEBTox and its consequences at the 

population level. 

2. Differences in radiosensitivity between species are correlated with (sub)cellular properties and 
processes (e.g., DNA quantity, repair mechanisms). 

3. Due to actions at different sites (microdosimetry), the Relative Biological 
Effectiveness (RBEs) derived for alpha emitters for human cancer risks will not be 
applicable for ecologically relevant endpoints 

These umbrella hypotheses will drive Task 5.2 devoted to the understanding of mechanisms of 

radiation effects at the individual level. 

The next step viewed as “go-no go” actions will take place in our next meeting in January 
2012 where we will discuss:  

(i) the main conclusions from our sensitivity analysis outcoming from the theoretical 
approach where we combined radiosensitivity information from FREDERICA and 
Leslie matrices for a wide range of species (task 5.1): this discussion will help to 
decide whether we need to implement experiments (or not) to obtain more robust 
conclusions about the propagation of effects observed at the individual level to the 
population level; 

(ii)  the results and lessons learnt from the pilot study: this discussion will help to 
refine the experimental design if needed, to conclude on the feasibility of DEBTox 
development (task 5.3); 

(iii)  the hypotheses we would test to progress in the understanding of  the mechanistic 
modes of actions at the (sub)cellular level (task 5.2). 
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1 Introduction and general objectives 

The main objective of this document is to present the common approach decided among STAR 
partners to ensure the consistency of used protocols for performing experiments in different 
laboratories, and as a consequence to ensure the data collected among STAR WP-4 and WP-5 is 
comparable. Our willingness is to demonstrate the integration efficiency through the adoption of 
common protocols and methods for data generation and interpretation. Rationale for selection of 
hypotheses, exposure conditions, biological models, endpoints, along with principles for experimental 
design and description of models, tools and statistics for data interpretation are successively presented 
within this report. 
 
WP-4 and WP-5 have selected the following research issues to be investigated on selected species for 

each of two radiation types (external γ and internal α) and co-contaminants to be defined within WP-4. 
For WP-5, we have decided to have three experimental sets, one per task, all of them being strongly 
related. The three tasks are reminded in Table 1 also with their starting period as written in STAR 
proposal. 
 

Table 1:  Brief description of the main lines of the experiments associated to each task for WP5 
WP-Task Objective of the experimental part Start of 

experiments 

WP-5 Task 1 On the basis of the theoretical part of Task 5.1, quantify dose-effect 
relationships on individual life history traits for species according to (i) 
the major data gaps highlighted by the theoretical part of this task and/or 
(ii) the most influencing extrapolation assumption used during the 
theoretical part that could be tested in order to reduce uncertainty 

From January 
2012 

WP-5 Task 2 From a state-of-the-art review on the molecular, cellular and individual 
parameters influencing radiosensitivity, design experiments using a 
combination of conventional biomarker and omic tools to test hypothesis 
about the mode of action of radiological exposures 

From May 
2012 

WP-5 Task 3 DEBTox implementation on two models (one plant, one animal) and 
combination with population modelling 

From January 
2013 

 
Experimental design will have to be appropriate for the models & tools we decided to use 
preferentially to address our research lines: 
- a traditional toxicologically based approach to build dose(rates)-effects relationships for 
individual life history traits within a species. This knowledge is then used for predicting population 
consequences on the basis of individual adverse outcomes (theoretical work (potentially completed by 
experiments under laboratory conditions) done under Task 5.1 by combining Dose (rate)-effect 
relationship and Leslie Matrices);  

- a physiologically based approach completed by inter-relational links between life history traits 
with “Dynamic Energy Budget” concepts. Ecological risk assessment has been marked over the last 
decade by an increasing interest in biology-based models, such as DEBtox (Dynamic Energy Budget 
applied to toxicity data) models, based on the DEB theory. This theory provides a conceptual 
framework which specifies how energy is taken from food and allocated to growth and reproduction. 
For the selected species, the DEBtox concept will be used to test whether chronic exposure to different 
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stressors (alpha, gamma and a simple mixture) will involve contrasted metabolic mode of actions that 
drive the consequences in terms of individual fitness. 
- a mechanistically-based approach to gain knowledge of parameters governing radiosensitivity 
between and within species. For the selected species chronically exposed to alpha or gamma 
irradiation, and to a simple mixture of radiation and a chemical, “omic” tools will be used with the aim 
of advancing the mechanistic understanding of radiation impact at the molecular level, including 
differences between the relative biological effectiveness (RBE) of alpha and gamma exposures. 
- an approach for integration of all the knowledge acquired. This will be done at the very end of 
the project to synthesise all lessons learnt (Task 4.). We expect new knowledge to provide insights 
into: 

• understanding of how radiosensitivity at the molecular and individual levels mechanistically 
link to impacts on individuals and populations, and 

• understanding how dose characteristics (e.g., radiation type, targeted organs) influence the 
biological efficiency of radiological damage, by identifying the metabolic pathways that 
produce individual history trait disturbances; 

• the ability to deal with extrapolation between species. 
 
Within this global framework, our experimental work will be done on the basis of a limited set of 
biological models, endpoints and approaches which choices will be justified in due time during the 
course of the project. The umbrella hypotheses to be tested will be: 
1. Chronic irradiation by internal alpha- or external gamma emitter leads to physiological/metabolic 
changes at the individual level caused by: 

 (i) increase in maintenance costs,  
(ii) decrease in assimilation,  
(iii) increase in energetic costs for somatic growth  
(iv) increase in energetic costs for reproduction,  
(v) direct hazard to embryos.  

This umbrella hypothesis will drive Task 5.3 devoted to DEBTox and its consequences at the 
population level. 
2. Differences in radiosensitivity between species are correlated with (sub)cellular properties and 
processes (e.g., DNA quantity, repair mechanisms). 
3. Due to actions at different sites (microdosimetry), the Relative Biological Effectiveness (RBEs) 
derived for alpha emitters for human cancer risks will not be applicable for ecologically relevant 
endpoints. 
These umbrella hypotheses will drive Task 5.2 devoted to the understanding of mechanisms of 
radiation effects at the individual level. 
 
This report firstly describes the basic concepts, needs and data treatment for the approaches we will 
implement. It gives the preliminary list of the potential sets of selected biological species and 
endpoints (chapter 2), then develops the method and tools for establishment of dose-responses 
relationships for life traits (chapter 3) and for DEBTox parameterisation (chapter 4). Then chapter 5 
establishes the main lines of the state of the art to explain the reasoning we are proposing for 
understanding mechanisms underlying molecular mode of action of radiation exposures, together with 
a brief review of the various omic tools available for gaining insights into modes of actions. Before 
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conclusion (chapter 7), common guidance for scaling any of our experiments is illustrated in chapter 6 
through the presentation of the pilot study we decided in order to test our ability to share experiments 
among partners (hypothesis - choice of species and endpoint – experimental design – scaling the range 
and space of dose rates - data treatments). 
 

2 Sets of selection  

2.12.12.12.1 LisLisLisList of candidate t of candidate t of candidate t of candidate sssspeciespeciespeciespecies    
Multiple criteria need to be considered for selection of appropriate experimental organisms. These 
were discussed at a workshop in May 2011 (WP-4/5 workshop in Mol – see Minutes), and the 
following groups of criteria were drawn up. These were then used as a basis for assessing the 
suitability of various candidate organisms (summarised in Table 2). The order or the list does not 
reflect the criteria’s importance. 
 

Availability of biomarkers / molecular tools (column 2 Tab.2): 
 Availability of range of biomarkers – and lab experience 

Availability of genetically modified organisms (GMOs) for advanced mechanistic studies 
Availability of genome maps and microarrays 

Ecological relevance (column 3 Tab.2): 
Diversity of species, reproduction mechanisms (sexual, clonal, hermaphrodite, etc), life 
history stages, radiosensitivity 

 Functional role or position in the food web  
 Possibility of field study sampling 

(Economic relevance – food for humans – important link to WP3 – but on an ecosystems 
approach all organisms have indirect relevance) 

Assessment relevance (column 3 Tab.2): 
Representativeness as a test species (e.g., standardized bioassays for chemicals) or as a species 
used to test human effects (e.g., C. elegans, D. rerio) 

 Reference Animal or Plant for radiation (RAP) 
Population dynamics (column 4 Tab.2): 
 Ease of performing experimental studies of reproduction endpoints 

Reproduction mechanisms (sexual, clonal, hermaphrodite, etc), life history stages 
Availability of multi-generation studies or models  

Other contaminant / multiple stressor data (column 5 Tab.2): 
 Ease of getting the toxicant (or alpha emitter) into the organism 
 Availability of data on toxicant effects 

Likelihood of exposure to multiple stressors (including alpha/beta/gamma mixtures) at sites of 
interest 
Bioaccumulation or biomagnification 
Possibility of biokinetic studies (organ sampling) 
Availability of Biotic Ligand Models (BLM)  

Knowledge status (column 6 Tab.2): 
 Availability of data – necessary for complex modelling 
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Lack of data – new data would advance the field and provide data needed for benchmark 
derivation (SSD)  

Dynamic Energy Budget (DEB) (column 7 Tab.2):  
 Availability of models 
 Possibility of generating relevant data in the laboratory  

Specific Experimental Considerations (column 8 Tab.2): 
Ease of maintenance / husbandry 
Issues of waste generation 
Ease of performing chronic/multigeneration experiments 
Cost 
Ability of STAR Partners to perform experiments on the organisms 
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Table 2: Candidate organisms for experimental study and their suitability according to the criteria 

1. Organism 2. Biomarkers/ 
toolbox  

3. Ecological /assessment 
relevance 

4. Population 
dynamics 

5. Other 
contaminants/multiple 
stressor  

6. Knowledge status 7. DEB 8. Experimental 
considerations 

Phytoplankton 
Marine or 
freshwater 
species 

-All (for some 
species), 
-Genome sequenced 
for Anabaena and 
Thalassiosira. 

- First trophic level, base 
of most aquatic food 
webs. 
- High species diversity 
with range of life 
histories, habitats 
- Very short generation 
time. 
- Standard ecotox species 
exist. 

-Many species have 
simple asexual 
reproduction (cell 
division), 
-Multigenerational 
studies easy. 

-Relatively easy 
-BLM 
-Lots of ecotox data available. 
-Likely to be found in multi-
contaminant sites (e.g. lakes) 

-Nearly no radiation effect 
data 

-No but very helpful to 
rapidly conceive a DEB for 
single celled organism  
model 

-Easy to keep, short 
generation time. 
-SU, IRSN 

Plants 
Lemna 
Arabidopsis 

-All up to 
microarray 
-GMOs Arabidopsis 
-Genome map 
For Lemna: genome 
sequence was going 
to be released 
december 2009 but 
is not yet available 

- Ecological relevance 
variable (Arabidopsis is a 
weed). Higher for Lemna 
then Arabidopsis. Lemna 
is a common freshwater 
macrophyte and crucial in 
the food chain. 
- Lemna also has 
economic value (grown as 
source for protein rich 
feed) 
- overall plants have high 
ecological relevance 
(biomass) 
 - both are model test 
organisms 
  

- Reproduction and 
multi-generation 
experiments 
 

-Relatively easy 
-Many data available for 
Lemna not for Arabidopsis. 
-Likely to be found in multi-
contaminant sites (e.g., ponds 
(Lemna), soils (Arabidopsis)) 

-Gaps for SSD 
(But lots of acute data – 
and some field data) 
 - Large variation in 
radiosensitivity 
- “Hormesis” and 
adaptation 

-Feasible starting from 
scratch. But will be novel 
in the end. Need ca. 12 
months for DEB 
conception and calibration 
and 12 months for the 
DEBtox version 

-SCK (both) 
-UMB & IRSN 
(Arabidopsis) 
 
 

Nematod 
C. elegans 
 
 
 

- All up to 
microarray 
- GMOs (lots and 
cheap) 
- Genome map 

- Soil microorganisms 
- Different reproduction 
strategies 
- Large and ecologically 
diverse and important 
phyla 
- Representative ecotox 
(and human tox) organism 
 

-Easy multi-
generational model 

-Relatively easy 
-Lots of metal (and other 
chemical) data. 
-Likely to be found in multi-
contaminant sites (e.g., 
soils/sediments) 

- Widely used in human 
radiation biology – but for 
other effects and 
endpoints.  

-Available soon at IRSN 
 

-Easy 
Automated “worm counters” 
available 
 
-IRSN, UMB  

Crustacean 
D. magna 
 
 

-All up to 
microarray 
 
 

- Different reproduction 
strategies 
- Representative aquatic 
ecotox  organism 
 

-Multigenerational 
model 
-Multi cohort models 

-Relatively easy. 
-Likely to be found in multi-
contaminant sites (e.g., 
ponds) 

-Effects data available for 
asexual reproduction – 
sexual repro under study at 
IRSN 

-Available and operational -Easy 
 
-IRSN, UMB (partners - no 
own research) 
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Bivalve 
Blue mussel (etc) 
 
 
 
 
 

-As for zebrafish 
(but no microarray)  

- Filter feeder, 
 - Structure forming 
- Major food source 
(humans and wildlife) 
- Wide distribution 
(marine and freshwater) 
- Long life cycle 
- Standard chemical tox 
representative organism 
 

-Multigenerational 
-Early spawning 
-Longish lifespan 
-Broadcast spawning of 
larvae 

-Extensive biomonitoring 
data) 
-Biokinetics and organ 
distribution possible.  
-Kinetic uptake curves easy. 
-Likely to be found in multi-
contaminant sites (e.g. coastal 
areas, lakes) 

-Not a standard organism, 
so compared to fish less 
data for radiation effects.  
-Uptake and speciation 
studies  

 
-Operational 

 
-Easier than fish – lower 
maintenance, ethical 
constraints, size etc.. 
 
 
-SU 

Annelid 
Terrestrial 
E. fetida (lab) 
L. rubellus (field)  
Aquatic 
Polychaeta 

-All up to 
microarray 
-Some GMOs 
-Genome map close 

- Decomposer, important 
food web component  
- RAP 
- Standard procedures 
from chemical tox 
 

-Reproduction and 
multi-generation 
experiments 
- some polyploid 
species 
Different reproductive 
strategies can be studied 
 

-Lots of data on metals  
-Biokinetics possible 
-BLM. 
-Likely to be found in multi-
contaminant sites (e.g., soils) 

-Soil RAP representative 
of the “decomposers” – -
Large gaps in general for 
invertebrates 
-Variation in 
radiosensitivity between 
species (and within whole 
invertebrate group) 

-“DEBish” model available 
for L. rubellus (Klok and 
de Roos) 

-Low maintenance, chronic 
exposures easy  (internal and 
external) 
-Metal speciation in soils, 
soil disposal, cocoon 
counting time consuming;  
-UMB ;  IRSN  

Insect 
Bee 

 - Long and complex life 
cycle 
- RAP 

   No -Large research group based 
at UMB (but not STAR 
participants) 

Fish  
Zebrafish 
Medaka  
Salmon 
 

All up to microarray 
GMOs (zebrafish 
and medaka) 
Genome map 
(zebrafish 
 
 

-Ecological and economic 
relevance (salmon – 
human food source) 
-RAP 
- Standard procedures 
from chem. (zebrafish) 
-Bio-magnification (e.g. 
Po)  
- Representative eco-& 
human tox model 
(vertebrates) 

Reproduction  
experiments 
 (zebrafish) 
 
Sensitive life history; 
fertilisation experiments 
(salmon) 
 
Models available from 
fisheries and other 
stressor assessments 
 

-Data on metals 
-Some data on radiation+ 
metal (antagonism)  
Biokinetics/organ doses  
-BLM 
-PBPK model soon available. 
Likely to be found in multi-
contaminant sites (e.g. lakes) 

-Lots of acute data; less 
chronic 
-Lots of data on chemicals 
(mixture studies) 

-Soon operational at IRSN 
(zebrafish) 

-Standard procedures from 
chem. (zebrafish) 
-Easy husbandry 
-UMB, IRSN 

Bird 
Chicken/ duck 
model organisms 
available 
 
 

  - Long life cycle 
- RAP 

 -Hard to implement in lab -Not a standard organism, 
so compared to fish less 
data for radiation effects.  

-No -Field investigations NRPA 
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2.22.22.22.2 Radioactive stressorsRadioactive stressorsRadioactive stressorsRadioactive stressors and exposure guidelines and exposure guidelines and exposure guidelines and exposure guidelines    
Experimental design will have to be appropriate for the two research lines described above, i.e. to 
build dose(rate)-effects relationships for individual life history traits within a species, and to acquire 
the data needed for the parameterization of physiologically-based model, such as DEBtox. Both 
research lines will deal with chronic exposure conditions, involving designs allowing continuous 
exposure of organisms during a significant length of their life cycle, or at least crucial stages.  

A first specific point that will drive the choice of radioactive stressors and exposure conditions is the 
need for building dose(rates)-effects relationships for the chosen endpoints (see chapter 3). The second 
point is the selection of the route and duration of the exposure. In order to test the first umbrella 
hypothesis described above, chronic irradiation by internal alpha and external gamma emitters will 
need to be implemented to assess physiological/metabolic changes at the individual level and to 
identify the DEBtox modes of action.  

A generic screening value of 10 µGy/h (incremental dose rate) was recently derived, and proposed as 
the screening benchmark for ecological risk assessment. For this work, the primary source of effects 
data from radiation on non-human species was the FREDERICA database (www.frederica-online.org, 
Copplestone et al., 2008), which is the most comprehensive compilation of raw biological effects data 
from the scientific literature. A meta-analysis of this database was first processed by Garnier-Laplace 
et al. (2006), enlarged during the PROTECT program (http://www.ceh.ac.uk/protect/), resulting in a large 
and consistent set of chronic critical radiotoxicity values (EDR10, dose rate giving a 10% change in 
observed effect). However, this work has pointed out that there are still large knowledge gaps for 
radiation effects on non-human biota, mainly linked to our poor understanding of (1) chronic, low-
level exposure experiments linked to ecologically-relevant endpoints, and (2) the way effects of 
external gamma irradiations can be extrapolated to internal irradiations with high-LET particles. 

This is why the acquisition of chronic effect data under continuous irradiation nearby the 10 µGy/h 
benchmark value (i.e. from background level of <1 µGy/h up to 100 mGy/h) is the main line that will 
drive the choice of exposure conditions during STAR. 

External gamma irradiation requires a specific irradiation facility under controlled conditions (with a 
gamma source, e.g., Co-60 or Cs-137 source). Dose(rates) are chosen after a first step of dose 
calculation (e.g., MCNP) for the identification of the exact location of any experimental unit in the 
irradiation chamber to obtain the same dose-rate (the chosen dose-rate is an exponential-decreasing 
function of the distance to the irradiation source). Then, a pre-calibration of external dose rates is 
needed, using adequate dosimeter calibration tools (e.g., ionisation chambers, thermoluminescence 
detectors …). A specific point in regard to the choice of a series of external dose(rates) is the need to 
avoid as much as possible the intra-experimental unit variation of dose(rates), which is highly 
dependent on the geometry of the experimental unit. UMB (Norway), SCK (Belgium) and IRSN 
(France) are equipped with adequate tools to specify the external irradiation designs from ca. 0.04 to 
40 mGy/h. 

Criteria for the choice of alpha radionuclide are much more critical. The main criteria that will lead the 
choice of internal alpha emitter are: 
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- Concentration factor of the selected species from the exposure medium is favourable 
to rapid accumulation / low depuration; 

- The target cell/organ/tissue(s) is(are) related to the studied endpoint (e.g., digestive 
system for assimilation endpoints ; gonads for reproductive endpoints ; cell DNA for 
genotoxicity…), or is homogeneously distributed; 

- The exposure route is manageable and reproducible: for direct route (high solubility 
and bioavailability, low adsorption…) and/or trophic route (feasibility of food 
contamination, high bioconcentration factor…); 

- The needed activity to manipulate is consistent with radioprotection constraints; 

- The budget for source providing and waste treatment is not prohibitive; 

- The chemical form of the source is compatible with exposure conditions (e.g.,  
element in highly acidic media ; presence of carriers ; purity level); 

- The analytical methods allow a precise characterisation of exposure media and 
internal activities (if possible in vivo) and if possible without complex radiochemical 
separation; 

- A short period alpha emitter is favoured; 

- The toxicity is due mainly to alpha radiation and not other emissions from the 
radionuclide and/or its daughters; 

- The chemical toxicity of the radionuclide and/or its daughters is negligible. 

Combining all of those criteria, the choice of americium (Am-241) as one of the preferred candidate 
for alpha internal irradiations is viewed as a good compromise. 

The thermodynamic database on the speciation of americium(III) is quite well referenced and allows 
to calculate the chemical speciation and solubility of the radioelement in water (Bion et al., 2005) 
although experimental evidence would always be needed. This radioelement gives also a realism to 
actual chronic contaminations: trace concentrations of Am-241 are found worldwide in aquatic 
ecosystems (10−6 to 10−5 Bq/L) as a consequence of former atmospheric nuclear weapon testing and 
accidental releases from nuclear reactors including Chernobyl fallouts, with regional higher levels of 
10−5 to 10−2 Bq/L in freshwaters (Matsunaga et al., 1998; Choppin, 2006). Contaminated soils (10−2 to 
10 Bq/kg on average, peaking locally up to 10 to 104 Bq/kg) are a potential source of Am-241 for 
surface water and groundwater (Pourcelot et al., 2003; Agapkina et al., 1995), while the highest 
concentrations are found in the sediments of continental shelves (up to 105 Bq kg−1). Furthermore, in 
the future Am-241 will become one of the dominant pollutants in the Chernobyl affected areas due to 
ingrowth from Pu-241 (Muravitsky et al., 2005). Therefore, knowledge on biological effects of 
chronic exposure to alpha-emitting radionuclides is urgently needed both for post-accidental situations 
and for the long-term management of radioactive nuclear waste disposals. 

