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Executive Summary

This report describes in details the basic con¢cegtsds and data treatment for the approaches e wi
implement under WP-5 dedicated to “ecologicallyeveint low doses effects to non-human species”.
It gives the preliminary list of the potential sefsselected species and endpoints, and the meitdd
tools for establishment of dose (rate) - responsdationships for life traits and for DEBTox
parameterisation. A preliminary state-of-the-artaiso established to explain the reasoning we are
proposing for understanding mechanisms underlyinpoular mode of action of radiation exposures,
together with a brief review of the various omiol®available for gaining insights into modes of
actions. Common guidance for scaling any of oueexpents is illustrated through the presentation of
the pilot study we decided in order to test oufitghio share experiments among partners (hyposhesi
- choice of species & endpoint — experimental desigcaling the range and space of dose rates - dat
treatments).

Within this global framework of WP-5, our experint@ginwork will be done on the basis of a limited
set of experiments designed to test umbrella hygsath as follows:

1. Chronic irradiation by internal alpha- or ext@rn gamma emitter leads to

physiological/metabolic changes at the individeakl caused by:
(i) increase in maintenance costs,

(ii) decrease in assimilation,

(i) increase in energetic costs for somatic gtowt
(iv) increase in energetic costs for reproduction,
(v) direct hazard to embryos.

This umbrella hypothesis will drive Task 5.3 desiote DEBTox and its consequences at the

population level.

2. Differences in radiosensitivity between speciescareelated with (sub)cellular properties and
processes(g.,DNA quantity, repair mechanisms).

3. Due to actions at different sites (microdosimetryhe Relative Biological
Effectiveness (RBEs) derived for alpha emitters Haman cancer risks will not be
applicable for ecologically relevant endpoints

These umbrella hypotheses will drive Task 5.2 @elvtd the understanding of mechanisms of

radiation effects at the individual level.

The next step viewed as “go-no go” actions willetgface in our next meeting in January

2012 where we will discuss:

(1) the main conclusions from our sensitivity analysiscoming from the theoretical

approach where we combined radiosensitivity infdromafrom FREDERICA and
Leslie matrices for a wide range of species (task Bhis discussion will help to
decide whether we need to implement experimentsdgrto obtain more robust
conclusions about the propagation of effects oleskat the individual level to the
population level,

(i) the results and lessons learnt from the pilot sttidg discussion will help to

refine the experimental design if needed, to catelon the feasibility of DEBTox
development (task 5.3);

(i) the hypotheses we would test to progress in therstehding of the mechanistic

modes of actions at the (sub)cellular level (tagy.5
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1 Introduction and general objectives

The main objective of this document is to presdér® tommon approach decided among STAR
partners to ensure the consistency of used pratotml performing experiments in different
laboratories, and as a consequence to ensure thecdidected among STAR WP-4 and WP-5 is
comparable. Our willingness is to demonstrate titegration efficiency through the adoption of
common protocols and methods for data generatia@h iaterpretation. Rationale for selection of
hypotheses, exposure conditions, biological modgldpoints, along with principles for experimental
design and description of models, tools and stedi$br data interpretation are successively presken
within this report.

WP-4 and WP-5 have selected the following resemsiles to be investigated on selected species for
each of two radiation types (exteryaind internabtr) and co-contaminants to be defined within WP-4.
For WP-5, we have decided to have three experirheata, one per task, all of them being strongly
related. The three tasks are reminded in Tablesd with their starting period as written in STAR
proposal.

Table 1: Brief description of the main lines oé texperiments associated to each task for WP5

WP-Task Objective of the experimental part Start of
experiments

WP-5 Task 1 On the basis of the theoretical pafitask 5.1, quantify dose-effect From January
relationships on individual life history traits fepecies according to (i) | 2012

the major data gaps highlighted by the theorepieat of this task and/or
(ii) the most influencing extrapolation assumptised during the
theoretical part that could be tested in ordeethuce uncertainty

WP-5 Task 2 From a state-of-the-art review on tledegular, cellular and individual | From May
parameters influencing radiosensitivity, designexkpents using a 2012
combination of conventional biomarker and omic $aol test hypothesig
about the mode of action of radiological exposures

WP-5 Task 3 DEBTox implementation on two modelse(pfant, one animal) and From January
combination with population modelling 2013

Experimental design will have to be appropriate fbe models & tools we decided to use
preferentially to address our research lines:

- a traditional toxicologically based approach to bud dose(rates)-effects relationships for
individual life history traits within a species. This knowledge is then used for predicting poparat
consequences on the basis of individual adversmmats (theoretical work (potentially completed by
experiments under laboratory conditions) done unbesk 5.1 by combining Dose (rate)-effect
relationship and Leslie Matrices);

- a physiologically based approach completed by iat-relational links between life history traits
with “Dynamic Energy Budget” concepts Ecological risk assessment has been marked bgdast
decade by an increasing interest in biology-basedets, such as DEBtox (Dynamic Energy Budget
applied to toxicity data) models, based on the D#EBory. This theory provides a conceptual
framework which specifies how energy is taken fimmod and allocated to growth and reproduction.
For the selected species, the DEBtox concept willded to test whether chronic exposure to differen
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stressors (alpha, gamma and a simple mixture)imitilve contrasted metabolic mode of actions that
drive the consequences in terms of individual e
- a mechanistically-based approachto gain knowledge of parameters governing radiaseits
between and within species. For the selected spectieonically exposed to alpha or gamma
irradiation, and to a simple mixture of radiatiordaa chemical, “omic” tools will be used with thena
of advancing the mechanistic understanding of temhiaimpact at the molecular level, including
differences between the relative biological effestiess (RBE) of alpha and gamma exposures.
- an approach for integration of all the knowledge aquired. This will be done at the very end of
the project to synthesise all lessons learnt (FagkWe expect new knowledge to provide insights
into:
» understanding of how radiosensitivity at the molacand individual levels mechanistically
link to impacts on individuals and populations, and
« understanding how dose characteristiegy.( radiation type, targeted organs) influence the
biological efficiency of radiological damage, byeidifying the metabolic pathways that
produce individual history trait disturbances;
< the ability to deal with extrapolation between spec

Within this global framework, our experimental woskll be done on the basis of a limited set of
biological models, endpoints and approaches whihices will be justified in due time during the
course of the project. The umbrella hypothese®ttested will be:
1. Chronic irradiation by internal alpha- or extergalmma emitter leads to physiological/metabolic
changes at the individual level caused by:

(i) increase in maintenance costs,

(ii) decrease in assimilation,

(i) increase in energetic costs for somatic gtowt

(iv) increase in energetic costs for reproduction,

(v) direct hazard to embryos.
This umbrella hypothesis will drive Task 5.3 dewbt® DEBTox and its consequences at the
population level.
2. Differences in radiosensitivity between species eorrelated with (sub)cellular properties and
processe¢e.g.,DNA quantity, repair mechanisms).
3. Due to actions at different sites (microdosimettie Relative Biological Effectiveness (RBES)
derived for alpha emitters for human cancer risli$ not be applicable for ecologically relevant
endpoints.
These umbrella hypotheses will drive Task 5.2 dedaip the understanding of mechanisms of
radiation effects at the individual level.

This report firstly describes the basic concepggds and data treatment for the approaches we will
implement. It gives the preliminary list of the enotial sets of selected biological species and
endpoints (chapter 2), then develops the method tants for establishment of dose-responses
relationships for life traits (chapter 3) and foOEBTox parameterisation (chapter 4). Then chapter 5
establishes the main lines of the state of thet@réxplain the reasoning we are proposing for
understanding mechanisms underlying molecular noddetion of radiation exposures, together with
a brief review of the various omic tools availalide gaining insights into modes of actions. Before
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conclusion (chapter 7), common guidance for scadimg of our experiments is illustrated in chapter 6
through the presentation of the pilot study we diediin order to test our ability to share experiteen
among partners (hypothesis - choice of specieeadgoint — experimental design — scaling the range
and space of dose rates - data treatments).

2 Sets of selection

2.1 List of candidate species

Multiple criteria need to be considered for setmttof appropriate experimental organisms. These
were discussed at a workshop in May 2011 (WP-4/skstmp in Mol — see Minutes), and the
following groups of criteria were drawn up. Theserg then used as a basis for assessing the
suitability of various candidate organisms (sumswdiin Table 2). The order or the list does not
reflect the criteria’s importance.