Experimentally, the precise quantification of internal alpha irradiation of organisms will need to 
quantify the bioaccumulation of Am-241 in relation to concentration and the corresponding calculation 
of internal alpha dose rates. Several steps will be needed:  
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- Am-241 concentrations measurement in the medium, and in the organisms at 
different time (a full biokinetic study would be ideally performed) and life stages. 
After a proper mineralization, Am-241 activities in samples can be precisely 
determined alpha liquid scintillation counting using a low background spectrometer 
(e.g., Quantulus 1220,Wallac Oy, Turku, Finland, the detection limit is ca. 0.03 Bq);  

- Dose conversion coefficients (DCC, expressed in mGy/h / Bq/ml) needs to be 
calculated by an adequate method (e.g., based on Monte Carlo calculations with 
MCNP software). This calculation takes into account alpha particles (5.5 MeV) and 
beta(−) particles (from 4.6 keV to 1.0 MeV) emitted by Am-241 that propagate over 
distances from 2 to 400 µm in the medium and in the contaminated tissues. By this 
way, Am-241 activities (Bq/ml) measured in each compartment (medium, tissues of 
the organism…) can be converted to dose rates delivered to daphnids (mGy/h) using 
a simple calculation. Estimation of DCC needs to take into account the changing 
body shape and volume in growing organisms. Generally, volumes are calculated 
assuming that animals are ellipsoids growing  

Such an experimental design for the study of Am-241 effects was already implemented on D magna 
for the study of the effects of chronic internal alpha irradiation on physiology, growth and 
reproductive success endpoints (Alonzo et al., 2006; 2008). As an illustration, Am-241 was used in 
this study from 0.4 to 40 Bq/ml in the medium, with a bioaccumulation from 0.4 to 28 Bq/daphnid, 
and subsequent average calculated dose rates from 0.02 to 1 mGy/h (>99% attributable to internal 
alpha radiation from Am-241 bioaccumulation in tissues). 

 

3 Basic concepts and methods for establishing dose-response 
relationship for chronic exposure situations to a single stressor 

3.13.13.13.1 Test designTest designTest designTest design    

3.1.1 Selecting doses 
Concerning the number of doses, OECD (2006) advises the use of at least four different doses (control 
included). In addition, for monotonic dose-response relationships, Environment Canada (2005) 
recommends that observations encompass the three phases of the relationship (first phase with low 
effect, second phase with an increasing effect, and third phase with an asymptotic effect). Obviously, 
these recommendations are mainly theoretical. In order to obtain a good fit for the regression, 
experimental data points have to be well distributed all along the dose(rate)-response curve. A pilot 
study can be done previously to help. 

For hormetic relationships, there is no specific advise but the same pattern could be used, i.e. 
observations spanning each of the three phases (first stimulatory phase at low doses, second phase 
with an high increasing (or decreasing) effect, third phase with an asymptotic effect at high doses). 

Environment Canada (2005) advises to use a geometric (or logarithm) series of concentrations (or dose 
(rate) for radionuclides), but here is no statistical reason behind this recommendation. Some specific 
tests (e.g., OECD guidelines for Lemna minor or for Daphnids) suggest first to do a range finding 
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experiment in dilutions of 10 in order to find out the rough shape of the dose response curve and 
subsequently to do two-fold diluted experiment within the correct range. 

3.1.2 Number of replicates 
Here, the terminology given by Environment Canada (2005) is used:  

"A replicate (as a noun) is a single test chamber containing a prescribed number of organisms (= 
sampling units), either on one concentration (= treatment) of test material, or in a control. In a toxicity 
test with five test concentrations and a control, using three replicates, 18 test chambers would be used, 
i.e. three chambers for each treatment. A replicate must be an independent test unit, and therefore the 
test material in a chamber must no have a connection to the test material in another chamber."  

From a theoretical point of view, there is no need of replicates in order to estimate an ECp or EDp% 
and its confidence interval. In other words, replicates are not necessary to obtain an estimation of the 
curve's parameters or their standard errors. They also represent a security in case of accidental 
damage. However, it is clear that replicates improve the estimation of the parameters values and their 
standard error. Moreover, estimation of the residual sum of square used to assess the fit of a model is 
only possible if replicates are present. It is said that only two replicates are needed to estimate the 
residual sum of squares, but Environment Canada (2005) recommends at least three replicates per 
treatment if afterwards want to apply a regression fit to the data. It is also advised that it is preferable 
to increase the number of concentration or dose(rate)s rather than replicates. It means that in order to 
have a good estimation of the regression parameter, it is better to have more tested doses all long the 
curve than 3 doses with a lot of replicates. 

3.1.3 Randomization and blind  
When toxicity experiment data are analyzed and modelled by regression analysis, procedures of 
randomization are needed in order to avoid consistent bias in the ECp or EDp% estimate (Davies et 

al., 1998). 

According to Environment Canada (2005), procedures of randomization should include: 

- randomization of containers used for the different groups (control and treatment) ; 

- randomization of containers' placement within the incubator or room ;  

- randomization of sub-sample (organisms) into the containers. 

These kinds of procedures require a random numbers table and are well described in the annex E 
Environment Canada (2005). 

When possible, a completely randomised design should be used. That means that the experimental 
units can be assigned at random to a treatment group; experiment is performed at one time in one 
location or it can be measured that time and location have negligible effects on the experimental 
material. Ranges of formal experimental design are well described in many statistical textbooks e.g. 
(Box et al. , 1978; Festing, 2003; Festing and Altman, 2002). In any case, the experimenters will 
describe the used experimental design and the associated statistical methods. 

However, especially when implementing external gamma irradiation experiments, randomization 
could be a difficult stage to accomplish. Actually, since the dose or dose rate delivered to any 
experimental unit depends on the location  from the gamma source, all replicates within each 
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dose(rate) treatment will need to be placed together (at a particular distance from the source, or in a 
particular incubator). Any effect of dose will thus be difficult to separate from any potential effect of 
position.  This can be controlled by measuring relevant parameters such as light and/or temperature in 
order to be able to exclude this as a confounding factor. 

Moreover, (eco)toxicity test should be "blind" tests for the experimenter, meaning that the containers 
must be identified by a code rather than by a dose level. 

3.1.4 Controls 
The aim of the control is to provide a baseline of the observed effect. Thus, it has to be identical to the 
other treatments for all, except for the stressor (i.e. a null dose). 

 

3.23.23.23.2 DoseDoseDoseDose----response curve modelling with R software and 'drc' addresponse curve modelling with R software and 'drc' addresponse curve modelling with R software and 'drc' addresponse curve modelling with R software and 'drc' add----on on on on 
packagepackagepackagepackage    

3.2.1 Introduction about R software and 'drc' add-on package 
R is a language and environment for statistical computing and graphics. It provides a wide variety of 
statistical methods (linear and nonlinear modelling, classical statistical tests, time-series analysis, 
classification, clustering,…) and graphical techniques, and is highly extensible. R is available as free 
Software and provides an Open Source route. R functions and datasets are stored in packages, which 
are:  

- base packages (part of the R source code, down-loaded with R); 
- or add-on packages (have to be specifically down-loaded). 

R and packages can be down-loaded at : http://cran.r-project.org/ 
For more information see the FAQs at:http://cran.r-project.org/  
'drc' (for Dose-Response Curve) is an R add-on package. This library provides a wide range of 
functionalities for dose-response relationships modelling and analysis. A lot of common models for 
dose-response curves are integrated into the package for convenient use (i.e. log-logistic model, 
Weibull model, Mikaelis-Menten model (see e.g., Scholze et al., 2001).These models are translated 
into general equations with associated parameters. It is easy to use sub-models of them (i.e. specific 
equations for instance with one or more parameter fixed). Estimation of critical ecotoxicological 
values (i.e. EDp% or EDRp%) and their standard deviation are facilitated, as the use of hypothesis 
tests. 'drc' package uses non linear regression to model dose-response relationship. 
Procedures to download R and 'drc' are described in section 8.1; and procedures to import data sets in 
section 8.2. 

3.2.2 Monotonic dose-response curve modelling: the log-logistic models 
Several models can be used in order to fit monotonic dose-response data. Nevertheless the log-logistic 
one appears as the most convenient because of: 

- its parameters have a biological meaning; 

- it could be employed with continuous or quantal (binary) data; 

- its use is very spread in ecotoxicity area; 
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- the mathematical models used in 'drc' to fit hormetic dose-response data are all 
modifications of the 4-parameters log-logistic model. 

In 'drc' the 4-parameters log-logistic model is described with the following parameterization : 

))]log()(log(exp(1[
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cd
cy
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−+=    Equation 1 

Where: 

- b is the slope at the inflexion point (EC50, or parameter 'e') 

- c is the lower limit of the response (asymptote limit) 

- d is the upper limit of the response (asymptote limit) 

- e is the the dose reducing the response 50%(ED50) between d and c, i.e. point of inflexion 

- x is the dose 

- y is the biological response (i.e., root length). 

- In 'drc' this model is named LL.4. 

 

Figure 3.1: example of monotonic dose-response curve modelling with a 4 parameters log-logistic 

model. 

 

According the direction of the curve (increasing or decreasing) and the type of the observed response 
(continues or quantal) several simplifications of the 4parameters log-logistic model can be considered. 
Three sub models are available is 'drc': 
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- a model, named LL.3, which contains only 3 parameters since the lower limit  
( 'c' parameter) = 0 ; its equation is: 
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- a model, named LL.3U, which also contains only 3 parameters since the upper limit ('d' 
parameter) = 1. This model can only be used with quantal data; its equation is: 
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- a model, named LL.2, which also contains only 2 parameters since the lower limit (c 
parameter) = 0 and the upper limit (d parameter) = 1. This model can only be used with 
quantal data ; its equation is: 
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Examples of different monotonic dose-response relationships and their corresponding log-logistic 
models are given in section 8.3 for both continuous data and quantal data.  

3.2.3 Hormetic dose-response curve modelling 

Definition and type of curves 

Hormesis effect is defined by a biphasic response with a stimulatory effect at the low dose levels. 
Hormetic dose-response curves can have two shapes : 

- an 'inverted U' shape ; it's the case for example, when the observed response is the length of plant 
leaves (at the control level leaves have a certain length, this one increases at the low dose levels and 
then falls gradually when strong doses of substances are administered), (Fig.3.2A). 

- a 'U' shape; it's the case for example, when the observed response is e.g., the mortality of a species 
(at the control level there is a certain mortality ratio, this one decreases at the low doses level and then 
increases gradually when strong doses of substances are administered) (Fig.3.2B). 

 

 

Figure 3.2: Hormetic dose-response curves, inverted U shaped curve (A) and U shaped curve (B). 

(from Calabrese et al., 2002). 
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Mathematical models used to describe hormesis effect 

Two types of mathematical models are integrated into 'drc' to describe the hormesis effect. Both 
models come from the log-logistic model, with which they are nested. 

The Brain-Cousens's model (Brain and Cousens, 1989) contains 5 parameters, its equation is:  
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Where: 

- b has no direct meaning, it reflects “the slope” (but is not strickly the “slope”) 

- c is the lower limit of the response (asymptote limit) 

- d is the upper limit of the response (asymptote limit) 

- e has no direct meaning 

- f measures the rate of growth stimulation at doses close to zero (f should be positive, and 
hormetic effect increases with increasing values of f) 

- x is the dose 

- y is the biological response (i.e., root length). 

An example of a 5 parameters Brain-Cousens's fit is shown in the following figure. 

 

 

Figure 3.3: Example of a 5 parameters Brains-Cousens model's fit. 

 

This model is named BC.5 in 'drc'. 

It is important to note that this model is useful only to model 'inverted U' shaped dose-response 
relationship. 
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The other hormetic model available in 'drc' is the Cedergreen-Ritz-Streibig's model (Cedergreen et al., 
2005). This model contains 5 parameters too, and its equation is different according the shape of the 
curve to be modelled.  

 For inverted U shaped curve, its equation is: 
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  Equation 6 

 

 

Six parameters are present in the equation. Nevertheless, alpha parameter is, in reality, fixed according 
3 values of choice. In 'drc', Cedergreen-Ritz-Streibig's models used to describe inverted U shaped 
curves are named CRS.5a when alpha=1, CRS.5b when alpha=0.5 and CRS.5c when alpha=0.25. 

When the curve has a U shape, equation of the full Cedergreen-Ritz-Streibig's model is: 
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In 'drc' these models are called UCRS.5a when alpha = 1, UCRS.5b when alpha = 0.5, UCRS.5c when 
alpha=0.025. 

Whatever the shape of the curve, meanings of the Cedergreen-Ritz-Streibig model's parameters and of 
the variables are: 

- b : has no direct meaning 

- c : is the lower limit of the response (asymptote limit) 

- d : is the upper limit of the response (asymptote limit) 

- e : has no direct meaning 

- f : measure the hormesis effect (f should be positive, and hormetic effect increases with 
increasing values of f) 

- α : reflecting the steepness of the hormesis peak (fixed at 1 (a), 0.5 (b) or 0.25 (c) levels) 

- x is the dose 

- y is the biological response (i.e., root length). 

An example of a 5 parameters Cedergreen-Ritz-Streibig model's fit, when dose-response relationship 
has an inverted U shape, is shown in figure 3.4. 
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Figure 3.4: Example of a 5 parameters Cedergreen-Ritz-Streibig model's fit, when the dose-response 

relationship has an inverted U shape. 

 

An example of a 5 parameters Cedergreen-Ritz-Streibig model's fit when dose-response relationship 
has a U shape is shown in figure 3.5. 

 

 
 
 

Figure 3.5: Example of a 5 parameters Cedergreen-Ritz-Streibig model's fit, when the dose-response 

relationship has a U shape.  
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Mathematical sub-models used to describe hormesis effect 

When the dose-response relationship has an inverted U shape, models of Cedergreen-Ritz-Streibig 
with 4 parameters, specifying that the lower limit of the curve ('c' parameter) =0 are directly available 
in 'drc'; they are named CRS.4a, CRS.4b and CRS.4c. Their equation is: 
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It's the same with the Brain-Cousens' model, its equation is:  
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It could be noted that when the dose-response relationship has a U shape, models of Cedergreen-Ritz-
Streibig with 4 parameters, specifying that the lower limit of the curve ('c' parameter) =0, are also 
directly available in 'drc'. They are named UCRS.4a, UCRS.4b and UCRS.4c. Their equation is: 
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Nevertheless, the use of such models seems quite infrequent in ecotoxicology. 

On the other hand, when dose-response relationship has a U shape, there is no sub model of 
Cedergreen-Ritz Streibig's model directly available in 'drc' specifying that the upper limit ('d' 
parameter) is fixed to1. This type of model could be useful when observations are quantal data (cf. 
Figure  in annexe 8.4) Nevertheless, this type of model could be fitted using the “ucedergreen” general 
function. 

Examples of different hormesis dose-response relationships and their corresponding Brain-Cousens 
and Cedergreen-Ritz-Streibig models are given in annexe 8.4. 

 

Nested models 

Since Brain-Cousens models and Cedergreen-Ritz-Streibig models are modifications of the log-
logistic models, it can be established that: 

- BC.5 and LL.4 models are nested since BC.5 model with 'f' parameter =0. is a LL.4 model.  

- CRS.5a, CRS.5b, CRS.5c and LL.4 models are nested, for the same previous reasons. 

- UCRS.5a, UCRS.5b, UCRS.5c and LL.4 models are nested, for the same previous reasons 
(even if it's less obvious to demonstrate). 

- BC.4 and LL.3 models are nested, since BC.4 model with 'f' parameter = 0 is a LL.3 
model.  



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

22 

- CRS.4a, CRS.4b, CRS.4c and LL.3 models are nested, for the same previous reasons. 

- BC.5 and BC.4 models are nested since BC.5 with 'c' parameter = 0 is a BC.4 model. 

- CRS.5a, CRS5b, CRS5c and respectively CRS.4a, CRS.4b, CRS.4c are nested since the 
first ones with 'c' parameter=0 equal the second ones. 

Examples of different hormetic dose-response relationships and their corresponding models are given 
in section 8.4 for both continuous data and quantal data.  

An example of a complete analysis and modelling of a 'hormetic' dose-response relationship with 
quantal observations, in absence and in presence of overdispersion, is provided in section 8.4.5. 

 

4 Specific data needs for physiologically based modelling using 
DEBtox 

4.14.14.14.1 Background and principlesBackground and principlesBackground and principlesBackground and principles    
The DEB theory provides a conceptual framework which specifies how energy is taken from food and 
allocated to growth and reproduction (Fig. 4.1). 
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Figure 4.1: Diagram of the individual-based energy allocation model. Note that with a plant model 
photosynthesis needs to be taken into account for energy input 

 
DEBtox models describe how toxicants accumulate over time in exposed organisms and alter one or 
many parameters of the DEB by coupling toxicokinetics and effects models. The approach has many 
advantages, as opposed to standard ecotoxicological approaches involving classical exposure-response 
relationships :  
���� First, DEBtox approach gives the possibility to analyse jointly the effects observed on various 
endpoints (growth and reproduction and eventually survival), as a result of exposure to one or 
several toxicants. 
Five different primary modes of action are proposed in the standard DEBtox model to explain effects 
on reproduction (Table 3). Those include direct effects on reproduction such as increased energy cost 
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of egg production or increased egg mortality during oogenesis (referred below as “Reproduction” and 
“Hazard” effects). Energy allocation being dependent on size and energy reserve, reductions in both or 
in any of these two parameters – due to reduced energy assimilation, increased energy cost of 
maintenance, or increased cost of growth  - cause indirect effects on reproduction.  

 

Table 3: Sets of DEBtox equations describing growth and reproduction as a function of time and 
toxicant concentration. Daphnia case as an illustration. 
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Symbols: f nutrition functional response, g energy investment ratio, ℓ scaled body length = 
L/Lmax, ℓp scaled body length at puberty, γ Von Bertalanffy growth rate, R(ℓ) and reproduction 
rate as a function of ℓ, RM maximum reproduction rate, et c internal or exposure concentration. 

( )cσ  is the stress function expressing the intensity of toxic effect depending on exposure 
level. 

 

���� Second, estimated toxicokinetic parameters do not depend on exposure time. 
1) Time is taken into account through simple one-compartment kinetics models: 

In fact, stress functions which relate effect intensity of a toxic compound to internal concentration cint 
in the organism is given at time t by:  
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k
c =  with ka and ke the elimination rates (in time-1) and cext the exposure 

concentration. 

2) Effects are linked to exposure through stress functions ( )cσ : 

Classically, DEBtox hypotheses assume that organisms are disturbed by the chemically toxic 
compound when its internal concentration exceeds a threshold concentration called the no effect 
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concentration (NEC)(Fig. 4.2). Therefore at toxicant concentrations below the NEC no difference is 
observed between exposed and control organisms. Once the NEC is exceeded, effects on one of the 
DEB parameters (as assumed from the selected mode of action) are proportional to the difference 
between exposure concentration and NEC. 
 

( )
( ) ( )




≥−⋅=
<=

NECcifNECcbcσ

NECcif0cσ
 

Stress σ(c)

c
NEC

b

Stress σ(c)

c
NEC

b

 
Figure 4.2: Stress function ( )cσ  (dimensionless) affecting energy budget of exposed organisms, as a 

linear function of internal or exposure concentration c. 
 

3) Particular cases: 
In some cases, toxicants might affect a superficial tissue such as the digestive epithelium (with 
reduction in assimilation as a DEBtox mode of action) and start causing toxicity as soon as they are 
ingested without further requirement to be internalised. In such cases, effects might be induced 
immediately upon exposure and toxic stress might better correlate to external concentration or internal 

concentration ruled by a high ke value reflecting rapid kinetics. In practice, the stress function ( )cσ  is 

either related to cint the internal concentration ruled by the kinetics equation or cext the exposure 
concentration and both assumptions are evaluated on the basis of compared goodness of fits. 
In the case of ionising radiation, one can hypothesize that toxic stress is related to external gamma or 
internal alpha dose rate, cumulated dose etc. The stress function might write: 

( )
( ) ( )




≥−⋅=
<=

NEXxifNEXxbxσ

NEXxif0xσ
 

with NEX the no-effect exposure level and where x the exposure level is either: 
- the dose rate dr translated from external gamma or internal alpha radiation using size-

dependent dose conversion coefficients (DCC), 
- the total received dose cumulated over time, 
- an index (D) of cumulated damage subjected to some repairing process and ruled by a 

kinetic equation: 

Dkdr
dt

dD
r ⋅−=  

where kr is a repairing rate. 
���� Third, insights on the physiological mode of action (Table 3) can be provided when it is 
possible to identify the DEB parameter which is altered. Identifying the mode of action of toxic 
contaminants is essential to develop biomarkers, presume potential additivity or independence of 
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actions between several toxicants in mixture, to predict effects on organisms and extrapolate 
consequences for the population. When equation fits fail pointing which DEBtox parameter is altered, 
other methods may be used to evidence the altered process(es), including complementary 
physiological measurements (carbon assimilation in Daphnia exposed to uranium in Massarin et al., 
2011), histological observations (alteration of midgut epithelium in Daphnia exposed to uranium in 
Massarin et al., 2011), gene expression (Caenorhabditis with various chemicals in Swain et al., 
2010)… 

���� Moreover, complicated exposure patterns can be accounted for, including unsuitable range of 
testing conditions or time-varying concentrations. 
 

4.24.24.24.2 Parameterisation (assumptions, tools)Parameterisation (assumptions, tools)Parameterisation (assumptions, tools)Parameterisation (assumptions, tools)    
Parameterisation techniques: 
In some cases, DEBtox equations can be parameterised separately for physiological parameters 
(namely g the energy investment ratio, ℓp the scaled body length at puberty, γ the Von Bertalanffy 
growth rate and RM the maximum reproduction rate which describe how unexposed organisms behave 
physiologically), based on the “control” dataset and toxico-kinetics parameters (namely NEC the no-
effect concentration, b the slope of the stress function and ke the elimination rate of the kinetics 
equation), based on “exposed” data once the physiological parameters are estimated. In other cases, 
physiological and toxicokinetics parameters can be fitted conjointly considering the whole (control 
and exposed altogether) dataset. 
The parameterisation is performed using a maximum likelihood method or least squares criterion. In 
agreement with Jager et al. (2004), growth and reproduction equations must be estimated 
simultaneously to take account of the close relationship between both endpoints. This is commonly 
achieved using a weighted sum of squares ssqi for each endpoint i (i being either growth or 
reproduction) calculated as:  

( ) ( )
( )( )∑

= 
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with ( )tsimi  the simulated value of i at time t, ( )tji  one of the j replicate observations of i at time t, 

and ( )( )tiσ  the variance between the observed ( )tji  values and in  the number of observations of I 

when the different endpoints are not measured the same number of times.  
If the weighted sum of squares ssqi is greater for one endpoint i than for the other, their relative 
contribution to the global sum of squares ssqtot can be balanced using weighting factors ssqi,max: 
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with ssqi,max the maximum value of ssqi estimated as:
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where i  is the average value of all observations of i. 
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Confidence intervals for the different parameters can be built using a bootstrap technique. To do so, 
datasets were simulated by randomly sampling from each concentration and time the same number of 
values (among the measured values) as the observed dataset (with replacement e.g., possibility to 
select the same value several times). On each sampled datasets, model was adjusted to determine the 
parameters as described previously. This procedure was performed 10,000 times. 
Experimental design: 
Properly parameterisation of the NEC requires that the value is included in the range of tested 
exposure conditions, e.g. that the lowest tested concentration lies below the NEC value (with no effect 
observed on reproduction and growth at that concentration). The tested range should include several 
exposure concentrations above the NEC, one close to the NEC (with only slight effects observed) and 
others with significant effects, to maximise chances of identifying NEC and b values. The parameter 
ke is best explored with several measurements made shortly after exposure induction. 
Recommendations: 
1) In exposed organisms: reduced number of replicates per treatments (minimum = 3 for bootstrap 
requirements) to increase number of time points and concentration conditions. 
2) In control organisms: higher number of replicates (5 per time points for example) for 
parameterisation of “physiological” parameters. 
 

4.34.34.34.3 Type of parameters to measure throughout the experiments for Type of parameters to measure throughout the experiments for Type of parameters to measure throughout the experiments for Type of parameters to measure throughout the experiments for 
DEBDEBDEBDEBtoxtoxtoxtox    parameterisationparameterisationparameterisationparameterisation    

Parameterising DEBtox equations requires that reproduction and growth is monitored at 
several exposure conditions (at least 4 different exposure concentrations plus a control) over 
the life time of tested organisms. The choice of the laboratory species is taking this necessity 
into account (e.g., species with relatively fast growth and short generation time and that are 
easy to maintain in the laboratory (e.g., C. elegans or D. magna). If several organisms are 
tested, these should be from different trophic levels. 
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Figure 4.2: Example of fitted DEBtox equations (with effect on assimilation- equations in first row of 
table 3, as confirmed by assimilation measurements and histological damages observed on the 
epithelial wall) to growth and reproduction and survival equation for Daphnia magna exposed to 
different concentrations of depleted uranium (based on experimental results by Massarin et al. 2010). 
Stress functions were correlated to exposure concentration. NEC value for uranium is between 0 and 
10 µg.L-1. With exposure concentrations ranging from 10 to 75.L-1, the exact value was not identifiable 
based on the dataset and observed increase in effect severity across generations yielded differences in 
NEC which were not significant. 
 

5 Approaches to understand mechanisms underlying the mode of 
action of radiation exposures 

Compared to many other environmental stressors, the underlying mechanisms and modes of action 
(MoA) of ionising radiation toxicity are rather well defined, even though the majority of work has 
been driven by a focus on human effects, and especially cancer.  
This section will provide a brief review of the state-of the-art regarding our understanding of the 
biological effects and mode of action of ionising radiation specifically focussing on differences in 
radiosensitivity between and within species, and the contribution that toxicogenomics can play in 
gaining insight into modes of action. Based on a literature search a preliminary overview on possible 
biomarkers for chronic radiation or radiosensitivity was produced (Table 4). This table will be used as 
a starting point to develop a common experimental approach.  
 

5.15.15.15.1 Cellular and biological features driving radiosensitivityCellular and biological features driving radiosensitivityCellular and biological features driving radiosensitivityCellular and biological features driving radiosensitivity    
Radiosensitivity of organisms is influenced by a number of different factors, and is known to vary for 
different endpoints (e.g., reproduction versus mortality); life stage (embryos, larvae, and juveniles 
stages are the most sensitive), individuals and species. Mammals are generally considered to be among 
the most radiosensitive species (at least based on LD50, with LD50/30 being ca. 6-10 Gy for small 
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mammals and 1.5-2.5 Gy for larger animals and domestic livestock; UNSCEAR, 1996) whereas some 
bacteria from the Deincoccus-Thermus group are extremely radioresistant and can survive more than 
12 000 Gy (UNSCEAR, 1996; Daly, 2009). The exact mechanisms/reasons for this huge variation in 
radiosensitivity are not completely understood. 
Some general parameters known to determine the sensitivity of an organism to radiation are: the DNA 
content (i.e. mean chromosome volume) of the cell; the efficiency and types of DNA repair/pathways; 
the cell repopulation capacity; and the ability of tissue and organs to regenerate (reviewed in Harrison 
and Anderson, 1996). It is also recognised that prior or combined exposure to other stressors can also 
influence an organism’s radiosensitivity. These issues will be further discussed in WP-4. Already in 
1961 Sparrow and co-workers reviewed nuclear parameters determining the sensitivity of plants to 
radiation. They recognised that it correlated with a larger nucleus or chromosome, more acrocentric 
chromosomes and with lower chromosome or endoploidy. Also plants that mainly reproduced by 
sexual reproduction or had longer intermitotic time showed higher sensitivity (Sparrow and Miksche, 
1961).  

5.1.1 Initial infliction of DNA damage 
Generally, it appears that species with high DNA content are more radiosensitive (Hall and Giaccia, 
2006; Harrison and Anderson, 1996; UNSCEAR, 1996). This is because the linear density of DNA 
double strand breaks inflicted per Mbp (0.004-0.01) is similar for different organisms following 
irradiation, and therefore cells with small genomes suffer fewer double strand breaks (DSBs) than 
cells with large genomes (discussed by Daly, 2009). Increasing ploidy to more than two, on the other 
hand, would be expected to reduce radiosensitivity. However, the sensitivity can vary substantially for 
the same chromosome volume, so other factors are obviously also important (UNSCEAR, 1996). 
In different cell types the number of radiation-induced DNA lesions might vary to some extent 
depending on the levels of low-molecular-mass scavengers (reviewed in Okunieff et al., 2008), the 
level of oxygen (anoxia, hypoxia) (Hall and Giaccia, 2006), and physical protection afforded by 
different degree of packaging of DNA (e.g., histones versus proteamines etc). For example, the high 
radioresistance of mature spermatozoa has been attributed to the extremely condensed sperm 
chromatin (e.g., Haines et al., 1998).  

5.1.2 Checkpoint control mechanisms and DNA repair  
The consequence of the induced DNA damage depends on whether the lesions are repaired, and if the 
mode of repair is error-free or error-prone. First, the damage has to be recognised, leading to a block in 
cell cycle before the cells enters into S-phase (G1-block) or into mitosis (G2-block). These 
checkpoints apparently give the cells additional time for DNA repair. The various types of DNA 
damage are repaired by different repair pathways, which differ with respect to the speed and fidelity. It 
is clear that inherent radiosensitivity relates to the efficiency of checkpoint control mechanisms and 
the repair capability of the cells (reviewed by UNSCEAR, 2000). The factors that influence the 
efficiency and fidelity of DNA repair are fundamental in determining cell and organism sensitivity to 
ionising radiation and this relates in particular to DSBs repair. This is because when both strands of 
the DNA are damaged in the same location no template strand is available for repair. Homologous 
recombination repair (HR) and non-homologous endjoining (NHEJ) are the two pathways for DSB 
repair, of which the former is more complex and considered to be less error prone than the latter 
(reviewed in UNSCEAR, 2000).  
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The extreme radioresistance of D. radiodurans has been ascribed to a highly efficient homologous 
recombination, although the underlying mechanism for this is not understood (discussed by Daly, 
2009). Interestingly these bacteria do not contain higher concentrations of DNA repair enzymes, but 
have compared to more radiosensitive microorganisms high [Mn]/[Fe] ratios. Daly (2009) proposed 
that the accumulation of near millimolar concentrations of Mn2+ in the cells makes manganese 
complexes that prevent the production of iron-dependent reactive oxygen species. This would prevent 
protein oxidation during irradiation, with the result that sufficient repair enzymes survive radiation 
damage and allow subsequent DNA repair. 

5.1.3 Induction of cell death 
Exposure to ionising radiation can lead to different types of cell death (i.e. necrosis, apoptosis and 
mitotic death). Apoptosis (programmed cell death) can be viewed as a complementary way of getting 
rid of cells with DNA damage (UNSCEAR, 2000). At low doses this is probably the most efficient 
response since it removes damaged cells from the population and reduces the probability of misrepair. 
Cells that are seriously damaged by ionising radiation (e.g., containing asymmetric exchange type 
chromosome aberrations) will undergo mitotic death (genetic death), leading to loss of proliferation 
capacity. It is well known that rapidly dividing cells are more radiosensitive than non-dividing cells 
and that the sensitivity varies within the cell cycle (UNSCEAR, 1996). When it comes to mitotic 
death, the highest and lowest sensitivity is apparent at mitosis (and late G2 phase) and S phase, 
respectively, whereas the opposite pattern applies to apoptosis. Furthermore, the mitotic death shows a 
substantial dose rate effect, whereas the induction of apoptosis for a given dose appears to be 
independent of dose rate and dose fractionation (Hall and Giaccia, 2006; UNSCEAR, 2000). In 
response to radiation, the relative importance of the two mechanisms varies with dose and dose rate, as 
well as with the cell type and its developmental stage (UNSCEAR, 2000). 

5.1.4 Tissue regeneration 
For higher, multicellular organisms, the ability and capacity of cells to repopulate themselves, to 
replace cells damaged or killed by radiation and to orchestrate tissue and organ regeneration can 
influence both organ and species radiosensitivity. Many primitive organisms tend to show more 
efficient tissue and organ regeneration, several of which appear to be relatively radioresistant as adults 
(Harrison and Anderson, 1996). 

5.1.5 Cell cycle sensitivity 
Cells are generally found to be most sensitive to radiation at the beginning of the mitosis and least 
sensitive during S-phase. The varying sensitivity of cells in different phases of the cell cycle is not 
fully understood but several correlations have been found. The varying amount (duplication during S-
phase) or form (relaxed versus condensed) of DNA during a cell cycle might influence the sensitivity. 
There is also a correlation between radiosensitivity and the levels of naturally occurring sulfhydryl 
compounds in the cell through the cell cycle. They act as free-radical scavengers, and can facilitate 
direct chemical repair at sites of DNA damage by hydrogen atom donation (Hall and Giacca, 2006). 
The efficiencies of different repair processes in different phases of the cell cycle can also impact 
radiosensitivity.  

5.1.6 Life Stage  
Reproduction is known to be one of the most radiosensitive life stages, and it might be impaired at 
doses corresponding to less than 10% of the dose causing mortality. This can in part be explained by 
the fact that actively dividing cells are most sensitive, and consequently the highest radiosensitivity is 
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likely to be found in cell systems undergoing rapid cell division for either renewal (e.g., 
spermatogonia) or growth (e.g., the developing embryo) (UNSCEAR, 1996). It is well known that 
irradiation leads to apoptosis of cells in the early stages of spermatogenesis, thereby reducing the 
production of spermatozoa. Furthermore, the successful transfer of the genome to the offspring may be 
disturbed by gene mutations induced in the germ cells. Induction of recessive and dominant lethal 
mutations in male and female germ cells may lead to an early death of the developing embryo. Other 
more “subtle” mutations may lead to development of abnormalities influencing the fitness and fertility 
of the offspring in the next and subsequent generations. Understanding the underlying mechanisms for 
differences in sensitivity of germ cells (reproductive organs) and embryonic tissues between different 
species would therefore be of high relevance since these factors would also  be of importance for 
reproductive strategy (e.g., sexual versus non-sexual reproduction, parthenogenesis).  

 

5.25.25.25.2 Application of biomarkers and toxicogenomics in mechanistic Application of biomarkers and toxicogenomics in mechanistic Application of biomarkers and toxicogenomics in mechanistic Application of biomarkers and toxicogenomics in mechanistic 
studiesstudiesstudiesstudies    

A biomarker can be defined as a biological parameter that can be measured in a given subject and is in 
some way related to a biological effect (Durante, 2007). Brooks (1999) distinguished three different 
classes of biomarkers: exposure, sensitivity and disease. For exposure biomarkers a dose-response 
relationship can be established. Biomarkers of sensitivity are genetic markers associated with an 
increase in individual susceptibility towards e.g. radiation. Finally, biomarkers of disease are those 
biological events that can be used to anticipate the diagnosis of a specific illness. The latter class of 
biomarkers is in our objective not relevant. Examples of biomarker of both exposure and sensitivity 
that can be utilized within both human and ecological toxicology to identify the response to ionising 
radiation, ranging from molecular, cellular and organism levels are given in table 4. We have 
classified the biomarkers according to whether they test for DNA damage and repair, oxidative stress 
or general stress responses. This table does not profess to be complete, but will be used within WP-5 
as a working instrument to design a common experimental approach to test for hypotheses within task 
5.2.  
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Table 4: Overview of biomarkers of both exposure and sensitivity that can be utilized within human and ecological toxicology to identify the response to 
ionising radiation. 
 

Biomarker Method/assay Tested endpoint Correlation with dose or radiation 
sensitivity 

Species tested reference 

DNA damage and repair mechanisms 

Antibody against 
Gamma-H2AX  

Fluorescence imaging, 
Western blot, 2-D gel 
electrophoresis, flow 
cytometry 
ELISA 
High-throuput 

DNA damage (Double strand 
breaks) 

Sensitive to and correlating with degree of 
damage 

Human gamma-
H2AX 
phosphorylation 
site has been 
shown to be highly 
conserved 
throughout 
eucaryotes 

(Redon et al., 2011) 
 (Kuo and Yang, 2008)  

Cytogenic 
biomarker 

Chromosomal 
abberations 

Genotoxicity Validated correlation with long-term 
morbidity endpoints like risk to induce 
cancer 

Human blood (Durante, 2007)  

Mitochondrial 
DNA mutation 
frequency  

Sequence analysis DNA mutation Not sensitive enough for environmental 
relevant concentrations 

Compost worm 
(Eisenia fetida) 

(Wilding et al., 2006) 

Oxidation of 
DNA 

7,8-Dihydro-8-oxo-
guanine (8-OHgua) 
(HPLC-analysis, GC-
MS,  
modified Comet-assay)  

DNA damage and repair Not clear whether this is a good biomarker 
(Collins et al., 1996) due to high 
background 
 

 Numerous?? 
Including Compost 
worm (Eisenia 
fetida) 

(Collins et al., 1996; 
Hertel-Aas et al., 2011) 
  

Oxidation of 
DNA 

8-OHgua detection 
with antibodies) 
(HPLC-analysis, GC-
MS) 
Comet-assay  

DNA damage and repair Linear relationship with gamma-irradiation 
dose and sensitive 

  (Bruskov et al., 1999)  
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Repair capacity of 
blood cells 

Comet assay DNA damage and repair Correlate with chronic exposure Numerous 
Including blood 
cells of chronic 
(Chernobyl) 
exposed people 

(Plappert et al., 1997) 
(Hertel-Aas et al., 
2011) 

Cytogenic 
endpoints 

  DNA repair   Human (Abdel-Rahman and El-
Zein, 2011)- 

Methylation 
status of DNA 
specifically of  

Bisulphite sequencing, 
RT-PCR 
Methylation specific-
PCR 
Western blotting 

Reduced transcription through 
gene silencing of protein involved 
in DNA-repair 

Relation between radiosensitivity and 
methylation status of ERCC1 (excision 
repair cross complementing protein 1) 
promotor 

Human gliomas (Liu et al., 2009) 

Oxidative stress 

Antioxidants and 
antioxidant 
enzymes 

Spectrophotometric 
assays of enzyme 
activities (POD, SOD, 
catalase) 
Carotenoids levels 

Oxidative stress No correlation between oxidative stress 
tolerance and gamma radiation resistance 
Nb Anti-inflammatory agents 
(corticosteroid) reduce the oxidative stress 
(NFkB activity) in macrophage cells 
(personal data, UMB) 

Bacteria (Shashidhar et al., 
2011)  

Fe/Mn ratio Atomeric Absorption 
Spectrometry 

Protection of proteins and DNA for 
oxidative damage 
 

Inverse correlation between [Mn]/[Fe] ratio 
and level of protein oxidation (Confalonieri 
and Sommer, 2011) 
No direct correlation with radiation 
resistance   (Shashidhar et al., 2011) 

Bacteria: 
Deinococcus, 
Thermophyllus 

(Confalonieri and 
Sommer, 2011); 
(Shashidhar et al., 
2011) 

General stress responses 

Heat Shock 
Proteins 

Antibody detection: 
Western blot 

Stress induced proteins     (Lewis et al., 1999) 

Transcriptomic 
changes 

Microarray 
etc,.. 

Changed gene expression Acute exposure was comparable to other 
abiotic stressors whereas chronic exposure 
revealed a complete distinct gene 
expression profile (Kovalchuk et al., 2007) 

Arabidopsis 
vegetative 
(Kovalchuk et al., 
2007), Arabidopsis 

(Kim et al., 2007; 
Kovalchuk et al., 2007) 
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Down regulation of growth/rhythm 
responses and up-regulation of 
defence/stress regulation in post irradiation 
reproduction state (KIM07) 

during flowering 
(Kim et al., 2007) 

Radiation 
metabolomics  

GS-MS 
QTOFMS 

Changed metabolite abundance 
Some could be linked to food 
deprivation and starvation 
(Johnson et al., 2011) 

Dose and time dependent, cross-species  
(Johnson et al., 2011) 

Rat, cell and 
mouse 

(Coy et al., 2011 
Johnson et al., 2011 
Lanz et al., 2009) 
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Developments in molecular biology have the potential to improve the mechanistic understanding of 
the effects of stressors and underlying processes (NRC, 2007; Ankley et al., 2009). Improved 
understanding of the underlying modes of action (MOA) of toxicity for different types of pollutants 
can aid in the development of methods for assessing exposure and effects, thereby reducing 
uncertainties related to extrapolation across species, endpoints and chemical groups with similar 
function or structure (Ankley et al., 2009). In recent years, the “omics” approaches, transcriptomics, 
proteomics, and metabolomics, have been adopted as high-throughput and high density analysis to 
study the transcriptome (the complete makeup of RNA transcripts), proteome (the complete makeup of 
proteins), and metabolome (the complete makeup of metabolites), respectively (Boverhof and 
Gollapudi, 2011). 
 
A key promise of the omic technologies is their potential to offer a more holistic understanding of 
interactions and the responses of biological pathways and networks to chemical perturbations 
(Boverhof and Gollapudi, 2011). Unlike targeted approaches (e.g., investigating a small subset of 
genes, proteins or metabolites), the omic tools are open, non-targeted techniques that do not require a 
priori  knowledge about the pathways or systems that may be affected by exposure to the stressors. The 
techniques examine multiple expression changes and, consequently, may reveal new genes, proteins or 
metabolites involved in toxicological responses that have not been described previously (Figure 5.1.). 
This is an obvious advantage when possible interactions of chemical mixtures are to be studied, 
including those involving ionising radiation. (see WP-4 for more details). Because of this non-targeted 
approach, omic experiments are often hypothesis generating rather than hypothesis testing, in that they 
can provide the basis for further investigations of possible modes of action using other techniques 
(e.g., Boverhof and Gollapudi, 2011). 
 

 
Figure 5.1: Overview of single and multiple transcript and transcriptomic techniques...... 
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Although the promise is great, there are some general and specific limitations related to the different 
omic tools that need to be considered. Omic-technologies acquire hundreds to thousands of variables 
for a very limited number of repeated observations. Thus, bias and confounding factors can make it 
difficult to distinguish actual differences in expression levels associated with the toxicant exposure 
from the background fluctuations (Monsinjon and Knigge, 2007). Furthermore, it can be challenging 
to organize the data and interpret them in a biological meaningful way. The interpretation of omic data 
is therefore highly reliant on advanced computational and statistical methods (i.e. bioinformatic tools), 
many of which are still being developed (van Aggelen et al., 2010). A full review of the omic tools 
and their application in radiation effect studies (including combined exposures) will be provided in a 
later STAR deliverable. In table 5, an overview is given of the pros and cons specific to the different 
omic techniques. 
 
Table 5: Overview of advantages and drawbacks of different toxicogenomic approaches.  

  Techniques Advantages limitations  

Transcriptomics DNA microarray 
cDNA amplified 
fragment length 
polymorphism (AFLP) 
Serial analysis of gene 
expression (SAGE) 
Massive parallel 
signature sequencing 
(MPS) 
Next generation 
sequencing 

Measure changes at the 
level of gene expression 
Limited number of genes 
compared to proteins and 
metabolites 
 For next generation 
sequencing, no need for the 
genome map   

Limited to few model species with 
known genome 
Expression needs to be combined to 
functional gene ontology 
Gene expression profile varies with 
both dose and time after exposure 
(expression of adaptive, 
compensatory and adversity genes) 
From all omic approaches greatest 
difference seen between gene 
expression and eventual phenotype 

Proteomics Electrophoresis 
combined to 
Mass Spectrometry 

Protein expression 
profiling sometimes 
specifically  
Possibility to focus on 
post-translational changes 
e.g. phosphorylations 

Currently no techniques that can 
handle complete proteome 
Huge difference in concentration 
levels between abundant 
housekeeping proteins and proteins 
interest 
Successful identification and 
annotation of proteins are also 
dependent on sequenced and 
annotated  genome   

Metabolomics NMR 
LC-MS, GC-MS or 
DIMS 

Measures changes in 
metabolites  
Most closely linked to 
phenotype 
No need for genome 
sequencing as metabolites 
are universal 
Possibility to analyse non-
invasive samples such as 
blood/urine  

Large amount of different 
metabolites 
Metabolites are often transient and 
are rapidly biotransformed 
 
  

 
An international consortium on fish toxicogenomics (Van Aggelen et al., 2010) concluded that 
variability in omics data is an ongoing concern. They gave an overview of the sources of technical and 
biological variations that need to be considered when using the different omic tools, and provided 
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recommendations on how these should be managed in terms of experimental design. (Van Aggelen et 
al., 2010, supplemental material, doi:10.1289/ehp.0900985.S1) claimed that technical variability and 
artefacts can for example arise from study design, inadequate sample numbers, and methods of sample 
acquisition, preparation, storage, processing, and analysis. They concluded that the major sources of 
variability were methods of normalization and statistical interpretation. Inter-individual biological 
variability can be classified into genotypic and phenotypic variation. The general recommendations 
are that experiments should be designed to minimise both technical and intra-class variation, thereby 
maximising inter-class differences that can be explored using data mining techniques (Van Aggelen et 

al., 2010 and supplemental material). 
 
At this point we can conclude that the development and increased application of biomarker and omics 
techniques are ongoing and their potential to provide new insight related to mode of action is 
promising. However, expertise within several disciplines (e.g., genetics, analytical chemistry, 
bioinformatics) is needed to utilize the information obtained in an ecological relevant context. Due to 
the large numbers of factors impacting on radiosensitivity, and the enormous number of species and 
life stages that could be tested, it will obviously only be possible to perform some few targeted studies 
to gain further insight into mechanisms. Given the requirement for any laboratory omics study to 
include conventional toxicological endpoints such as pathological changes, reproductive output and 
growth (Denslow et al., 2007), it should be clear that the use of these techniques would be most 
fruitful in combination with the studies carried out in task 5.2.1. A good example of an integrated 
approach for endocrine disruptors in fish is summarised in Ankley et al. (2009). They used a 
combination of different omic tools, bioinformatics and standard toxicity testing and modeling 
approaches, performed in different experimental phases, to develop response linkages across 
biological levels of organization. Furthermore, links between transciptomics, metabolomics and 
DEBtox models have also been tested in recent studies on C elegans, (Swain et al., 2010). Both 
approaches could make a useful guideline for how the STAR participants could plan and proceed with 
the experimentation during different phases. 
 