Availability of biomarkers / molecular tools (column 2 Tab.2):
Availability of range of biomarkers — and lab esipace
Availability of genetically modified organisms (GMPfor advanced mechanistic studies
Availability of genome maps and microarrays
Ecological relevancgcolumn 3 Tab.2):
Diversity of species, reproduction mechanisms (akxalonal, hermaphrodite, etc), life
history stages, radiosensitivity
Functional role or position in the food web
Possibility of field study sampling
(Economic relevance — food for humans — importark to WP3 — but on an ecosystems
approach all organisms have indirect relevance)
Assessment relevancgolumn 3 Tab.2):
Representativeness as a test speeigs, $tandardized bioassays for chemicals) or as despec
used to test human effectsd., C. elegans, D. reno
Reference Animal or Plant for radiation (RAP)
Population dynamics(column 4 Tab.2):
Ease of performing experimental studies of repctida endpoints
Reproduction mechanisms (sexual, clonal, hermayjitieragtc), life history stages
Availability of multi-generation studies or models
Other contaminant / multiple stressor data(column 5 Tab.2):
Ease of getting the toxicant (or alpha emittet)) the organism
Availability of data on toxicant effects
Likelihood of exposure to multiple stressors (irthg alpha/beta/gamma mixtures) at sites of
interest
Bioaccumulation or biomagnification
Possibility of biokinetic studies (organ sampling)
Availability of Biotic Ligand Models (BLM)
Knowledge status(column 6 Tab.2):
Availability of data — necessary for complex mdicg|
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Lack of data — new data would advance the field praVide data needed for benchmark
derivation (SSD)
Dynamic Energy Budget (DEB)(column 7 Tab.2):
Availability of models
Possibility of generating relevant data in theoltaory
Specific Experimental Considerationgcolumn 8 Tab.2):
Ease of maintenance / husbandry
Issues of waste generation
Ease of performing chronic/multigeneration experitae
Cost
Ability of STAR Partners to perform experimentstbe organisms
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Table 2: Candidate organisms for experimental saudytheir suitability according to the criteria

1. Organism 2. Biomarkers/ 3. Ecological /assessmen{ 4. Population 5. Other 6. Knowledge status 7. DEB 8. Experimental
toolbox relevance dynamics contaminants/multiple considerations
stressor
Phytoplankton -All (for some - First trophic level, base | -Many species have -Relatively easy -Nearly no radiation effect| -No but very helpful to -Easy to keep, short
Marine or species), of most aquatic food simple asexual -BLM data rapidly conceive a DEB for generation time.
freshwater -Genome sequenced webs. reproduction (cell -Lots of ecotox data available. single celled organism -SU, IRSN
species for Anabaenand - High species diversity | division), -Likely to be found in multi- model
Thalassiosira with range of life -Multigenerational contaminant sitese(g.lakes)
histories, habitats studies easy.
- Very short generation
time.
- Standard ecotox species
exist.
Plants -All up to - Ecological relevance - Reproduction and -Relatively easy -Gaps for SSD -Feasible starting from -SCK (both)
Lemna microarray variable Arabidopsisis a | multi-generation -Many data available for (But lots of acute data — | scratch. But will be novel | -UMB & IRSN
Arabidopsis -GMOsArabidopsis | weed). Higher foLemna | experiments Lemnanot for Arabidopsis and some field data) in the end. Need ca. 12 (Arabidopsi$
-Genome map thenArabidopsisLemna -Likely to be found in multi- | - Large variation in months for DEB
ForLemna genome | is a common freshwater contaminant sites(g.,ponds | radiosensitivity conception and calibration
sequence was going macrophyte and crucial in (Lemn3, soils @Arabidopsi3) | - “Hormesis” and and 12 months for the
to be released the food chain. adaptation DEBtox version
december 2009 but | - Lemnaalso has
is not yet available | economic value (grown ag
source for protein rich
feed)
- overall plants have high
ecological relevance
(biomass)
- both are model test
organisms
Nematod - All up to - Soil microorganisms -Easy multi- -Relatively easy - Widely used in human -Available soon at IRSN -Easy
C. elegans microarray - Different reproduction | generational model -Lots of metal (and other radiation biology — but for Automated “worm counters”
- GMOs (lots and strategies chemical) data. other effects and available
cheap) - Large and ecologically -Likely to be found in multi- | endpoints.
- Genome map diverse and important contaminant sites(g, -IRSN, UMB
phyla soils/sediments)
- Representative ecotox
(and human tox) organism
Crustacean -All up to - Different reproduction | -Multigenerational -Relatively easy. -Effects data available for | -Available and operational| -Easy
D. magna microarray strategies model -Likely to be found in multi- | asexual reproduction —