The overall approach would be to use the omic studies (and preferably transcriptomics or 
metabolomics) as hypothesis generating rather than hypothesis testing experiments, hence more 
concrete hypothesis will be postulated after selection of organisms. Since the types of organisms for 
which full omic capabilities exist (e.g., C elegans, Arabidopsis, and zebrafish), are rather 
radioresistant (although there are admittedly large differences in the radiosensitivity between the 
species), the application of omics on these species would be limited to studies that can give a broader 
insight into mode of action, including differences in RBE. There are also quite extensive omics data on 
C elegans, Arabidopsis and zebrafish, including studies of radiation on reproduction and life-history 
studies. One aim of the omics investigations could also be to enable more targeted biomarker and 
effect studies in other more sensitive and ecologically relevant species, or life stages. This point still 
needs to be discussed further among partners. 
 
To conclude, the different methods will be thoroughly reviewed within STAR in order to select those 
that are practically feasible within the consortium and that can best provide answers to our scientific 
questions. 
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6 The pilot study 

6.16.16.16.1 BackgroundBackgroundBackgroundBackground    

6.1.1 Objectives 
The aim of this study is to use and to develop a bioenergetics approach based on the DEB theory 
(Dynamic Energy Budget) developed by Kooijman (2000) to increase knowledge about links between 
assimilation disruptions, growth, reproduction, and life span fluctuations in exposed organisms to 
ionizing radiation. 
This study will be conducted using a model organism, Caenorhabditis elegans (nematode). The C. 

elegans model can be summarised by a short life cycle, a small size and a great ease to handle and 
cultivate in various devices (Brenner, 1974). These characteristics make it a suitable model to conduct 
this type of study. In addition, a first experiment was already done at IRSN to investigate the effects of 
external gamma radiation on the growth and reproduction of C. elegans. In the pilot study, the 
objective is to obtain accurate data to implement a DEBtox model applied to gamma radiation. The 
ultimate target is to assess potential consequences on the population.  
 

6.1.2 Biological model: Caenorhabditis elegans 
Nematodes are phytophages, bacteriophages, fungivore and/or predator. They can be defined as 
cosmopolitan species, easily reared in labs. They can be found in soil at high density depending on the 
level of organic matter. Nematodes presence in soils is highly important for the ecosystem and 
particularly for the mineralization process (Jager et al., 2004). 
Caenorhabditis elegans is an ubiquitous free nematode living in soils discovered by Maupas (1990). 
This bacteriophage organism is found at the same time in warm and cold earth areas. C. elegans 
measure 250 µm long at hatching and up to 1.6 mm at adult stage. It cultivates easily at 15, 20 and 
25°C although effect have been showed on eggs at 15 and 25°C. At its reference temperature (20°C), it 
breeds in 3 days and lives up to 21 days. C. elegans integument is transparent so its development and 
effects of stressors on the organism are observable. It reproduces by androdioecy. Hermaphrodites can 
fertilize themselves and the presence of male is optional. In the N2 strain, males occur at a very low 
density (<0.1%).  
C. elegans development is well known. Hermaphrodites have 959 cells at adult stage, 2n=12 (10 
autosomes + XX) and produce male gamete before female gamete. As a consequence, the egg laying 
size depends on the number of sperm cell.  
C. elegans development, presented in figure 6.1 and table 6, is made in two steps: embryonic and post-
embryonic. This development is invariant and the lineage as well as the cell genealogy of C. elegans 
are determined. In the hermaphrodite, 1090 cells are produced including 131 for apoptosis. 
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Figure 6.1: C. elegans life cycle at 22°C (Altun and Hall, 2009). 

 
Table 6: Development of C. elegans at different growth temperatures (based on Byerly et al., 1976) 

 16°C ± 0.3 20°C ± 0.5 25°C ± 0.2 
Egg laid 0 h 0 h 0 h 
Egg hatches 16-18 h 10-12 h 8-9 h 
First molt 36.5 h 26 h 18 h 
Second molt 48 h 34.5 h 25.5 h 
Third molt 60 h 43.5 h 31 h 
Fourth molt 75 h 56 h 39 h 
Egg–laying begins ~90 h ~65 h ~47 h 
Egg-laying maximal ~140 h ~96 h ~62 h 
Egg-laying ends ~180 h ~128 h ~88 h 
Length at first molt 360 µm 370 µm  380 µm 
Length at second molt 490 µm 480 µm 510 µm 
Length at third molt 650 µm 640 µm 620 µm 
Length at fourth molt 900 µm 850 µm 940 µm 
Length at egg-laying onset 1150 µm 1060 µm 1110 µm 
Maximal egg-laying rate 5.4 h-1 9.1 h-1 8.1 h-1 
Total eggs laid 275 280 170 
 
 
� Embryo 

Embryogenesis is done in two stages in C. elegans. Initially, the first growth consists in a cell division 
until reaching 550 cells essentially undifferentiated. At the end of this first phase, the embryo is 
spheroid in shape and is composed of three germ layers (ectoderm, mesoderm and endoderm). The 
second phase of embryogenesis is the phase of organogenesis and morphogenesis. At the end of this 
phase, the larva begins to move within the egg (Altun and Hall, 2009). 
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� Larval stages 
The post-embryonic development takes place in four stages separated by molts during which the 
nematode enters into lethargy (Araiz et al., 2008, Alda Álvarez et al., 2005, Altun and Hall, 2009, 
Jager et al., 2005). Table 6 shows C. elegans length for each molt at different growth temperatures. C. 

elegans body size increases between molts unlike its buccal cavity which increases only during 
moulting (Alda Álvarez et al., 2005, Jager et al., 2005, Knight et al., 2002). 

L1 stage: After hatching, the larva is in L1 stage. It measures about 250 µm long, has 558 cells and 
begins to feed. The post-embryonic development is more affected by organogenesis events and cell 
mass modifications than by mitosis (Araiz et al., 2008). 

Environmental conditions can lead L1 larvae to three situations: 

• Stopping the growth and death 

• Switching to resistance stage 

• Transition to L2 stage 

L2 stage:According to Altun and Hall (2009), few cell divisions occur during the L2 stage. This author 
suggests that germ cells are among the few cells to divide during this stage and that they will 
quadruple their number. 

L3 stage: According to Alda Alvarez et al. (2005), the end of the third larval stage is characterised by 
a shift in gamete production of the hermaphrodite. Thus, the male gametes located in the proximal 
gonad become mature. This causes a change in the type of matured gamete in the distal part of the 
gonad. Now, only oocytes are matured. 

L4 stage: L4 stage is characterized by the end of the gonadogenesis process and by the generation of 
the terminal cells of the vulva and of the uterus (Altun and Hall, 2009). 

 

� Adult stage 
At about 48 h (at 22°C) after hatching, a mature hermaphrodite begins to lay its first eggs (Byerly et 

al., 1976). The adult hermaphrodite will lay up to depletion of its sperm supply (about four days). It 
will then survive for 10 to 15 days. Hermaphrodite can be fertilized by males. In this case, egg laying 
may continue until oocytes stock is depleted (Alda Álvarez et al., 2005).  
 

6.1.3 Dynamic Energy Budget 
The DEB theory (Kooijman, 2000) provides a conceptual framework which explains mechanistically 
how organisms acquire their energy from food and allocate it to survival, growth and reproduction. On 
this basis, DEBtox models describes how toxicants accumulate in exposed organisms and alter main 
DEB processes (Kooijman and Bedaux, 1996). A specific DEBtox models was recently developed for 
C. elegans (Jager et al. 2005) and was used to identify possible primary modes of action of various 
chemical compounds, together with complementary transcriptional analyses (Swain et al. 2010; Wren 
et al. 2011). C. elegans DEBtox model or its revised version (as part of a PhD project) will be used to 
analyse conjointly effect data of gamma radiation on survival, somatic growth and offspring 
production (if these are available from experiments). Required data should at least include size at birth 
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and puberty and maximum adult size and reproduction rate. Experiments must be carried out at 
constant, well defined temperature and ad libitum feeding condition. 
 

6.26.26.26.2 Experimental protocol for external gamma irradiationExperimental protocol for external gamma irradiationExperimental protocol for external gamma irradiationExperimental protocol for external gamma irradiation    

6.2.1 Organism husbandry 
The wild-type N2 nematode (ie. the most classically used strain) is maintained on the nematode 
growth medium (NGM) plates seeded with Escherichia coli strain OP50, at 20 °C (Brenner, 1974; 
Stiernagle, 2006). Gravid worms are selected from the stock population and placed on a Petri dish at 
t = 0h. After 2 hours, laid embryos are considered to be age-synchronized. 
Eggs are individually placed into petri plate containing NGM seeded with OP50 E. coli (for each 
treatment). Worms are cultured at 20°C and 80% RH in the dark. 
 

6.2.2 External gamma irradiation  
For the purpose of the study we will use 5 nominal dose rates of: 0, 1, 10, 100, 1000 mGy/day 

delivered by for Cs-137 sources (see photos 1 to 4 at the end of section 6). Each source is installed 

in independent incubator and experimental units are placed around the source. During the test, 
temperature and moisture are continuously measured using data logger. 
The choice was made on the use of liquid and solid sources of Cs-137 of various activities. The 
experimental units (e.u) of small size containing the samples to be irradiated are laid out in circle 
around the source of caesium. Table 7 gives the activities of the various sources used in the device of 
irradiation. 
 

Table 7: Activities of 137-Cs sources used in the irradiation facility 

 Bq Type of source 

S1 1.6E+09 solid 

S2 2.16E+08 liquid 

S3 2.30E+07 liquid 

S4 2.12E+06 liquid 

 

To allow daily handling of the experimental units, a device allowing the lowering of a lead protection 
is dimensioned for the experiments. The support can accomodate two models different of protection: 
• a cap thickness 20 mm, which could be used with the liquid sources of weak activity, 
• a cap thickness 30 mm, intended for the handling of the liquid sources of strong activity as well as 
the solid sources. Figure 6.2 presents a diagrammatic view of the system of irradiation. 
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Figure 6.2: Scheme of the Irradiation facility 

 
 
In order to be able to implement within an experiment a sufficient number of u.e, the adopted solution 
is to lay out several e.u. rings some around the source. Figure 6.2 presents the configuration retained in 
the most restrictive case of the study. The characteristics of the geometry used as a e.u. are given on 
figure 6.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3: Configuration for irradiation (10 e.u.) / viewed from the top 
 
Thermoluminescent dosimeters (TLD) will be laid out along the lower, median and higher lines of the 
u.e for the various configurations given and the whole of the sources available. The flows of Kerma 
were also calculated by digital simulation within the TLD in order to compare the calculation and 
results of measurement, and thus to validate the data on the activity of the sources. In complement, the 
isotropy of the radiation field on the level of the e.u. for the solid source was studied using TLD. 
Moreover, the absorbed dose rates inside the geometry of the e.u. were determined by calculation 

 e.u. 

Lead cap 
Source 

Source 

Configuration 10 e.u. 
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(modelling the transport and the interactions of the particles charged or neutral in the air. Only, the 
transport of the principal line of cesium 137 to 661.6 keV was taken into account).  
Measurements will be realized with lithium fluoride powder doped Mg, Cu, P (GR207) conditioned in 
polypropylene tubes. For each configuration of irradiation and all the sources used, a series of 
dosimeters will be placed at the center of the e.u. on the various stages of the e.u. A number of e.u. 
identical to the use in routine was used so taking into account the radiation diffused by the adjacent 
samples of the site of the dosimeters.  
 

6.2.3 Endpoints measurement 
� Brood size 

To assay brood size we will daily transferred worms into new individual plate containing NGM from 
t=72h (beginning of lay) till the end of spawn. Hatched progeny will be counted twice, the day 
following each transfer (Swain et al., 2004).  

� Growth 
Growth will be measured (using a stereomicroscope with a connected camera) twice a day from 
hatching to maturity then once a day until maximal size. 

� Lifespan 
Lifespan will be studied by daily counting dead worm. The death of a nematode will be recorded upon 
failure to respond to repeated touch stimulation of the posterior end. 

 

6.2.4 Statistics and data treatment 
The endpoints will be compared among the treatments using generalized mixed-effect models and 
Tukey’s multiple comparisons. ‘Growth’ endpoint will be analyzed using a normal distribution, 
‘Brood Size’ using a Poisson distribution, and ‘lifespan’ using a binomial distribution. Depending on 
the number of censored data, ‘lifespan’ endpoint could also be studied using a survival analysis. 
 
Prior to the experiment, power analyses will be used to figure out what sample size (number of worms 
per condition) would be needed to observe a given treatment effect (e.g., 5% change in fecundity or 
growth). These power analyses will be done simulating data based on the variance structure estimated 
from a preliminary study (Browne et al, 2009 and Job, 2009). 
(see the following links: 
http://seis.bris.ac.uk/~frwjb/esrc/MLPOWSIMmanual.pdf 
http://www.unc.edu/~toddjobe/blog/2009/09/power-analysis-for-mixed-effect-models.html ) 

 

6.2.5 DEBtox modelling 
� Specificities related to the nematode DEBtox model 

C. elegans DEBtox model (Kooijman and Bedaux1996; Jager et al. 2005; Swain et al. 2010) will be 
used to analyse toxic effects of gamma irradiation on survival, somatic growth and offspring 
production. Different sets of equations describing changes in survivorship, body size (length or mass) 
and reproduction rate with age (assuming ad libitum feeding) are available each specifically 
corresponding to a possible mode of action for toxicants proposed by the standard DEBtox model 
among: 

1) increased cost of maintenance, 
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2) reduced assimilation, 
3) increased cost of growth, 
4) increased cost of egg production, 
5) increased mortality during oogenesis. 
Further effects of toxicants have been introduced to take account of nematode specificities, 
including: 
6) reduced size at puberty 
7) decreased maximum reproductive rate 
8) decreased toxicant intake with feeding conditions (not appliable in the present study) 

 

� Specificities related to the experimental setup design 
Fitting procedure implies the underlying assumption that observed values of survival, reproduction 
and size are independent e.g. values at different time points should be measured on separate 
individuals. For practical reasons, individual nematodes are monitored over their entire life in the pilot 
study. Thus, DEBtox equations will be fitted in a preliminary procedure, in order to check that model 
parameters do not differ significantly among individuals. This is achieved graphically based on the 
comparison of parameter confidence intervals among nematodes.  
 

� Screening of DEBtox stress factors and modes of action 
The different modes of action have differential consequences for maximum adult size, age at puberty, 
reproductive outcome, allowing a first screening round. In order to identify possible modes of action 
for gamma radiation, sets of equations are fitted to data obtained on the range of dose rates and most 
probable modes are selected using a weighed least square criterion as an estimate of goodness of fit 
(Jager et al. 2004). Different hypotheses will be also compared by linking the toxic stress function to 
the dose rate, the cumulated dose or an index of cumulated damage level subjected to a repairing 
process. Our overall objectives will be to estimate values of No Effect Dose Rate (NEDR), cumulated 
Dose (NED) or damage Level (NEL) and to point potential metabolic modes of action for gamma 
radiation.  

 

6.36.36.36.3 ExpeExpeExpeExpected outcomes and alternative optionscted outcomes and alternative optionscted outcomes and alternative optionscted outcomes and alternative options    
As presented above, the expected outcome of this pilot study is to build a set of effects data of external 
gamma radiation on the life history traits of C. elegans and to obtain accurate data to implement a 
DEBtox model applied to gamma radiation. This study will help the different teams involved in STAR 
WP5 to implement, for the first time a DEBtox approach on gamma irradiation (see chapter 4.1). This 
will be the firs step towards a full DEBtox parameterization. 
The generated dataset will also be used to implement a Power analysis (chapter 6.2.4), in order to 
refine the test design for future studies (chapter 3.1): the observed variation in the measured endpoints, 
and difference between control and irradiated conditions will help to define the needed number of 
treatments, replicates per treatments, accuracy of endpoints measurements… 
There is a risk for the planned study to fail in generating such a dataset, mainly due to the test design 
actual limitation (e.g., up to a maximum of 30 replicates par condition, fixed dose-rate range…). This 
could result in a lack of sensitivity of the measured endpoints to gamma irradiation, under those 
specific conditions. In this case, other options could be: 
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- to change the C. elegans strain to a potentially more sensitive strain (or even to change the 
species used to a more sensitive species, e.g., daphnid, earthworm…); 

- to increase the tested dose-rates and/or to increase the number of tested replicates: this 
would need to use a larger irradiation facility (e.g., irradiation facility at UMB, Norway); 

- to examine other sensitive endpoints to be measured; 
- to enhance the accuracy of endpoints measurements in order to decrease the variation due 

to individual measurements (e.g., to evolve towards a liquid medium exposure design); 
- … 
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Illustrations of the Pilot study:  Photos 1 to 4 by JM Bonzom/IRSN 

Photo 1: Experimental Units around the irradiation source (liquid) 
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Photo 2: 5 independent incubators with irradiation facilities 

(1, 10, 100, 750 and 1000 mGy/d) 
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Photo 3: Counting and photography of nematodes under a binocular 
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Photo 4: Size of nematode from day 1 to day 10 

 

 



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

50 

7 Perspectives 

This report justifies our first choices for the set of experiments that will support our research 
development under WP-5. Two biological models have been selected first to support both dose rate – 
response relationship on life history traits under external gamma and internal alpha irradiation 
exposure: one plant model (L. minor) and one animal model (C. elegans). Both of them will also be 
used for DEBTox parameterisation. External gamma irradiation exposure will use irradiation facilities 
that allow to cover a range of dose rates from background up to 100 mGy/h if needed. The selected 
alpha-emitting radionuclide is Am-241. 
The next step viewed as “go-no go” actions will take place in our next meeting in January 2012 where 
we will discuss:  

(iv) the main conclusions from our sensitivity analysis outcoming from the theoretical 
approach where we combined radiosensitivity information from FREDERICA and Leslie 
matrices for a wide range of species (task 5.1): this discussion will help to decide whether 
we need to implement experiments (or not) to obtain more robust conclusions about the 
propagation of effects observed at the individual level to the population level; 

(v) the results and lessons learnt from the pilot study: this discussion will help to refine the 
experimental design if needed, to conclude on the feasibility of DEBTox development 
(task 5.3); 

(vi) the hypotheses we would test to progress in the understanding of  the mechanistic modes 
of actions at the (sub)cellular level (task 5.2). 
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8 Annex  

8.18.18.18.1 How to download and install R and 'drc' addHow to download and install R and 'drc' addHow to download and install R and 'drc' addHow to download and install R and 'drc' add----on packageon packageon packageon package    

8.1.1 R software 
R software can be freely downloaded at the address: http://cran.r-project.org/. Then in the 'Download 
and Install R' windows it's necessary to choose and double click on its own exploitation system. 

 

A new window, names 'R for windows' for example, is opening. It's necessary to double click on the 
'base' option; it permits to import base packages in the same time of the download of R.  

 

 

The latest version of R is available by double clicking on 'download' as shown in the following 
window. 
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Then, it's necessary to save and execute the file. 

  

A short cut appears on the desktop. 

 

Double-clicking on the shortcut permits to open the R console where commands lines will be used. 
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8.1.2 'drc' add-on package : 

The easiest way to download and install 'drc' and all the other add-on packages needed by 'drc' is to 

use the following commands in the R console. 
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Next a 'Cran mirror' windows opens and a site has to be chosen. Then 'drc' and all others needed 

packages are download automatically. 

To finish, in order to use all the functions of the package 'drc', it's necessary to enter the following 
commands: library(drc). 

 

8.2 Import of a dataset 

One of the more easy ways to import a dataset in R is to use an Excel File. First, the decimal separator 

must be the comma symbol. Then the file has to be saved in a 'csv' format (semicolon delimited file). 

Then the import in R is done using the following command: read.csv2(file.choose()) which 

permits to open a window for dataset selection. 
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8.38.38.38.3 LogLogLogLog----logistic modelslogistic modelslogistic modelslogistic models    

 
8.3.1 Strategy of analysis and modelling of monotonic dose-response relationships with 

continuous observations 
When observations are continuous data, 'drc' library uses least square non linear fitting to estimate the 
model's parameters, and uses parametric methods to estimate the parameters' uncertainty. These 
parametric methods need the validity of three assumptions: independence of data, normality of the 
residuals, and homogeneity of the residuals. These same assumptions are also needed for the validity 
of the 'Lack of fit' test and the one of the 'F' test for nested models, both tests used in dose-response 
relationships analysis.  

In case of continuous response, dose-response relationship analysis and modelling contains 5 levels: 

1) Use of the full log-logistic model (e.g. the 4parameters log-logistic model) to fit the data. 

2) Assessment of residual normality and homogeneity assumptions (with use of Box-Cox 
transformation if needed). 

3) Assessment of the quality of the model's fit by a 'Lack of fit' test 

4) Reduction, if possible, of the full model (e.g. the 4 parameters log-logistic model). That means 
assessment of the equality to 0 of the lower limit of the curve ('c' parameter), by the way of an 
'F' test for nested model. The simplest model is kept according the Parsimony rule. 

5) Estimation of the EDp% and its uncertainty. 

The strategy of analysis and modelling of dose-response relationship with continuous observation is 
summarized in Fig.8.1. 
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Figure 8.1: Strategy of analysis and modelling of monotonic dose-response relationship with 

continuous data. 
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Residual normality assumption is usually assessed visually, by the way of a 'quantile-quantile' plot, 
where points have to approximately follow a straight line. Residual normality assumption can also be 
assessed by a statistical test as the Shapiro-Wilk's test (Ritz et al., 2008).  

As the same, residual homogeneity assumption is generally assessed visually, by the way of a 'fitted 
values vs. standardized residuals' plot, where points have to be distributed without any pattern. 
Residuals homogeneity assumption can also be assessed by statistical tests as Levene's test or Bartlett's 
test.  

Independence assumption of the data is also needed, but usually it's only validated on the experimental 
design basis. 

When at least one of the homogeneity and normality assumptions is rejected, a Box-Cox 
transformation (both side type in order to conserve the relation between the response and the doses) 
can be used. Nevertheless there is no warranty about the subsequent validity of the assumptions. Box-
Cox transformation is empiric power transformation, defined by: 















 −
=

)log(

1
)(

y

y
yh λ

λ

λ                                    Equation 11 

If the use of the Box-Cox transformation doesn't improve the residual normality and/or homogeneity 
assumption, a weighted non linear regression can be considered. 

 

Concerning the quality of the model's fit, it is generally assessed graphically, and then completed by 
the way of a 'Lack of fit' test. For the visual assessment, 2 plots can be done: 

- the first one displays both the experimental points and the fitted model ; proximity 
between them is needed in order to consider the fit as satisfactory 

- the seconds one is a 'residuals vs. fitted' plot. For each dose level, a uniform distribution of 
the residuals on both sides of a 0 X-axis line is needed in order to consider the fit as 
satisfactory. 

The principle is to compare the fit of the 4 parameters log-logistic model with the fit of a more general 
model (considered as a reference model) which is the one-way ANOVA model. The statistic of the test 
is:   

( ) ( )
ANOVAANOVA

ANOVAANOVALL

dfRSS

dfpnRSSRSS
F

/

/4 −−−
=  Equation 12 

Where: 

- RSS means 'residuals sum of squares' 

- df means 'degrees of freedom'  

- n means number of data (total) 

- p means number of parameters of the model (here 4 because of the LL.4 model).  

0≠λ

0=λ



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

62 

'F' statistic follows an F distribution with (n-p-dfANOVA, dfANOVA) degrees of freedom. If the  
p-value of the F test is not significant (p-value ≥0.05), then the fit of 4 parameters log-logistic model is 
considered as satisfactory than the one of the reference model ; and so the model is accepted On the 
contrary, if the p-value is significant (e.g., p-value<0.05) , it means that the fit of the 4 parameters log-
logistic model is not as satisfactory than the one of the ANOVA model, and then it's rejected. 

Concerning the reduction of the full model, in case of continues data and when the dose-response 
relationship is decreasing, a 3 parameters log-logistic model can be considered (is the reduced model). 
The 4 parameters log-logistic and the 3 parameters log-logistic models are nested since the 3 
parameters model is the 4 parameters one with 'c' parameter =0. Then the fits of these two models can 
be assessed by an 'F' test (similar to the F 'Lack of fit test'), the statistic is: 

( ) ( )
dfFullRSS

dfdfRSSRSS
F

Full

FullducedFullduced

/

/ ReRe −−
=  Equation 13 

'F' statistic follows an F distribution with (dfReduced - dfFull, dfFull) degrees of freedom. If the p-value of 
the ‘F’ test is not significant (p-value ≥0.05), then the fit of 3 parameters log-logistic model is 
considered as satisfactory as the one of the 4 parameters model. In other words, it means that the lower 
limit is not significantly different from 0, and that the 3 parameters model is kept. On the contrary, if 
the p-value is significant (e.g., p-value<0.05), it means that the fit of the 3 parameters log-logistic 
model is not as satisfactory as the one of the 4 parameters model. Thus, the 3 parameters model is 
rejected and the 4 parameters model is kept.  

Once the final model is obtained, the EDp(%) value can be estimated based on this kept model, using 
the following equation: 

 ( )
b

p

p
eEDp

/1

100 








−
=  Equation 14 

Meanings of e and b parameters have been given previously. 'drc' use the delta method to estimate the 
uncertainty of the EDp. 
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8.3.2 Strategy of analysis and modelling of monotonic dos-response relationship when 
observed response are quantal data 

Observations are quantal (or binary) data when they concern an event which can take only two levels 
+E or −E  for each individual (dead or alive for example). 

Table 8.1: example of observed responses of quantal type, with different replicate's size. 

When observations are quantal (or binary) data, the modelled response variable is the percentage of 

event ( ijobsp ). 'drc' use the maximum likelihood method to estimate the model's parameters and the 

model's parameters uncertainty. Estimation of the standard error of the model's parameters is based on 
a Binomial distribution and requires the data independence. When observed data are quantal data, it's 
necessary to check the absence of an overdispersion, e.g. that the observed variance is not higher than 
those calculated according the binomial distribution. When an overdispersion is highlighted, estimated 
standard errors of the model's parameters have to be corrected in the increasing direction. This could 

be easily done with 'drc' using the type="binomial"  argument in the drm function and using the 

od=T  argument in the summary  function. Moreover, in case of overdispersion, the result of the 

'Goodness of fit' test (used to assess the quality of the model), and the result of the 'likelihood ratio' 
test (used to compare the fit of two nested models), are not valid. 

In case of quantal response, dose-response curve modelling contains 5 levels too: 

1) Fit of the full 4 parameters log-logistic model 

2) Assessment of the model quality fit 

3) Assessment of an eventual overdispersion 

4) If possible, reduction of the full model, e.g. test the equality to 0 of the lower limit ('c' 
parameter) and or test the equality to 1 of the upper limit ('d' parameter). The simplest model 
is kept according the Parsimony rule. 

Dose 
(i) 

Repliquat 
(j) 

Individual 
(l) 

Response 
(Rijk) 

Number of 
individuals in 
the replicat 

(Nij) 

Yij obs 
Pij 

obs 

 0 

 0 

N°3 0 

N°4 1 

N°5 0 

0 1 

N°6 0 

6 1 0.17 

N°1 0 

N°2 1 

N°3 0 
0 2 

N°4 0 

4 1 0.25 

… … … … … …  

… … … … … …  

N°1 1 

N°2 1 

N°3 1 

N°4 1 

5 4 

N°5 0 

5 4 0.8 
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5) Estimation of the EDp and its uncertainty. 

 Management of the steps 4 and 5 will be different if a ?overdispersion is detected or not. 

 The strategy of analysis and modelling of dose-response relationships, when observations are quantal 
data and when no overdispersion was highlighted, is summarized in the Figure 8.2.  
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Figure 8.2 : Strategy of analysis and modelling of monotonic dose-response relationships with quantal 
data, when no overdispersion has been highlighted. 

 

In case of quantal (binomial) observations, independence hypothesis is accepted or rejected only on 
the basis of the experimental design. When observations are quantal data, it is needed to precise their 
type using the type="binomial" argument in the drm function. It is also necessary to give the total 

number of observations by the way of the weight=n  argument. 'drc' package needs both information 

in order to give an adequate estimation of the parameters, and above all of their standard error. 

 
Concerning the assessment of fit's quality, it is generally done graphically and completed by the use of 
a statistical test. For the visual assessment, 2 plots can be done: 

- the first one displays both the experimental points and the fitted model ; proximity 
between them is needed in order to consider the fit as satisfactory. 

- The seconds one is a 'residuals vs fitted' plot. For each dose level, a uniform distribution of 
the residuals on both sides of a 0 X-axis line is needed in order to consider the fit as 
satisfactory. 

When observations are quantal data, the test used to assess the quality of the fit is called 'Goodness of 
fit ' test. Its principle is different of those of the 'Lack of fit' test, since here there is no reference model 
(one-way ANOVA for the 'Lack of fit' test), and since no replicates are needed. The aim of the 
'Goodness of fit' is to assess if the sum of the standardized squares between the observed number of 

events )( ijobsY  and the number of events predicted by the model )( ijcalY  is not too big. These squares 

are called 'standardized' because they are reported to the residual variance. The statistic of the test is: 

( )
∑∑













 −
=− )(
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ij

calcijobsij

ddlpn YVar

YY
Q  Equation 15 

Theoretically, numbers of observed events )( ijobsY  are distributed according a Binomial distribution 

with parameters ijN  and ip (theoretical probability that an event appears for a given dose level )( ix . 

Numbers of events predicted by the model )( ijcalY  are also distributed according a Binomial 

distribution; percentages of predicted events )ˆ( ip are then depending of the parameters model. 

The variance ))(( jiYVar is the one predicted by the Binomial distribution: 

)ˆ1(ˆ)( iiijij ppnYVar −××=  Equation 16 

With: 
- i : index of the doses 
- j : index of the replicates 

- ip̂ : percentages of individuals presenting the event +E at each level of i. 

The Qstatistic of the 'Goodness of fit' test is based on the Pearson's statistic which follows a Chi-2 

distribution with pn −  degrees of freedom. If the p-value of the test is not significant (p-value ≥0.05), 
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then the fit of 4 parameters log-logistic model is considered as satisfactory. On the contrary, if the p-
value is significant (e.g., p-value<0.05), it means that the fit of the 4 parameters log-logistic model is 
not satisfactory. 

In case of overdispersion, result of the test is not valid.  

A very simple method can be used in order to assess the presence of an overdispersion. It consists in 

comparing the ratio )(φ  of the Q  statistic over its degrees of freedom, to the value 1. 

pn

Q

−
=φ  Equation 17 

If the ratio equals ca. 1 then there is no overdispersion. If the ratio is higher than 1, then an 
overdispersion is highlighted. 

Concerning the reduction of the full 4 parameters model, since the quantal data are bracketed by the 
values 0 and 1, three sub-models can be considered: 

- the 3 parameters log-logistic model (LL.3), with lower limit ('c' parameter) =0 and higher 
limit ('d' parameter) <1; 

- the second 3 parameters log logistic model (LL.3u), with lower limit ('c' parameter) > 0 
and higher limit ('d" parameter) =1; 

- the 2 parameters log-logistic model (LL.2), with lower limit ('c' parameter) = 0, and higher 
limit ('d' parameter) = 1. 

In absence of overdispersion, the reduction of the full 4 parameters log-logistic model needs the 
following several steps: 

- fit a restricted model with 3 parameters (LL.3 or LL.3u according the situations) ; 

- compare its fit with the one of the full (4 parameters) model by a 'likelihood ratio' 
test ; 

- keep the restricted model if its fit is satisfactory (p-value of the test ≥ 0.05), or in 
controversy keep the full model if the fit of the restricted model is not satisfactory (p-
value>0.05) ; 

- if the restricted model is kept, do again the process with the restricted 2 parameters log-
logistic model (LL.2). 

All the log-logistic models available are described in Figure 8.7. 

The statistic of the 'likelihood ratio' test used to compare the fits of two nested models is:  

( ) ( )[ ]intRe
intRe

22 streComplet
stre

Complet VLnVLn
V

V
LnR −=








=  Equation 18 

The Rstatistic follows a Chi-2 distribution with ( Fullstricted dfdf −Re ) degrees of freedom. With: 

- FullFull pndf −= ; 
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- strictedstricetd pndf ReRe −= ; 

- n , the number of data ; 

- Fullp  : the number of parameters of the full log-logistic model; 

- strictedpRe : The number of parameters of the restricted model. 

If the p-value of the 'likelihood ratio' test is not significant (p-value ≥0.05), then the fit of the restricted 
model is considered as satisfactory as the one of the full model. On the contrary, if the p-value is 
significant (e.g., p-value<0.05), it means that the fit of the restricted model is not as satisfactory as the 
one of the full model. Thus, the restricted model is rejected and the full model kept.  

Once the final model is obtained, the EDp value can be estimated based on this kept model (cf. 
paragraph 8.3.1) 

An example of complete analysis and modelling of a monotonic dose-response relationship with 
quantal observations and when no overdispersion has been highlighted is given in annexe 8.3.5 
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The strategy of analysis and modelling of monotonic dose-response relationship with quantal 
observation and when an overdispersion is highlighted is summarized in the Figure 8.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assessment of a possible 
overdispersion 

Assessment of the quality of the fit 

Satisfactory fit  
 

Not satisfactory fit 

Overdispersion not 
highlighted 

cf. Figure 8.2 

Fit of another type of full 
model 

Theoric arguments to 
continue 

Estimation of the EDp from the final kept model using the 
od=TRUE argument in the ED function 

Choice of the final model assessing both: 

• The possibility to fix the lower limit to 0 looking at 
the 't' test of equality to 0 of the 'c' parameter, given 
by the summary   function with the od=T   argument.  

• The possibility to fix the higher limit to 1  
by :  

- comparing, visually, the fit of a model with 'd' 
=1 and another one with 'd'<1.  

- Having a look on the 'd' parameter estimate of 
the model fixing 'd' parameter <1.  

Overdispersion highlighted 

Fit of the full model 
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Figure 8.3: Strategy of analysis and modelling of monotonic dose-response relationships with quantal 

data, when an overdispersion has been highlighted. 

 

In case of overdispersion, the result of the 'likelihood ratio' test used to compare the fits of two nested 
models is not valid. The used strategy is then rougher; it consists in estimating alternately (the order 
dependent on data): 

- The equality of the lower limit to 0, by using the p-value of the 't' test concerning the 

parameter ' c ' which is supplies by the summary function. However, it is indispensable to 

have used the argument od=T  in this last one. 

- The equality of the higher limit to 1, by studying the estimation of the parameter 'd' of in 
the full previous model, and\or by comparing visually the fits of the models fixing and not 
fixing the parameter 'd' to 1. In this assessment, only the estimation of the parameter is 

considered, the use of od=T  is not thus indispensable. However it seems more careful to 

always use this argument when an overdispersion was highlighted. 

In case of overdispersion, the use of the 't' test to assess the possibility to fix the lower limit ('c' 
parameter) to 0, in other words to reduce the 4 parameters model in a 3 parameters model is presented 
in figure 8.4. 

 

summary(deguelin.ll4, od=T) 

model fitted: log-logistic (ed50 as parameter) (4 p arms) 
parameter estimates: 
estimate std. error  t-value   p-value 
b:(intercept) -3.46316    6.74243 -0.51364    0.607 5 
c:(intercept)  0.31003    0.18623  1.66472    0.096 0 
d:(intercept)  1.01870    0.24968  4.07996 4.504e-0 5 
e:(intercept) 18.50393    3.44660  5.36875 7.929e-0 8 

  

Figure 8.4: Use of the 't' test to estimate, in case of surdispersion, the possibility of fixing the lower 

limit ('c' parameter) to 0, in other words the possibility of reducing the model of 4 parameters towards 

a model in 3 parameters. 

 

 

Here, the 't' test concerning the assessment of the equality of the 'c' parameter to 0, is not significant 
(p-value=0.0960). Thus, the estimate of the 'c' parameter is not significantly different from 0. Hence, 
the use of the 3 parameters log-logistic model is justified. The possibility of fixing the higher limit of 
the curve ('d' parameter) to 1 is then studied. 

The evaluation of the possibility of fixing the higher limit of the curve ('c' parameter) to 1, by visually 
comparing the fits of the 3 parameters ('c'=0 and 'd'<1: left graph) and the 2 parameters ('c'=0 and 
'd'=1: right graph) log-logistic models is presented in the Figure 8.5 below.
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Figure 8.5 : Assessment of the possibility of fixing the higher limit of the curve ('d' parameter) to 1, by 

comparing the fits of the 3 parameters log-logistic model (c=0 and d< 1: left graph) and of the 2 

parameters log-logistic model (c=0 and d=1: right graph). 

 

In that case, it is obvious that the fit of the 3 parameters log-logistic model leads to an over-estimation 
of the higher limit because the d' parameter's estimate exceeds the value 1. This is confirmed by the 
outputs of the summary function because the 'c' parameter's estimate equals 1.23 (cf. Figure 8.). 

 

summary(deguelin.ll3,od=T)  

model fitted: log-logistic (ed50 as parameter) with  lower limit 
at 0 (3 parms) 
parameter estimates: 
 
              estimate std. error  t-value p-value 
b:(intercept) -1.22214    0.73312 -1.66704  0.0955 
d:(intercept)  1.23503    0.47594  2.59491  0.0095 
e:(intercept) 14.72358   11.69516  1.25895  0.2080 

 

Figure 8.6 : Visualization of the 3 parameters log-logistic model's estimates fitted to the 'deguelin' 

dataset. 

An example of complete analysis and modelling of a monotonic dose-response relationship with 
quantal observations and when an overdispersion has been highlighted is given in annexe 8.3.6. 
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8.3.3 Examples for different situations and corresponding log-logistic models 

Named in 
'drc' 

Continues data Quantal data 

 
Decreasing 
relation 

Increasing 
relation 

Decreasing 
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Increasing 
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LL.4 
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Figure 8.7 : Log-logistic models available in 'drc' to analyse monotonic dose-response relationships 

according the type of the observations and the shape of the relationship 
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8.3.4 Illustration for DRC application  to the analysis and modelling of a monotonic 
dose-response relationship with continuous data 

Data used in this example are those of the 'ryegrass' dataset included in the 'drc' add-on package. 

In the following pages, commands used with 'drc' are in red colour and the R outputs are in blue 

colour. In green and bracketed by # symbols are descriptions of the commands. 

 

# loading of the drc package # 

library(drc) 

#opening of the help page about ryegrass dataset# 
?ryegrass   

#display of the ryegrass dataset# 

ryegrass 

       rootl  conc 
1  7.5800000  0.00 
2  8.0000000  0.00 
3  8.3285714  0.00 
4  7.2500000  0.00 
5  7.3750000  0.00 
6  7.9625000  0.00 
7  8.3555556  0.94 
8  6.9142857  0.94 
9  7.7500000  0.94 
10 6.8714286  1.88 
11 6.4500000  1.88 
12 5.9222222  1.88 
13 1.9250000  3.75 
14 2.8857143  3.75 
15 4.2333333  3.75 
16 1.1875000  7.50 
17 0.8571429  7.50 
18 1.0571429  7.50 
19 0.6875000 15.00 
20 0.5250000 15.00 
21 0.8250000 15.00 
22 0.2500000 30.00 
23 0.2200000 30.00 
24 0.4400000 30.00 
 
# visualization of the data in x vs  y plot # 

plot(ryegrass$conc,ryegrass$rootl,lwd=2,col=3) 
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# display of the dose variable levels # 

levels(as.factor(ryegrass$conc)) 

[1] "0"    "0.94" "1.88" "3.75" "7.5"  "15"   "30"   
 

# display of the number of data per dose level # 

table(as.factor(ryegrass$conc)) 

   0 0.94 1.88 3.75  7.5   15   30  
   6    3    3    3    3    3    3 
 

#fit of the full 4 parameters log-logistic model# 

ryegrass.ll4<-drm(rootl~conc, data=ryegrass, fct=ll .4()) 

# display of the parameters estimates # 

summary(ryegrass.ll4) 

model fitted: log-logistic (ed50 as parameter) (4 p arms) 
parameter estimates: 
              estimate std. error  t-value   p-valu e 
b:(intercept)  2.98222    0.46506  6.41251 2.960e-0 6 
c:(intercept)  0.48141    0.21219  2.26876    0.034 5 
d:(intercept)  7.79296    0.18857 41.32722 3.822e-2 1 
e:(intercept)  3.05795    0.18573 16.46440 4.268e-1 3 
 
residual standard error: 
 0.5196256 (20 degrees of freedom) 

 

# visualization of the fit# 

plot(ryegrass.ll4,type="all",col=3,lwd=2) 
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# visual assessment of the residuals normality assu mption by qqplot #   

qqnorm(residuals(ryegrass.ll4)) 

qqline(residuals(ryegrass.ll4)) 

 

 

Since the residuals are distributed along the straight line, the normality assumption is accepted. 

 
# assessment of the residual normality assumption b y a shapiro-wilk's test# 

shapiro.test(residuals(ryegrass.ll4)) 

        shapiro-wilk normality test 
data:  residuals(ryegrass.ll4)  
w = 0.9823, p-value = 0.9345 
 

Since the p-value is higher than 0.05, the hypothesis of residual normality is not rejected. 

 

#visual assessment of the residual homogeneity assu mption by 'standardized 
residuals vs. fitted values' plot # 

plot(fitted(ryegrass.ll4),(residuals(ryegrass.ll4,t ype="standardised"))) 

abline(h=0,col=2) 
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There seems to be an overall increasing trend with increasing fitted values. In others words the 

variance seems to be an increasing function of the mean. Residuals homogeneity assumption is thus 

rejected.  

#assessment of residuals homogeneity assumption by a levene's test#  

library(car) #loading of "car" package containing the levene's t est#  

levene.test(residuals(ryegrass.ll4),as.factor(ryegr ass$conc)) 

levene's test for homogeneity of variance 
      df f value pr(>f) 
group  6  1.9266 0.1344 
      17               

The test is not significant (p-value>0.05), thus the homogeneity assumption is not rejected. 

 

#assessment of residuals homogeneity assumption by a bartlett's test#  

bartlett.test(residuals(ryegrass.ll4),as.factor(rye grass$conc))      

bartlett test of homogeneity of variances 
data:  residuals(ryegrass.ll4) and as.factor(ryegra ss$conc)  
bartlett's k-squared = 13.2162, df = 6, p-value = 0 .03973 

 

The p-value is significant (e.g. <0.05), thus the homogeneity assumption is rejected. Taking in account 

this latest results and the pattern of the residuals in the "standardized residuals vs. fitted" plot, 

residuals homogeneity assumption is finally rejected. A Box-Cox transformation could be used in 

order to try to improve the homogeneity. 

 

# use of a box cox both side transformation # 

ryegrass.ll4bc<-boxcox(ryegrass.ll4) 

 

The latest command permits both to use the box-cox transformation and 
to fit the model.  

 



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

76 

# display of the estimates obtained with the box co x transformation # 

summary(ryegrass.ll4bc) 

model fitted: log-logistic (ed50 as parameter) (4 p arms) 
parameter estimates: 
 
              estimate std. error  t-value   p-valu e 
b:(intercept)  2.61839    0.39151  6.68795 1.649e-0 6 
c:(intercept)  0.39083    0.10429  3.74744    0.001 3 
d:(intercept)  7.86633    0.29558 26.61364 2.176e-1 7 
e:(intercept)  3.01662    0.21005 14.36124 5.354e-1 2 
 

residual standard error: 
 0.2962958 (20 degrees of freedom) 
 
 
 
non-normality/heterogeneity adjustment through opti mal box-cox 
transformation 
 
estimated lambda: 0.5  
confidence interval for lambda: [0.269,0.949] 

 
 

# visualization of the fit# 

plot(ryegrass.ll4bc,type="all",col=3,lwd=2) 

 

Fit seems to be good since the curve is close to all the observed points. 

 
# visual assessment of the residuals normality assu mption #  

qqnorm(residuals(ryegrass.ll4bc)) 

qqline(residuals(ryegrass.ll4bc)) 

 

Estimate of the 
Box Cox lambda 
parameter 
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Globally, points are always distributed along the straight line, the normality assumption is accepted. 

# assessment of the normality residuals assumption by an evaluation de 
shapiro-wilk's test# 

shapiro.test(residuals(ryegrass.ll4bc)) 

        shapiro-wilk normality test 
data:  residuals(ryegrass.ll4bc)  
w = 0.9716, p-value = 0.7066 

The test is again not significant, thus residuals normality assumption is not rejected. 

 

#visual assessment of the residuals homogeneity ass umption # 

plot(fitted(ryegrass.ll4bc),residuals(ryegrass.ll4b c, type="standardised")) 

abline(h=0,col=2) 

 

Now, there is no more an overall increasing trend with increasing fitted values. Residuals seem to be 

distributed on both side of 0 (the red line) for all the fitted values levels. Thus residuals homogeneity 

assumption is no more rejected.  
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#residuals homogeneity assumption by levene's test#  

levene.test(residuals(ryegrass.ll4bc),as.factor(rye grass$conc)) 

levene's test for homogeneity of variance 
      df f value pr(>f) 
group  6   1.529 0.2282 
      17                
 

# residuals homogeneity assumption by bartlett's te st # 

bartlett.test(residuals(ryegrass.ll4bc),as.factor(r yegrass$conc)) 

      bartlett test of homogeneity of variances 
data:  residuals(ryegrass.ll4bc) and as.factor(ryeg rass$conc)  
bartlett's k-squared = 9.1898, df = 6, p-value = 0. 1632 

 

With the Box-Cox transformation both tests are not significant. Thus, after Box-Cox transformation, 

the residuals homogeneity assumption is no more rejected. 

 
#visual assessment of the fit of the 4 parameters l og-logistic model with 
box cox transformation# 

plot(ryegrass.ll4bc,type="all",col=3,lwd=2) 

 

The fit seems to be satisfactory since the curve is closed to all the points.  

#visual assessment of the fit of the 4 parameters l og-logistic model with 
box cox transformation by the use of a 'residuals v s. fitted' plot# 

plot(fitted(ryegrass.ll4bc),residuals(ryegrass.ll4b c)) 

abline(h=0,col=2) 



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

79 

 
 

Whatever the fitted value, residual are globally uniformly distributed on both sides of the red line of 0 

y-axis. Thus the fit seems satisfactory. 

 
#assessment of the fit's quality by 'lack of fit' t est #  

modelfit(ryegrass.ll4bc) 

lack-of-fit test 
          modeldf    rss df f value p value 
anova          17 1.4292                    
drc model      20 1.7558  3  1.2949  0.3084 

 

Since the p-value is higher than 0.05, the 'Lack of fit' test is not significant. Thus, the 4 parameters log-

logistic model is acceptable. Next, the reduction of the full 4 parameters log-logistic model is going to 

be undertaken. For this, the 3 parameters log-logistic model (saying that lower limit, e.g. 'c' parameter 

= 0) is fitted. 

 
# fit of the 3 parameters log-logistic model (lower  limit, e.g. 'c' 
parameter = 0) with box cox transformation # 

ryegrass.ll3bc<-drm(rootl~conc,data=ryegrass,bcval= 0.5,fct=ll.3()) 

 

bcVal argument permits to give the Box-Cox lambda value, as it was determined previously when 

using the boxcox  function. 

The update  function can also be used. 

ryegrass.ll3bcbis<-update(ryegrass.ll4bc, fct=ll.3( )) 

 

# visualization of the fit # 

plot(ryegrass.ll3bc,col=3,lwd=2,type="all") 
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Visually the fit seems to be satisfactory. 

 

# comparison of the 4 and 3 parameters log-logistic  models' fit by the f 
test# 

anova(ryegrass.ll4bc,ryegrass.ll3bc) 

1st model 
 fct:      ll.3() 
2nd model 
 fct:      ll.4() 
anova table 
 
          modeldf    rss df f value p value 
2nd model      21 2.8883                    
1st model      20 1.7558  1 12.9002  0.0018 
 

The 'F' test is significant (p-value < 0.05). The fit of the 3 parameters log-logistic is then significantly 

less satisfactory than those of the 4 parameters. Thus, it's the 4 parameters log-logistic model which is 

kept in order to estimate the EDp values. 

 

#estimation of the ec10, ec25 and ec50 with their s tandard error and their 
95% confidence interval) 

ed(ryegrass.ll4bc,c(10,25,50),interval="delta") 

estimated effective doses 
(delta method-based confidence interval(s)) 
   estimate std. error   lower  upper 
10  1.30341    0.21405 0.85690 1.7499 
25  1.98290    0.21698 1.53029 2.4355 
50  3.01662    0.21005 2.57846 3.4548 

 

For more details about the ED function and its arguments, see the ED help page using the following 

command: ?ED 
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8.3.5 Example of DRC application to the analysis and modelling of a monotonic dose-
response relationship with quantal data in absence of overdispersion 

The data used in this example are those of the 'earthworms' dataset included in the 'drc' package. More 

derails about this dataset are given in its help page, which can be consulted using ?earthworms 

command. 

# loading of the 'drc' package # 

library(drc) 

 

ew<-earthworms # permits to give a shorter name to the dataet #   

ew #display of the dataset#  

   dose number total 
1  0.00      3     5 
2  0.00      3     5 
3  0.00      3     4 
4  0.00      5     8 
5  0.00      4     8 
6  0.19      4    11 
7  0.19      4     9 
8  0.19      2     8 
9  0.19      3     8 
10 0.19      2     4 
11 0.38      2     9 
12 0.38      0     4 
13 0.38      6    11 
14 0.38      4    11 
15 0.38      4    15 
16 0.76      0    11 
17 0.76      1     6 
18 0.76      1     8 
19 0.76      0     9 
20 0.76      0     8 
21 1.53      0     6 
22 1.53      1    10 
23 1.53      0    10 
24 1.53      0    10 
25 1.53      0     8 
26 3.05      0     5 
27 3.05      0     9 
28 3.05      0     7 
29 3.05      0     8 
30 3.05      1     8 
31 6.11      0     3 
32 6.11      0     7 
33 6.11      0    11 
34 6.11      0    10 
35 6.11      1     7 
 

# visualization of the data # 

plot(ew$dose,ew$number/ew$total) 
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#fit of the full 4 parameters log-logistic model# 

ew.ll4<-drm(number/total~dose, weight=total, data=e w, 
type="binomial",fct=ll.4()) 

 

#display of the estimates' parameters# 

summary(ew.ll4) 

model fitted: log-logistic (ed50 as parameter) (4 p arms) 
parameter estimates: 
              estimate std. error  t-value   p-valu e 
b:(intercept) 4.243855   3.155072 1.345090    0.178 6 
c:(intercept) 0.023154   0.014404 1.607473    0.108 0 
d:(intercept) 0.489633   0.083342 5.874965 4.229e-0 9 
e:(intercept) 0.417026   0.081438 5.120804 3.042e-0 7 
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# visual assessment of the fit's quality # 

plot(ew.ll4,type="all", col=3,lwd=2) 

 

Globally, the fit seems to be good despite a weakness at the control level. 

 
# other visual assessment of the model's fit qualit y by a residuals vs. 
predicted values plot# 

plot(fitted(ew.ll4),residuals(ew.ll4)) 

abline(h=0,col=2,lwd=2) 

When observations are quantal data, it is needed to use the type="binomial"  argument in the drm 

function in order to precise the type of the data. Moreover, it is also needed to precise the number of 

individual through the weight=total argument. This information is used by the likelihood method to 

estimate the model's parameters and above all their standard error; since a percentage of event observed with 

2 individuals is not the same situation than a percentage observed with 200 individuals. 
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For each level of predicted response (abscissa axis), globally residuals are uniformly spread both side 

of the red line (0 y axis) ; except those concerning the higher predicted percentage for which all the 

residuals are higher than 0. This phenomenon was already observed in the previous graph. 

 

#assessment of the fit(s quality by a 'goodness of fit' test # 

modelfit(ew.ll4) 

goodness-of-fit test 
            df chisq value p value 
                                   
drc model   31      26.444  0.6998 

 

The 'Goodness of fit' test is not significant (p-value > 0.05). Taking in account this result and those of 

the previous graph, the 4 parameters log-logistic model seems satisfactory. 

 
# asessement of a possible overdispersion # 

1
31

444.26 ≈=R . No overdispersion is brought to light. thus the conclusion of the 'goodness of fit' 

test remains valid. 
 

# first reduction of the full 4 parameters log-logi stic model# 

# fit of the first restricted model, i.e., the 3 pa rameters log-logistic 
model for which the lower limit ('c'parameter is fi xed to 0) # 

ew.ll3<-update(ew.ll4,fct=ll.3()) # the update function permits tofit 
very easily a model from a previous' one# 

 

summary(ew.ll3) 

model fitted: log-logistic (ed50 as parameter) with  lower limit at 0 
(3 parms) 
parameter estimates: 
              estimate std. error  t-value   p-valu e 
b:(intercept) 1.505679   0.338992 4.441641 8.928e-0 6 
d:(intercept) 0.604929   0.085800 7.050498 1.783e-1 2 
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e:(intercept) 0.292428   0.083895 3.485636     5e-0 4 
 
# visulaization of the ew.ll3 model's fit# 

plot(ew.ll3, col=3,lwd=2,type="all") 

 

This fit is more satisfactory at the control level (dose=0) than the fit of the full 4 parameters log-

logistic model. 

Since no overdispersion was highlighted with the full model, fits of the 4 and 3 parameters log-logistic 

model can be compared by the 'likelihood ratio' test. 

# likelihood ratio test# 

anova(ew.ll4,ew.ll3) 

1st model 
 fct:      ll.4() 
2nd model 
 fct:      ll.3() 
anova-like table 
          modeldf  loglik df lr value p value 
1st model       4 -34.670                     
2nd model       3 -36.155  1    2.970  0.0848 

 

Since the test is not significant (p-value≥0.05) the fit of the 3 parameters log-logistic model is as 

satisfactory as those of the 4 parameters log-logistic model. According the Parsimony rule, the 3 

parameters log-logistic model is kept, and a second reduction is going to be done. 

 
# second reduction of the full 4 parameters log-log istic model# 

#fit of the 2 nd restricted model, i.e., fit of the 2 parameters log  logistic 
model (e.g. with lower limit (c parameter) = 0 and higher limit (d 
parameter) =1 # 

ew.ll2<-update(ew.ll4,fct=ll.2())  

 

# display of the estimates# 

summary(ew.ll2) 

model fitted: log-logistic (ed50 as parameter) with  lower limit at 0 
and upper limit at 1 (2 parms) 
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parameter estimates: 
              estimate std. error  t-value   p-valu e 
b:(intercept) 1.260321   0.246707 5.108564 3.246e-0 7 
e:(intercept) 0.145140   0.036797 3.944389     1e-0 4 
 

# visualization of the plot # 

plot(ew.ll2, col=3,lwd=2,type="all") 

 

The fit of this model is not satisfactory at the control's level. 

 
# comparison of the 3 and 2 parameters log-logistic  models # 

anova(ew.ll2,ew.ll3) 

1st model 
 fct:      ll.2() 
2nd model 
 fct:      ll.3() 
anova-like table 
          modeldf  loglik df lr value p value 
1st model       2 -347.55                     
2nd model       3  -36.16  1   622.79       0 

 

The test is significant (p-value ≈0), then the 2 parameters log logistic model's fit is not as satisfactory 

as those of the 3 parameters model. Thus, the 2 parameters model is rejected and the 3 parameters 

model is kept. And then, the 3 parameters model will be used to estimate the EDp parameters. 

# estimation of the ed5, ed30 et ed85, for example#  

ed(ew.ll3,c(5,30,85),interval="delta") 

estimated effective doses 
(delta method-based confidence interval(s)) 
 
    estimate std. error     lower  upper 
5   0.041374   0.027118 -0.011776 0.0945 
30  0.166581   0.062886  0.043327 0.2898 
85  0.925430   0.225137  0.484169 1.3667 
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8.3.6 Example of DRC application to the analysis and modelling of a monotonic dose-
response relationship with quantal data in presence of overdispersion  

The data used in this example are the ones of the 'deguelin' dataset included in the 'drc' package. These 

data come from a study which aim is to assess the action of the deguelin on the Macrosiphoniella 

sanborni species. The predictive variable is the insecticide dose, 6 doses were used. The total number 

of insects put in touch with the insecticide is reported in the variable 'n'. The number of dead insects is 

reported in the variable 'r'. The observed and modelled variable is the percentage of dead insects ('n'/ 

'r'). For each dose, there are no replicates. Finally the dataset contains 6 couples of dose-response data. 

In the presence of replicates the approach would be strictly identical to that presented below. 

library(drc) # loading of the 'drc' package#  

deg<-deguelin #permits to give a shorter name to the dataset#   

deg #displaying of the dataset#  

       dose log10dose  r  n 
1  5.128614      0.71 16 49 
2 10.000000      1.00 18 48 
3 20.417379      1.31 34 48 
4 30.199517      1.48 47 49 
5 40.738028      1.61 47 50 
6 50.118723      1.70 48 48    
 

# visualization of the data # 

plot(deg$dose,deg$r/deg$n,lwd=2, col=3) 

 
# fit of the full 4 parameters log-logistic model #  

deg.ll4<-drm(r/n~dose, weight=n, data=deg, type="bi nomial",fct=ll.4()) 

summary(deg.ll4) 

model fitted: log-logistic (ed50 as parameter) (4 p arms) 
parameter estimates: 
              estimate std. error  t-value   p-valu e 
b:(intercept) -3.46316    4.56542 -0.75856    0.448 1 
c:(intercept)  0.31003    0.12610  2.45854    0.014 0 
d:(intercept)  1.01870    0.16907  6.02548 1.686e-0 9 
e:(intercept) 18.50393    2.33375  7.92882 2.216e-1 5 
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# visual assessment of the fit's quality# 

plot(deg.ll4,lwd=2,col=3) 

 

Globally, the fit seems satisfactory. 

 
# visual assessment of the fit's quality by a 'resi duals vs fitted' plot # 

plot(fitted(deg.ll4),residuals(deg.ll4)) 

abline(h=0,col=2,lwd=2) 

 

When observations are quantal data, it is necessary to use the type="binomial"  argument in the drm 

function in order to precise the type of the data. It is also necessary to give the total number of observations 

by the way of the weight=n  argument. 'drc' package needs both information in order to give an adequate 

estimation of the parameters, and above all of their standard error. 
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Globally, the residuals are randomly distributed on both sides by of the line of 0 Y-axis, thus the fit 

seems satisfactory. 

 
#assessment of the quality of the fit by a 'goodness of fit'  test # 

modelfit(deg.ll4) 

goodness-of-fit test 
            df chisq value p value                                
drc model    2      4.3622  0.1129 

 

The 'Goodness of fit' test is not significant (p-value≥0.05). Taking in account this result and the 

previous graphs, the fit of the full 4 parameters log-logistic model is satisfactory. 

 
#assessment of the possible overdispersion # 

18.2
2

3622.4 ≈=R . The ratio is widely higher than 1, thus an overdispersion is highlighted. This 

has three major consequences: 

- the 'Goodness of fit' test previously done is not valid. Nevertheless, the quality of the fit is 

always considered as satisfactory considering the visual assessment. 

- the 'likelihood ratio' test permitting to compare the fit of two nested models couldn't be 

used ;  

It will be necessary to specify the presence of the overdispersion in the summary  and ED functions, 

using the od=T argument, in order to apply a correction to the parameters standard error's estimates.  

 

 

#displaying of the parameters'estimates# 

summary(deg.ll4, od=t) 

model fitted: log-logistic (ed50 as parameter) (4 p arms) 
parameter estimates: 
              estimate std. error  t-value   p-valu e 
b:(intercept) -3.46316    6.74243 -0.51364    0.607 5 
c:(intercept)  0.31003    0.18623  1.66472    0.096 0 
d:(intercept)  1.01870    0.24968  4.07996 4.504e-0 5 
e:(intercept) 18.50393    3.44660  5.36875 7.929e-0 8 

 

From these estimations, two remarks can be done. Firstly, since 'd' parameter's estimate is slightly 

superior to 1, then the higher limit seems to be able to be fixed to 1. Secondly, the lower limit seems to 

be able to be fixed to 0 because the p-value of the corresponding 't' test is not significant (p–value ≥ 

0.05). 

 
#first reduction of the full model – fit of the 3 p arameters log-logistic 
model fixing the higher limit ('d' parameter) to 1 #  
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deg.ll3u<-update(deg.ll4,fct=ll.3u()) # the update function permits to 
easily fit a new model from a previous one# 

summary(deg.ll3u, od=t) 

model fitted: log-logistic (ed50 as parameter) with  upper limit at 1 
(3 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept) -4.136805   1.154850 -3.582116     3e -04 
c:(intercept)  0.323801   0.068429  4.731937 2.224e -06 
e:(intercept) 18.603779   2.522874  7.374041 1.655e -13 

 

Having fixed the 'd' parameter to 1, the 't' test concerning the parameter 'c' is become significant (p 

<0.05). Thus, It is not justified to reduce once again the model by fixing the lower limit to 0. The 

reduction of the full model stops in this stage. The ECp parameters will be estimated from the 3 

parameters log-logistic model. 

 

# visulization of the ew.ll3's fit # 

plot(deg.ll3u, col=3,lwd=2,type="all")  

 

Visually, the fit of the 3 parameters log-logistic model is satisfactory. By the end ECp% are estimated 

from this 3-parameters log-logistic model. 

 

# for example, estimation of the ed5, ed30 and ed85 # 

ed(deg.ll3u,c(5,30,85), od=t, interval="delta") 

estimated effective doses 
(delta method-based confidence interval(s)) 
   estimate std. error   lower  upper 
5    9.1303     2.8536  3.5374 14.723 
30  15.1583     2.7584  9.7519 20.565 
85  28.2947     2.6303 23.1394 33.450 
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8.48.48.48.4 Hormetic modelsHormetic modelsHormetic modelsHormetic models    

8.4.1 Strategy of analysis and modelling of hormetic relationship, when observed 
response are continuous data 

The first aim of the hormetic dose-response modelling is generally to assess the significance of the 
hormesis effect. This assessment is based on the comparison of the fits of a 'hormesis' model and its 
corresponding log-logistic model. Indeed, these models are nested (cf. 0), and their difference comes 
only from the added 'f' parameter of the 'hormesis' model, which characterizes this effect. 

Hormesis dose-response relationship modelling, in case of continuous observations, contains 7 steps: 

1) Fit of all the available full hormesis models (5 parameters models) 

2) Selection of the best full hormesis model using model's fit visualization and / or lowest 
residual variance  

3) Assessment of the residual normality and homogeneity assumptions (with use of a Box-Cox 
transformation if needed) 

4) Assessment of the quality of the model 

5) If possible, reduction of the best full hormesis model 

6) Assessment of the hormesis effect by comparison of the fits of the 'hormesis' and 
corresponding log-logistic models by 'F test' for nested models 

7) Estimation of the EDp and their standard error (see below). 

The strategy of analysis and modelling of hormetic dose-response relationship with continuous 
observations is summarized in Figure 8.8. 
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Fit of all the available full hormesis models 

Assessment of the residual normality and homogeneity assumptions  

At least one of the two assumptions are 
rejected 

Both assumptions are accepted 

Selection of the best full hormesis model 

(visual assessment, lowest residual variance) 

Assessment of the model's fit quality 

Satisfactory fit Not satisfactory fit  
 

Fit of another type of full 
hormesis model 

Theoretical arguments 
to continue 

If possible, reduction of the 
best full 'hormesis' model  

(fit of restricted models) 

Comparison of full and  
restricted models' fit 

Non significant  'F' Test 
(p-value ≥0.05)  
the restricted model is kept  

Significant  'F' Test  
(p-value <0.05)  
the full model is kept  

Fit of the 3 parameters  

log-logistic model 

Fit of the 4 parameters  

log-logistic model 

Comparison of the fits of the kept 
hormesis and log-logistic models 

Non Significant 'F' Test   
(p-value ≥0.05)  
hormesis effect is not significant  

Significant 'F' Test '  
(p-value <0.05)  
hormesis effect is significant  

Estimation of EDp and their 
standard error from the kept 

log-logistic model 

Estimation of EDp and their 
standard error from the kept 

hormesis model 
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Figure 8.8: Strategy of analysis and modelling of hormesis dose-response relationships with 

continuous data. 
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The number of full 'hormesis' models which can be fitted depends on the shape of the dose-response 
relationship to be modelled (cf. Figure ): 

• If the relationship has an 'inverted U' shape, then 4 full 'hormesis' models (with 5 parameters) 
can be fitted:  

� the Brain-Cousens' model (BC.5), 

� the 3 models of Cedergreen-Ritz-Streibig : CRS.5a, CRS.5b, CRS.5c. 

• If the relationship has a 'U' shape : 

� only the 3 full Cedergreen-Ritz-Streibig's models: UCRS4a, UCRS4b, UCRS4c. 

  

The use of these models can leads to more or less satisfactory fit, but difficulty predictable. Our 
approach will be to try them all, and to use the one which is better adapted to the data. Since these 
models are not nested, their fits can't be directly compared by a statistical test. The kept full 'hormesis' 
model will be the one for whom the fit will be visually the best. Generally this model has also the 
lower residual variance. In case of not concordance it's better to choose the model having visually the 
best fit (cf.annexe 8.4.4) 

Assessment of residual normality and homogeneity assumptions and Box-Cox transformation are 
described in paragraph 8.3.1. It is important to note that after the use of a Box Cox transformation it is 
needed to visualize the fit of the best full 'hormesis' model in order to check that the hormesis effect is 
still well fitted (cf.annexe 8.4.4) 

Assessment of the quality of the fit is generally done visually and completed by a 'Lack of fit' test. 
These approaches are described in details in paragraph 8.3.1. 

Reduction of full 'hormesis' model concerns only the 'inverted U' shaped relationship. Firstly, the 4 
parameters sub-model (e.g. with 'c' parameter =0) corresponding to the kept 5 parameters 'hormesis' 
model (the best full model), is fitted. Secondly, the fits of the 5 parameters and 4 parameters hormesis 
models are compared by an 'F' test for nested models: 

- If the test is not significant (p-value ≥ 0.05), then the fit of the 4 parameters model is as 
satisfactory that the one of the 5 parameters model, and so the restricted model is kept 
(according to the Parsimony rule).  

- On the contrary, if the test is significant, (p-value<0.05), then the fit of the 4 parameters 
'hormesis' model is less satisfactory than the one of the 5 parameters model, and so the full 
model is kept.  

It is important to note that it is needed to visualize the fit of the reduced model in order to check that 
the 'hormesis' effect is still well described. 

Assessment of the 'hormesis' effect is based on the comparison of the fits of the 'hormesis' model and 
its corresponding log-logistic model. Hence, at first it is question of fit the log-logistic model 
corresponding to the kept 'hormesis' model: 

• if the relationship has an 'inverted U' shape, it is : 
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� the 4 parameters log-logistic model if the kept 'hormesis' model contains 5 parameters. 

� the 3 parameters log-logistic model if the kept 'hormesis' model contains 4 parameters 
(lower limit, e.g. 'c' parameter = 0). 

• if the relationship has a 'U' shape, it is obligatorily the 4 parameters log-logistic model. 

In a second phase, fits of the kept 'hormesis' model and its corresponding log-logistic model are 
compared, using an 'F' test for nested models (cf. paragraph 3.2.3). 

- if the test 'F' is not significant (p-value ≥0.05) then the 'f' parameter of the 'hormesis' effect 
is not significant. Thus the hypothesis of a 'hormesis' effect is rejected. 

- if the test 'F' is significant (p-value <0.05) then the 'f' parameter of the 'hormesis' effect is 
significant. Thus the hypothesis of a 'hormesis' effect is not rejected. 

Estimates of EDp% of the Brain-Cousens model are obtained solving the following equation 
(Cedergreen en al, 2005): 
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Estimates of EDp% of the Cedergreen-Ritz-Streibig models are obtained solving the following 
equation (Cedergreen en al, 2005): 
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In both cases, uncertainty of EDp% is estimated using the delta-method (Cedergreen en al, 2005).  

An example of a complete analysis and modelling of a 'hormetic' dose-response relationship with 
continuous observation is given in annexe 8.3.4. 

 

8.4.2 Strategy of analysis and modelling of hormetic relationship, when observed 
response are quantal data 

Definition of quantal data is given in paragraph 8.3.2. A reminder of the estimation of the parameters, 
their uncertainty and the hypotheses needed for their validity is present in the same paragraph.  

The first aim of the of hormetic dose-response modelling is generally to assess the significance of the 
hormesis effect. This assessment is based on the comparison of the fits of a 'hormesis' model and its 
corresponding log-logistic model. Indeed, these models are nested (cf. paragraph 3.2.3), and their 
difference comes only from the added 'f' parameter of the 'hormesis' model which characterizes this 
effect. 

Hormesis dose-response relationship modelling, in case of quantal observations, contains 7 main steps: 

1) Fit of all the available full hormesis models (5 parameters) ; 

2) Selection of the best full hormesis model using model's fit visualization and / or highest log-
likelihood value; 
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3) Assessment of the quality of the model ; 

4) Assessment of a possible overdispersion ; 

5) If possible, reduction of the best full hormesis model ; 

6) Assessment of the hormesis effect by comparison of the fits of the 'hormesis' and 
corresponding log-logistic models by 'F test' for nested models ; 

7) Estimation of the EDp% and their standard error. 

The management of steps 5 ad 6 will be different if an overdispersion is highlighted or not, at the step 
4. 

The strategy of analysis and modelling of hormetic dose-response relationship with quantal 
observation and when no overdispersion has been highlighted is summarized in the figure 8.9. 
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Not satisfactory fit  
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(visual assessment,log likelihood) 

Fit of another type of 

full 'hormesis' model 

Theoric argument 
(biological, historical) 

to continue 
Assessment of a possible 

overdispersion 

Overdispersion not 
highlighted 

Overdispersion is 
highlighted 

Reduction of the model  
(fit of a restricted model corresponding to 

the full selected model)  cf. Figure 8.10 

Comparison of the full and restricted 
models' fits. 

Significant 'likelihood ratio' test  
(p-value<0.05) 

The full model is kept 

Not significant 'likelihood ratio' test  
(p-value≥0.05) 

The restricted model is kept 

Fit of the 3 parameters log-

logistic model 

Fit of the 4 parameters log-

logistic model 

Comparison of the kept hormesis and log-logistic models' fits  

Non significant likelihood ratio test  
(p-value ≥0.05) hormesis effect is not 

significant  

Significant likelihood ratio test  
(p-value <0.05) hormesis effect is 

significant  

Estimation of the ECp% and their 
uncertainty from the kept log-logistic 

model 

Estimation of the ECp% and their 
uncertainty from the kept hormesis 

model 
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Figure 8.9 : Strategy of analysis and modelling of 'hormetic' dose-response relationships with quantal 

data, when there is no overdispersion. 

 

The management of steps 5 ad 6 is different if an overdispersion is highlighted or not at the step 4. 

First of all, in case of quantal (binary) observations, independence hypothesis is accepted or rejected 
only on the basis of the experimental design. Then, it is needed to precise the quantal type of the 
observation using the type="binomial" argument in the drm function. It is also necessary to give the 
total number of observations by the way of the weight=n argument. 'drc' package needs both 
information in order to give an adequate estimation of the parameters, and above all of their standard 
error. 

The number of full 'hormesis' models which can be fit depends on the shape of the dose-response 
relationship to be modelled (cf. Figure ): 

• If the relationship has an 'inverted U' shape, then 4 full 'hormesis' models (with 5 parameters) 
can be fitted:  

� the Brain-Cousens' model (BC.5), 

� the 3 models of Cedergreen-Ritz-Streibig: CRS.5a, CRS.5b, CRS.5c. 

• If the relationship has a 'U' shape : 

� only the 3 full Cedergreen-Ritz-Streibig's models: UCRS4a, UCRS4b, and UCRS4c. 

The use of these models can leads to more or less satisfactory fit, but difficulty predictable. Our 
approach will be to try them all, and to use the one which is better adapted to the data. Since these 
models are not nested, their fits can't be directly compared by a statistical test. The kept full 'hormesis' 
model will be the one for whom the fit will be visually the best. Generally this model has also the 
higher log-likelihood value. In case of not concordance it's better to choose the model having visually 
the best fit. 

Assessment of the fit's quality is generally done visually. Thus, two plots can be done: the first one 
showing the observed data with the fitted model, the other being a plot of the residuals vs. the fitted 
values. This visual assessment can be completed by a 'Goodness of fit' test (cf. paragraph 8.3 .2). 

The presence of a possible overdispersion (defined as an observed variance higher than the variance 
predicted by the Binomial distribution) has to be assessed. Indeed, in case of overdispersion the results 
of the 'likelihood ratio' test and of the 'Goodness of fit' test are not valid, and the estimation of the 

parameters' uncertainty are biased. The described approach consists in comparing the ratio )(φ  of the 

Q  statistic over its degrees of freedom, to 1 (cf Equation 17). If the ratio approximately equals 1, then 

no overdispersion is highlighted. If the ratio is higher than 1, then an overdispersion is highlighted. 

In case of overdispersion, estimation of parameters' uncertainty has to be corrected using the od=T 
argument in the summary and ED functions. 

If there is no overdispersion is highlighted, the reduction of the full model contains the following 

several steps: 



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

99 

• In a first time, it is question of fitting the restricted 4 parameters model. When observed 
responses are quantal data, reduction concerns both shapes of curves : 

� when the relationship has a 'inverted U' shape, the restricted model is the one 
specifying that the lower limit ('c' parameter) =0, (cf. Figure ). 

� when the relationship has a 'U' shape, the restricted model is the one specifying that 
the higher limit ('d' parameter) =1 (cf. Figure ). 

In a second time, since full and restricted 'hormesis' models are nested, their fits are compared by the 

'likelihood ratio' test : 

� if the test is not significant (p-value≥0.05), then the fit of the restricted 4 parameters 
model is as satisfactory as the fit of the full 5 parameters model. According the 
Parsimony rule, the restricted 4 parameters model is kept. 

� if the test is significant (p-value<0.05), then the fit of the restricted 4 parameters 
model is less satisfactory than the fit of the full 5 parameters model. Thus the kept 
model is the 5 parameters model. 

Assessment of the hormesis effect is based on the comparison of the fits of the 'hormesis' model and 
its corresponding log-logistic model: 

• In a first time, it's question of fitting the log-logistic model corresponding to the kept hormesis 
model. This is : 

� the 4 parameters log-logistic model if the kept 'hormesis' model has 5 parameters; 

� the 3 parameters log-logistic model if the kept 'hormesis' model is a restricted one 
with 4 parameters. In this case, if the curve has a : 

- 'inverted U' shape, then the lower limit ('c" parameter) is fixed  
 to 0 (cf.Figure ); 

- 'U' shape, then the higher limit ('d' parameter) is fixed to 1 (cf.Figure ). 

• In a second time, since the 'hormesis' and log-logistic models are nested, their fits are compared 
by a 'likelihood ratio' test : 

� If the test is not significant (p-value≥0.05), then 'f' parameter of the hormesis effect is 
not significantly different from 0. In other words the presence of a hormesis effect is 
rejected. 

• On the contrary, if the test is significant (p-value<0.05), then 'f' parameter of the 
hormesis effect is significantly different from 0. In other words the presence of a 
hormesis effect is accepted. 

Estimation of the EDp% is described in the paragraph 8.4.1. 
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The strategy of analysis and modelling of hormetic dose-response relationship with quantal 
observation and when an overdispersion has been highlighted is summarized in the figure 8.10. 
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Figure 8.10 : Strategy of analysis and modelling of 'hormetic' dose-response relationship with quantal 

data, when there is an overdispersion. 

When an overdispersion has been highlighted, the result of the 'likelihood ratio' test used to compare 
the fit of two nested models is no valid anymore. Thus, the strategy used to reduce the full hormesis 
model is rougher and is different according to the shape of the dose-response relationship to be 
modelled: 

- when the relationship has a 'inverted U' shape, the possibility to fix the lower limit ('c' 

parameter) will be assessed using the p-value of the 't' test given by the summary  

function, used with the od=T  argument. If the test is not significant (p-value ≥0.05), then 

the restricted 4 parameters model is kept. In the inverse case, it's the 5 parameters model 
which is kept. 

- when the relationship has a 'U' shape, the possibility to fix the upper limit ('d' parameter) 
will be assessed comparing the fits of the 5 and 4 parameters 'hormesis' model. The 
estimate of the 'd' parameter can also be used. For example, if the estimate is higher than 1, 
or slightly lower than 1, then the upper limit could be fixed to 1. And the 4 parameters 
model is kept. 

Concerning the assessment of the hormesis effect, when an overdispersion has been previously 
highlighted, the comparison of the hormesis and log-logistic models' fit can't be done directly by the 
'likelihood ratio' test. Thus, in this situation, the hormesis effect can be assessed using the p-value of 't' 

test corresponding to the 'f' parameter provided by the summary  function, used with the od=T  

argument : 

- If the test is not significant, then the hormesis effect will be considered as non significant, 
and the restricted model will be is for the estimation of the EDp%.  

- In the inverse case, hormesis effect will be considered as significant and the 5 parameters 
model will be used to estimate the EDp%. 

Estimation of the EDp% is described in the paragraph 8.4.1. 
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8.4.3 Different hormesis situations and corresponding Brain-Cousens and Cedergreen-
Ritz-Streibig models  

 
 

Inverted U shaped curves 

Name of the models Continuous data Quantal data 
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BC.5() 
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Figure 8.11 : available models in 'drc' to analyse hormetic dose-response relationships according the 
type of the observations and the shape of the relationship. 
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8.4.4 Example of DRC application to the analysis and modelling of a hormesis dose-
response relationship with continuous data 

Data used in this example arte those of the 'lettuce' dataset included in the 'drc' package. These data 

come from an experiment which aim was to assess the inhibitory action of the isobutanol (dissolved in 

a solution of nutriments) on the biomass of lettuces, measured after 21 days of exposure. 

The observed variable is the mass of lettuce leaves ('weight' variable). Seven concentrations of 

isobutanol have been tested. Two replicates are reported for each concentration. Finally the dataset is 

composed of 14 dose-response couple.  

 

#opening of the help page of the lettuce dataset#  
?lettuce  

# display of the dataset# 

lettuce 

     conc weight 
1    0.00  1.126 
2    0.00  0.833 
3    0.32  1.096 
4    0.32  1.106 
5    1.00  1.163 
6    1.00  1.336 
7    3.20  0.985 
8    3.20  0.754 
9   10.00  0.716 
10  10.00  0.683 
11  32.00  0.560 
12  32.00  0.488 
13 100.00  0.375 
14 100.00  0.344 
 

# visualization of the experimental points # 

plot(lettuce$conc,lettuce$weight,log="x") 

 
 

#fit of the de 5 parameters brain-cousens' model # 

lettuce.bc5<-drm(weight~conc,data=lettuce,fct=bc.5( )) 
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summary(lettuce.bc5) 

model fitted: brain-cousens (hormesis) (5 parms) 
parameter estimates: 
 
               estimate std. error   t-value   p-va lue 
b:(intercept)  1.502065   0.352231  4.264439    0.0 021 
c:(intercept)  0.280173   0.248569  1.127142    0.2 888 
d:(intercept)  0.963030   0.078186 12.317149 6.164e -07 
e:(intercept)  1.120457   0.612908  1.828100    0.1 008 
f:(intercept)  0.988182   0.776136  1.273207    0.2 348 
 
residual standard error: 
 0.1149117 (9 degrees of freedom) 
 
# fit of the 5 parameters cedergreen-ritz-streibig' s model with alpha=1# 

lettuce.crs5a<-drm(weight~conc,data=lettuce,fct=crs .5a()) 

 

summary(lettuce.crs5a) 

model fitted: cedergreen-ritz-streibig (5 parms) 
parameter estimates: 
 
               estimate std. error   t-value   p-va lue 
b:(intercept)  1.334285   0.358663  3.720169    0.0 048 
c:(intercept)  0.448019   0.080675  5.553390    0.0 004 
d:(intercept)  1.035664   0.077329 13.392999 3.006e -07 
e:(intercept)  1.336143   1.184243  1.128267    0.2 884 
f:(intercept)  1.996199   2.021349  0.987558    0.3 492 
 
residual standard error: 
 0.1305057 (9 degrees of freedom) 
 

# fit of the 5 parameters cedergreen-ritz-streibig' s model with alpha=0.5# 

lettuce.crs5b<-drm(weight~conc,data=lettuce,fct=crs .5b()) 

summary(lettuce.crs5b) 

model fitted: cedergreen-ritz-streibig (5 parms) 
parameter estimates: 
 
               estimate std. error   t-value   p-va lue 
b:(intercept)  0.834820   0.459691  1.816046    0.1 027 
c:(intercept)  0.326694   0.170299  1.918358    0.0 873 
d:(intercept)  0.970761   0.081559 11.902501 8.254e -07 
e:(intercept)  0.959902   2.407158  0.398770    0.6 994 
f:(intercept)  2.927607   5.229475  0.559828    0.5 893 
residual standard error: 
0.1170469 (9 degrees of freedom) 
 
# fit of the 5 parameters cedergreen-ritz-streibig' s model with alpha=0.25# 

lettuce.crs5c<-drm(weight~conc,data=lettuce,fct=crs .5c()) 

summary(lettuce.crs5c) 

model fitted: cedergreen-ritz-streibig (5 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept)  0.981944   0.559332  1.755565    0.1 130 
c:(intercept)  0.336670   0.182883  1.840906    0.0 988 
d:(intercept)  0.969845   0.088261 10.988317 1.624e -06 
e:(intercept)  3.883893   2.462305  1.577340    0.1 492 
f:(intercept)  1.027935   0.766821  1.340516    0.2 129 
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residual standard error: 
0.1256841 (9 degrees of freedom) 
 

The lowest residual standard error is the one of the Brain-Cousens' model. Nevertheless, in order to 

select the best 5 parameters 'hormesis' model, it is needed to visualize the fit of those 4 'hormesis' 

models. 

 

# splitting of the graphical window in 4 parts, 2 b y column and 2 by raw # 

par(mfrow=c(2,2)) 

plot(lettuce.bc5,type="all") 

plot(lettuce.crs5a, type="all") 

plot(lettuce.crs5b, type="all") 

plot(lettuce.crs5c, type="all") 

 

Visually, the CRS.5a model can be considered as the model having the best fit because it is the one 

which describes best the effect hormesis (at the price of a less good fit at the high dose levels). 

On the other hand, if it is the residual error term which is considered, then it is the CRS.5a model 

which has the biggest one, and so which has the less satisfactory fit. This is because of the distances 

between the experimental points and the curve at the high dose levels. However, as notified in the 

paragraph 8.4.1, in case of conflict between the visual evaluation and the residual error, the visual 

approach must be privileged. Hence, the lettuce.crs5a model will be considered as the best model ' 

hormesis '. 
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# visual assessment of the normality assumption of the residuals# 

qqnorm(residuals(lettuce.crs5a)) 

qqline(residuals(lettuce.crs5a),col=2) 

 

Visually, the normality of the residuals is not satisfactory. 

 

# assessment of the normality assumption of the res iduals using a shapiro-
wilk's test# 

shapiro.test(residuals(lettuce.crs5a)) 

 shapiro-wilk normality test 
data:  residuals(lettuce.crs5a)  
w = 0.8596, p-value = 0.03003    

      

Shapiro-Wilk's test is significant (p-value <0.05), thus the normality assumption is not satisfactory. By 

the end the residual normality assumption is rejected. Thus, a Box-Cox transformation is going to be 

used at this level without waiting the assessment of the homogeneity assumption. 

# use of the box-cox transformation # 

lettuce.crs5abox<-boxcox(lettuce.crs5a) 

 

# visualization of the fit after the use of the box  cox transformation#  

plot(lettuce.crs5abox, type="all") 
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After the Box-Cox transformation the fit of the CRS.5a model is no more satisfactory. Hence it is 

necessary to start again with another 5 parameters 'hormesis' model. Visually, the model having the 

best fit after the CRS.5a model is the BC.5 model (high left corner of the previous graph displaying 

the fit of the 4 hormesis models). The BC.5 model is also the one which has the lowest residual error. 

At the end, the BC.5 model is considered has the best full 'hormesis' model. 

  

# visual assessment of the normality assumption of the residuals# 

qqnorm(residuals(lettuce.bc5)) 

qqline(residuals(lettuce.bc5),col=2) 

 

Visually the residual normality assumption is quite satisfactory. 

# assessment of the normality of the residuals by t he use of a shapiro-
wilk's test# 

shapiro.test(residuals(lettuce.bc5)) 

        shapiro-wilk normality test 
 
data:  residuals(lettuce.bc5)  
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w = 0.9714, p-value = 0.8942 

The Shapiro-Wilk's test is not significant (p-value >0.05), thus the normality of the residuals is 

satisfactory. By the end, the residual normality assumption is accepted. 

# visual assessment of the homogeneity assumption o f the residuals # 

plot(fitted(lettuce.bc5),(residuals(lettuce.bc5,typ e="standardised"))) 

abline(h=0,col=2) 

 

Globally, it seems to be an increase trend of the residuals value with the increase of the fitted values. 

To have a better view of this phenomenon, the same graph could be done with the absolute value of 

the residuals. 

plot(fitted(lettuce.bc5),abs(residuals(lettuce.bc5, type="standardised"))) 

 

Here the increase trend of the residuals with increase of the fitted values is more visible (but is not 

very strong). Homogeneity assumption of the residuals seems thus rejected. Since there are only two 

replicates by concentration levels, Bartlett's and Levene's tests are not reliable and are not used here. 
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On the other hand, a Box-Cox transformation can be used in order to try to improve the residuals' 

homogeneity. 

# use of the box-cox transformation # 

lettuce.bc5box<-boxcox(lettuce.bc5) 

 

# visualization of the fit after the box-cox transf ormation # 

plot(lettuce.bc5box, type="all") 

 
 

After the Box-Cox transformation, the BC.5 model describes less well the 'hormesis' effect but 

remains satisfactory. 

 

# visual assessment of the normality assumption of the residuals # 

qqnorm(residuals(lettuce.bc5box)) 

qqline(residuals(lettuce.bc5box),col=2) 

 

The residuals normality which was already satisfactory before the Box-Cox transformation seems to 

have still improved. 
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# assessment of the normality assumption of the res iduals by the shapiro-
wilk's test# 

shapiro.test(residuals(lettuce.bc5box)) 

shapiro-wilk normality test 
data:  residuals(lettuce.bc5box)  
w = 0.9572, p-value = 0.6774 

 

The Shapiro-Wilk's test is still not significant (p-value >0.05). By the end the normality assumption of 

the residuals is accepted. 

 
# visual assessment of the homogeneity assumption o f the residuals # 

plot(fitted(lettuce.bc5box),(residuals(lettuce.bc5b ox,type="standardised"))
) 

abline(h=0,col=2) 

 

 
 

In a general way, after the Box-Cox transformation the residuals' values don't seem to increase when 

the fitted values increase. A same plot with the absolute values of the residuals can be used to have a 

better view.  

# plot with the absolute values of the residuals# 

plot(fitted(lettuce.bc5box),(abs(residuals(lettuce. bc5box,type="standardise
d")))) 

abline(h=0,col=2) 
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On the last plot it appears that, in a general way, the values of the residuals don't systematically 

increase when fitted values increase. Indeed, throughout the X axis, the values of residuals are 

alternately more or less high. By the end, after the Box-Cox transformation the homogeneity 

assumption of the residuals is accepted. Now, the quality of the lettuce.bc5Box's model must be 

assessed. 

 

# visual assessment of the quality of the lettuce.b c5box's fit by a 
residuals vs. predicted values plot# 

plot(fitted(lettuce.bc5box), residuals(lettuce.bc5b ox))  

abline(h=0,col=2) 

 

Throughout the X axis, residuals are globally distributed in a uniform way on both sides of the red line 

of 0 Y axis. Thus the fit is satisfactory. 

# assessment of the quality of the lettuce.bc5box model by the use of a 
'lack of fit' test # 
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modelfit(lettuce.bc5box) 

lack-of-fit test 
 
          modeldf     rss df f value p value 
anova           7 0.14388                    
drc model       9 0.18230  2  0.9346  0.4368 

 

The 'Lack of fit' test is not significant (p-value >0.05), strengthening the good quality of the fit of the 

lettuce.bc5Box  model. The reduction of this kept full hormesis model is going to be considered. 

 
# displaying of the estimates of the lettuce.bc5box 's parameters# 

summary(lettuce.bc5box) 

model fitted: brain-cousens (hormesis) (5 parms) 
parameter estimates:  
 
               estimate std. error   t-value   p-va lue 
b:(intercept)  1.190709   0.161643  7.366268 4.253e -05 
c:(intercept) -0.244189   0.681644 -0.358236    0.7 284 
d:(intercept)  0.963425   0.094805 10.162184 3.129e -06 
e:(intercept)  0.675545   0.459283  1.470871    0.1 754 
f:(intercept)  2.316550   2.204442  1.050856    0.3 207 
 
residual standard error: 
 0.14232 (9 degrees of freedom) 
non-normality/heterogeneity adjustment through opti mal box-cox 
transformation 
estimated lambda: -0.75  
confidence interval for lambda: [-1.565, 0.358]  

 

Since the p-value of 'c' parameter is not significant (p-value >0.05), the lower limit of the curve seems 

to be fixed to 0. In order to confirm this hypothesis the 4 parameters Brain-Cousens' model is going to 

be fitted. And then its fit will be compared with the one of the 5 parameters model by an 'F' test for 

nested models. 

 
# fit of the 4 parameters brains-cousens's model wi th box-cox 
transformation # 

lettuce.bc4box<-drm(weight~conc,data=lettuce,fct=bc .4(),bcval=-0.75) 

summary(lettuce.bc4box) 

model fitted: brain-cousens (hormesis) with lower l imit fixed at 0 
(4 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept)  1.273794   0.026176 48.662518 3.242e -13 
d:(intercept)  0.952145   0.086389 11.021615 6.473e -07 
e:(intercept)  0.786673   0.510281  1.541645    0.1 542 
f:(intercept)  1.741208   1.386622  1.255720    0.2 378 
residual standard error: 
 
 0.1373192 (10 degrees of freedom) 
non-normality/heterogeneity adjustment through opti mal box-cox 
transformation 
specified lambda: -0.75 
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# visualization of the fit # 

plot(lettuce.bc4box,ylim=c(0,1.4),xlim=c(0,1e+06),t ype="all") 

 

 

Visually, the fit is satisfactory. 

# comparaison des ajustements par un test f# 

anova(lettuce.bc4box,lettuce.bc5box) 

1st model 
 fct:      bc.4() 
2nd model 
 fct:      bc.5() 
anova table 
          modeldf     rss df f value p value 
1st model      10 0.18857                    
2nd model       9 0.18230  1  0.3096  0.5915 

 

P-value of the 'F' test is not significant (p-value >0.05). Thus, the fit of the 4 parameters Brain-

Cousens' model is as satisfactory as the one of the 5 parameters model. According to the Parsimony 

rule, it's the 4 parameters model which is kept. Then, the 'hormesis' effect is going to be able to be 

assessed. For this, the 3 parameters log-logistic model (lower limit, e.g. 'c' parameter fixed to 0) is 

going to be fitted. Next, its fit is going to be compared with the hormesis model's one by the way of an 

'F' test for nested models. 

 

# fit of the 3 parameters log-logistic model# 

lettuce.ll3box<-drm(weight~conc,data=lettuce,fct=ll .3(),bcval=-0.75) 

summary(lettuce.ll3box) 

model fitted: log-logistic (ed50 as parameter) with  lower limit at 0 
(3 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept)  0.608503   0.096860  6.282287    0.0 001 
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d:(intercept)  1.118760   0.097981 11.418178 1.936e -07 
e:(intercept) 28.191811  10.296944  2.737881    0.0 193 
 
residual standard error: 
 
 0.1645451 (11 degrees of freedom) 
 
non-normality/heterogeneity adjustment through opti mal box-cox 
transformation 
 
specified lambda: -0.75 
 

# visualization of the fit # 

plot(lettuce.ll3box,ylim=c(0,1.4),xlim=c(0,1e+06), type="all") 

 

 
# assessment of the 'hormesis' effect by comparing the fits of the 
'hormesis'and log-logistic models by a 'f' test# 

anova(lettuce.ll3box,lettuce.bc4box) 

1st model 
 fct:      ll.3() 
2nd model 
 fct:      bc.4() 
anova table 
 
          modeldf     rss df f value p value 
1st model      11 0.29783                    
2nd model      10 0.18857  1  5.7943  0.0369 

 

The 'F' test is significant (p-value < 0.05). Thus the fit of the 'hormesis' model is better than the one of 

the log-logistic model. In other words, the 'f' parameter characterizing the hormesis effect in the Brain-

Cousens' model is significantly different from 0. Hence the presence of a 'hormesis' effect is validated. 

Now the EDp% can be estimated. 
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# estimation of the ed5, ed10 et ed55 and their err or standard and 
confidence interval# 

ed(lettuce.bc4box,c(5,10,55),interval="delta",refer ence="control") 

estimated effective doses 
(delta method-based confidence interval(s)) 
 
   estimate std. error    lower   upper 
5   3.67928    1.60085  0.11235  7.2462 
10  4.55723    1.88486  0.35749  8.7570 
55 55.94498   19.53743 12.41288 99.4771 
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8.4.5 Example of DRC application to the analysis and modelling of a hormesis dose-
response relationship with quantal data  

Data used in this example are those of the 'wormsHU' dataset. This is a modification of the 'eartworms' 

dataset included in the 'drc' package. These data can be perceived as coming from a fictitious 

experiment, the purpose of which would be to assess the action of a toxic substance on the not 

migration of earthworms. The predictive variable would be the dose (7 levels). The total number of 

used earthworms would be reported in the 'total' variable. The number of worms remaining in their 

contaminated container and no migrating would be reported in the 'number' variable. The observed and 

modelled variable would be the percentage of non migrating worms, in others words, worms staying in 

their container. Five replicates per dose level would be used. Thus, at the end the dataset would 

contain 35 dose-response data.  

The dataset is displayed in annexe 0. To be imported in R, in a first step data have to be copied and 

pasted in an Excel sheet with, obligatorily, a coma as a decimal separator symbol. In a second step, the 

Excel sheet has to be saved in 'csv' format (semicolon delimited file). By the end, importation in R is 

done using the read.csv2(file.choose()) command which permits to open a window of 

selecting dataset (cf. annexe 8.2) 

 

A single dataset is employed to illustrate the strategy of analysis both in absence and in the presence of 

an overdispersion. 

# loading of the 'drc' dataset # 

library(drc) 

 
# import of the dataset# 

wormshu<-read.csv2(file.choose()) 

 

# display of the data – not shown here# 

wormshu 

 

# visualization of the data# 

with(wormshu,plot(dose,number/total,log="x")) 

warning message: 
in xy.coords(x, y, xlabel, ylabel, log) : 
  5 x values <= 0 omitted from logarithmic plot 
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The 'Warning'  message says that the 5 control observations are not displayed on the graph because 

of the X axis logarithm scale. 

 

Since the relationship has a 'U' shape only the Cedergreen-Ritz-Streibig's models can be fitted. 

# fit of all the available full hormesis models# 

wormshu.ucrs5a<-drm(number/total~dose,type="binomia l",weight=total, 
fct=ucrs.5a(),data=wormshu) 

wormshu.ucrs5b<-drm(number/total~dose,type="binomia l",weight=total, 
fct=ucrs.5b(),data=wormshu) 

wormshu.ucrs5c<-drm(number/total~dose,type="binomia l",weight=total, 
fct=ucrs.5c(),data=wormshu) 

 

# display of the parameters' estimates # 

summary(wormshu.ucrs5a) 

model fitted: u-shaped cedergreen-ritz-streibig (5 parms) 
parameter estimates: 
 
               estimate std. error   t-value   p-va lue 
b:(intercept)  2.152428   0.705520  3.050840    0.0 023 
c:(intercept)  0.278079   0.049853  5.577967 2.433e -08 
d:(intercept)  0.972763   0.024361 39.930462    0.0 000 
e:(intercept)  0.312795   0.074950  4.173397 3.001e -05 
f:(intercept) -1.571590   1.828073 -0.859698    0.3 900 
 

summary(wormshu.ucrs5b) 

model fitted: u-shaped cedergreen-ritz-streibig (5 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept)  2.310165   0.276420  8.357446 3.205e -17 
c:(intercept)  0.417944   0.085524  4.886878 1.024e -06 
d:(intercept)  0.981034   0.014988 65.456285    0.0 000 
e:(intercept)  0.071362   0.035446  2.013220    0.0 441 
f:(intercept) 45.093502  42.327543  1.065347    0.2 867 
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summary(wormshu.ucrs5c) 

model fitted: u-shaped cedergreen-ritz-streibig (5 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept)  2.149295   0.419078  5.128627 2.919e -07 
c:(intercept)  0.416251   0.089831  4.633722 3.592e -06 
d:(intercept)  0.980798   0.014875 65.935022     0. 000 
e:(intercept)  0.189352   0.040773  4.644025 3.417e -06 
f:(intercept)  1.998914   1.037598  1.926482     0. 054 
 

# visualization of the fits # 

par(mfrow=c(2,2))# permet de diviser la fenetre gra phique en 4# 

plot(wormshu.ucrs5a, type="all",lwd=2) 

plot(wormshu.ucrs5b, type="all",lwd=2) 

plot(wormshu.ucrs5c, type="all",lwd=2) 

 

 
 

Visually, the best fit is the one of the WormsHU.ucrs5b  model (high right corner). This model is 

those which describe the data best. 

# estimation of the log-likelihood of the different  models# 

loglik(wormshu.ucrs5a) 

'log lik.' -51.37844 (df=5) 
loglik(wormshu.ucrs5b) 

'log lik.' -47.99751 (df=5) 
loglik(wormshu.ucrs5c) 

'log lik.' -49.23641 (df=5) 
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The WormsHU.ucrs5b  model is also the one who has the highest 'Log-likelihood' value. 

 

# assessment of the model's fit by a 'residuals vs.  fitted'# 

plot(fitted(wormshu.ucrs5b ), residuals(wormshu.ucr s5b ))  

abline (h=0, col=2) 

 
 

Globally, during the X axis, residuals are distributed on both sides of the 0 X-axis red line. The fit of 

the model WormsHU.ucrs5b is thus satisfactory. 

 

# assessment of the model's fit by a 'goodness of fit'  test # 

modelfit(wormshu.ucrs5b) 

goodness-of-fit test 
            df chisq value p value                          
drc model   40      31.941  0.8143 
 

Since the 'Goodness of fit' test is not significant (p-value ≥ 0.05), then the fit of the wormsHU.ucrs5b 

model is satisfactory. 

# assessment of a possible overdispersion # 

31.941/40 

[1] 0.798525 

 

The ratio of the statistic of the 'Goodness of fit' test out of its degrees of freedom being less than 1, 

then no overdispersion is highlighted. Thus, the result of the 'Goodness of fit' test is valid. The 

reduction of the full hormesis model is going to be done. For this, in a first step, a model specifying 

the upper limit ('d' parameter) is fixed to 0 is fitted. Taking in account that the 'd' parameter's estimate 

of the full hormesis model equals 0.981, this hypothesis is very likely. 



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

120 

 

#reduction of the best full 'hormesis' model# 

 

# fit of the model specifying that the upper limit = 1, and the alpha 
parameter = 0.25 as it in the case in the wormshu.u crs4b model #  

wormshu.ucrs4b<-drm(number/total~dose,type="binomia l",weight=total, 
fct=ucedergreen(fixed=c(na,na,1,na,na),names = c("b ", "c", "d", "e", 
"f"),alpha=0.5),data=wormshu) 

 

Since no 'hormesis' model directly specifying that the upper limit ('d' parameter)=1 is available in 'drc', 

it is needed to use the ucedergreen  general function. The fixed=c(NA,NA,1,NA,NA)  

command permits to fix the 'd' parameter to 1. The first element in the parenthesis corresponds to the 

'b' parameter, the second to the 'c' parameter, the third to the 'd' parameter, the forth to the 'e' 

parameter, and the fifth to the 'f' parameter. The NA symbols permit to not fix the value of the 

corresponding parameter. 

 

# displaying of the estimations# 

summary(wormshu.ucrs4b) 

model fitted: u-shaped cedergreen-ritz-streibig (4 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept)  2.063757   0.154216 13.382245 3.840e -41 
c:(intercept)  0.402674   0.087278  4.613722 3.955e -06 
e:(intercept)  0.050064   0.032346  1.547778    0.1 217 
f:(intercept) 80.449217  94.662702  0.849851    0.3 954 
 

# visualization of the fit# 

plot(wormshu.ucrs4b, type="all", col=3, lwd=2) 

 

 
 

# superimposition of fits of the 4 and 5 parameters  models # 

plot(wormshu.ucrs5b, type="all",lwd=2) 
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plot(wormshu.ucrs4b, type="all",lwd=2,col=3,add=t)  

 

In black colour there is the fit of the full 5 parameters model, in green the one of the 4 parameters 

model. Looking at this plot, the 4 parameters model seems to describe a little bit less fine the hormesis 

effect, but is still satisfactory. 

 

# comparison of the 5 and 4 parameters models using  a 'likelihood ratio'  
test # 

anova(wormshu.ucrs4b,wormshu.ucrs5b) 

1st model 
 fct:      ucedergreen(fixed = c(na, na, 1, na, na) , names = c("b", 
"c",  
2nd model 
 fct:      ucrs.5b() 
anova-like table 
          modeldf  loglik df lr value p value 
1st model       4 -49.806                     
2nd model       5 -47.998  1    3.617  0.0572 

 

P-value of the 'likelihood ratio' test is slightly higher of the significant level (0.05). Nevertheless, since 

it is exceeded, the fit of the 4 parameters model is considered as satisfactory that the one of the 5 

parameters model. By the end, the restricted model is kept. 

If an overdispersion would have been detected, the 4 parameters model would also has been kept 

because of the 'd' parameter's estimate is very close to 1. 

 

# assessment of the 'hormesis' effect # 

Since no overdispersion has been highlighted, in a first step, the log-logistic model corresponding to 

the restricted 'hormesis' model is fitted. It is the 3 parameters model having the higher limit ('d' 

parameter) fixed to 1. 

 



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

122 

# fit of the log-logistic model# 

wormshu.ll3u<-drm(number/total~dose,type="binomial" ,weight=total, 
fct=ll.3u(),data=wormshu) 

 

# display of the estimatation # 

summary(wormshu.ll3u) 

model fitted: log-logistic (ed50 as parameter) with  upper limit at 1 
(3 parms) 
parameter estimates: 
               estimate std. error   t-value   p-va lue 
b:(intercept) -1.830545   0.274881 -6.659413 2.749e -11 
c:(intercept)  0.262651   0.049109  5.348298 8.879e -08 
e:(intercept)  0.288021   0.045116  6.383980 1.725e -10 
 

# visualization of the fit # 

plot(wormshu.ll3u, type="all",lwd=2,col=4) 

 
 

# comparison of the fits of the hormesis and log-lo gistic models # 

anova(wormshu.ll3u,wormshu.ucrs4b) 

1st model 
 fct:      ll.3u() 
2nd model 
 fct:      ucedergreen(fixed = c(na, na, 1, na, na) , names = c("b", 
"c",  
 
anova-like table 
 
          modeldf  loglik df lr value p value 
1st model       3 -53.974                     
2nd model       4 -49.806  1    8.337  0.0039 

 

The 'likelihood ratio' test is significant (p-value < 0.05), and then the 'f' parameter of the 'hormesis' 

model is significantly different from 0. In other words, the hypothesis of a hormesis effect is accepted. 
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If an overdispersion would have been detected, then hormesis effect would has been assessed from the 

p-value pf the 't' test corresponding to the 'c' parameter, which is given by the summary  function used 

with od=T  argument. 

 

summary(wormshu.ucrs4b,od=t) 

model fitted: u-shaped cedergreen-ritz-streibig (4 parms) 
parameter estimates: 
 
                estimate std. error    t-value   p- value 
b:(intercept)   2.063757   0.220386   9.364290 3.82 8e-21 
c:(intercept)   0.402674   0.124726   3.228474    0 .0012 
e:(intercept)   0.050064   0.046224   1.083065    0 .2788 
f:(intercept)  80.449217 135.279818   0.594688    0 .5521 

 

Here the p-value of the 't' test corresponding to the 'f' parameter being higher than 0.05, the 'f' 

parameter would has been considered as no different from 0. The hypothesis of a hormesis effect 

would has been rejected. Thus in case of overdispersion, the conclusion would be contrary to that one 

obtained in absence of this phenomenon. This opposition is explained, by part, by the increase of the 

standard error of the 'f' parameter during the overdispersion correction, which leads a 't' test more 

difficulty significant. Another reason which can be evoked is the less robustness of the 't' test with 

regard to the 'likelihood ratio' test.  
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WormsHU dataset 

dose number total 

0 2 5 

0 2 5 

0 1 4 

0 3 8 

0 4 8 

0.0475 3 10 

0.0475 2 8 

0.0475 1 5 

0.0475 2 9 

0.0475 3 8 

0.095 1 9 

0.095 1 7 

0.095 1 5 

0.095 2 11 

0.095 1 8 

0.19 7 11 

0.19 5 9 

0.19 6 8 

0.19 5 8 

0.19 2 4 

0.38 7 9 

0.38 4 4 

0.38 5 11 

0.38 7 11 

0.38 11 15 

0.76 11 11 

0.76 5 6 

0.76 7 8 

0.76 9 9 

0.76 8 8 

1.53 6 6 

1.53 9 10 

1.53 10 10 

1.53 10 10 

1.53 8 8 

3.05 5 5 

3.05 9 9 

3.05 7 7 

3.05 8 8 

3.05 7 8 

6.11 3 3 

6.11 7 7 

6.11 11 11 

6.11 10 10 

6.11 6 7 
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8.5 Specific Specific Specific Specific GlossaryGlossaryGlossaryGlossary 
Definitions are all adapted from (OECD, 2003). Terms are listed by alphabetic order. 

����Confidence interval 

A x % confidence interval for a parameter is an interval of values that theoretically covers the true 
value of the estimated parameter with x % of confidence. Note that the confidence level reflects the 
proportion of cases that the confidence interval would contain the true parameter value in a long series 
of repeated random samples under identical conditions. 

����Continuous data 

Data are continuous when they can theoretically take any value in an open interval 

����ECp , EDp, EDRp 

In ecotoxicology, the term ECp is defined as the concentration associated with an effect p where p is 
defined as the percent change in the (average) level of the endpoint 

considered %1
)0(

)(
100% %









−=

y

ECy
p p

. The same definition can apply for the Dose (EDp%) or the 

dose rate (EDRp). These parameters are estimated by modelling (concentration-effects, dose-effects or 
dose rate-effect modelling). 

����Effect 

An effect is the change in an endpoint under consideration when it is compared to a control. 

����Endpoint  

In toxicity testing and evaluation it is the biological response that is measured. Endpoints vary with the 
level of biological organization being examined and include response at the subcellular level to the 
community level such as biomarkers (subcellular level), survival, growth, reproduction (individual 
level), primary production, and changes in structure (and abundance) and function in a community 
(population or community level). Endpoints are used in toxicity tests as criteria for effects.  

����Experimental Unit/replicate 

The experimental unit is the smallest unit of experimental material to which a treatment can be 
allocated independently of all other units. By definition, experimental units (e.g. aquariums, beakers, 
or plant pots) must be able to receive different treatments. Each experimental unit may contain 
multiple sampling units (e.g. fish, daphnia or plants) on which measurements are taken. Within each 
experimental unit, sampling units may not be independent. However, in some special case situations, 
individual organisms (housed in common units) can be treated as the experimental units: these special 
cases require some proof or strong argument of independence of organisms 

����Exposure concentration, dose or dose rate 

The exposure concentration, dose or dose rate is the “amount” that an organism is exposed to. For a 
chemical element radioactive or stable, it can be expressed as a concentration (quantity of the 
substance per volume or mass of the exposure source, in mol or g or Bq per L or per g). For a 
radionuclide, the dose is the total quantity of ionising radiation absorbed by the organism (in Gy); the 
absorbed dose rate refers to the quantity of ionising radiation released over a specified unit of time 
(e.g. µGy/h). 

����Hormetic /non-hormetic 

Hormetic- or dose(rate)-effect relationship exhibits a biphasic shape with a stimulatory effect at the 
low dose levels, and then an inhibitory effect at the high dose levels; Hormetic etic dose-response 
curves can have two shapes :"inverted U" and "U" shapes. 



[[[[STAR]]]] 
(D-N°:5.1) – Experimental plan  
Dissemination level: PU   
Date of issue of this report: 31/10/2011 

126 

 

����LOEC (or LOED or LOEDR) and NOEC (or NOED or NOEDR)  

The Lowest Observed Effect-Concentration is the lowest Concentration out of the tested 
Concentration at which a statistically significant difference from the control group is observed. 

The No Observed Effect -Concentration is the tested concentration just below the LOEC. They are 
obtained by hypothesis testing. 

The same definitions apply for Dose and Dose Rate (in place of Concentration). 

����Monotonous /non-monotonous 

A monotonic concentration- or dose(rate)-effect relationship exhibits an increase or a decrease over 
the range of concentrations or dose(rate)s in the study. In a non-monotonic relationship, the variation 
in effects are not consistent across the concentrations or dose(rate)s. 

����Power 

Power is the probability of rejecting the null hypothesis in favour of the alternative hypothesis, given 
that the alternative hypothesis is the true. Power of a test varies with sample size, variance of the 
measured response, the size of an effect that it is of interest to detect, and the choice of statistical test. 
Power to detect differences can be increased by increasing the sample size and/or reducing variation in 
the measured responses. 

����Quantal data 

These data can exhibit two states: eg an individual shows an effect or not. Typically, these data are 
presented as the number of individuals showing the property out of a total number in the experimental 
unit. 

����Response 

A response corresponds to an observed value of any endpoint. This term has been avoided as far as 
possible to avoid confusion. 

����Statistical significance 

In hypothesis testing, a result is statistically significant at the chosen level α if the test statistic falls in 
the rejection region. The finding of statistical significance implies that the observed deviation from 
what was expected under the null hypothesis is unlikely to be attributable to chance variation. In 
general, the α-level will be 0.05 unless otherwise stated. 

����Type I and Type II errors 

Type I errors (false positives) occur when the null hypothesis is the true but the hypothesis test results 
in a rejection of the null hypothesis in favour of the alternative hypothesis. The probability of making 
a Type I error is often referred to as α and is usually specified by the data analyst – often at 0.05, or 5 
%. Type II errors (false negatives) occur when the alternative hypothesis is true but the test fails to 
reject the null hypothesis (i.e. there is insufficient evidence to support the alternative hypothesis). The 
probability of making a Type II error is often referred to as β (1 – power). 

 
����OMICS 
Refers to the study of biological systems, and includes genomics (DNA), transcriptomics (mRNA 
transcripts), proteomics (proteins) and metabolomics (products of biological reactions). 
 
����DEB and DEBTox 
The Dynamic Energy Budget (DEB) theory describes how individuals acquire and use energy based 
on simple rules for metabolism. Organisms are represented as dynamic systems with mass and energy 
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balance.  The DEBTox version, based on the DEB theory, is a biology-based model describing how 
toxicants accumulate over time in exposed organisms and alter energy acquisition and allocation to 
growth and reproduction. The approach analyses jointly effects induced on several endpoints (survival, 
growth and reproduction) by one or several toxicants and delivers estimates of No Observed Effect 
Concentration and insights on the physiological/metabolic mode of action. 