- Representative aquatic
ecotox organism

-Multi cohort models

contaminant sites(g.,
ponds)

sexual repro under study &
IRSN

(=3

-IRSN, UMB (partners - no
own research)
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Bivalve
Blue mussel (etc)

-As for zebrafish
(but no microarray)

- Filter feeder,

- Structure forming

- Major food source
(humans and wildlife)

- Wide distribution
(marine and freshwater)
- Long life cycle

- Standard chemical tox
representative organism

-Multigenerational
-Early spawning
-Longish lifespan
-Broadcast spawning of
larvae

-Extensive biomonitoring
data)

-Biokinetics and organ
distribution possible.
-Kinetic uptake curves easy.
-Likely to be found in multi-
contaminant sitese(g.coastal
areas, lakes)

-Not a standard organism,
so compared to fish less
data for radiation effects.
-Uptake and speciation
studies

-Operational

-Easier than fish — lower
maintenance, ethical
constraints, size etc..

-SU

Annelid
Terrestrial

E. fetida(lab)

L. rubellus(field)

-All up to
microarray

-Some GMOs
-Genome map close|

- Decomposer, important
food web component

- RAP

- Standard procedures

-Reproduction and
multi-generation
experiments

- some polyploid

-Lots of data on metals
-Biokinetics possible
-BLM.

-Likely to be found in multi-

-Soil RAP representative
of the “decomposers” — -
Large gaps in general for
invertebrates

-“DEBIish” model available
for L. rubellus(Klok and
de Roos)

-Low maintenance, chronic
exposures easy (internal an
external)

-Metal speciation in soils,

Aquatic from chemical tox species contaminant sitee(g.,soils) | -Variation in soil disposal, cocoon
Polychaeta Different reproductive radiosensitivity between counting time consuming;
strategies can be studiey species (and within whole -UMB ; IRSN
invertebrate group)

Insect - Long and complex life No -Large research group base
Bee cycle at UMB (but not STAR

- RAP participants)
Fish All up to microarray | -Ecological and economig Reproduction -Data on metals -Lots of acute data; less | -Soon operational at IRSN| -Standard procedures from
Zebrafish GMOs (zebrafish relevance (salmon — experiments -Some data on radiation+ chronic (zebrafish) chem. (zebrafish)
Medaka and medaka) human food source) (zebrafish) metal (antagonism) -Lots of data on chemicals -Easy husbandry
Salmon Genome map -RAP Biokinetics/organ doses (mixture studies) -UMB, IRSN

(zebrafish - Standard procedures Sensitive life history; -BLM

from chem. (zebrafish) fertilisation experiments| -PBPK model soon available

-Bio-magnification (e.g. | (salmon) Likely to be found in multi-

Po) contaminant sitese(g.lakes)

- Representative eco-& | Models available from

human tox model fisheries and other

(vertebrates) stressor assessments
Bird - Long life cycle -Hard to implement in lab -Not a standard organism -No -Field investigations NRPA
Chicken/ duck - RAP so compared to fish less
model organisms data for radiation effects.
available
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2.2 Radioactive stressors and exposure guidelines

Experimental design will have to be appropriate tfur two research lines described abdwe,to
build dose(rate)-effects relationships for indivatllife history traits within a species, and to aicg
the data needed for the parameterization of phygichlly-based model, such as DEBtox. Both
research lines will deal with chronic exposure d¢tois, involving designs allowing continuous
exposure of organisms during a significant lendttheir life cycle, or at least crucial stages.

A first specific point that will drive the choicd tadioactive stressors and exposure conditiorlkes
need for building dose(rates)-effects relationshipshe chosen endpoints (see chapter 3). Thengeco
point is the selection of the route and durationthef exposure. In order to test the first umbrella
hypothesis described above, chronic irradiatiorirttgrnal alpha and external gamma emitters will
need to be implemented to assess physiologicalimitachanges at the individual level and to
identify the DEBtox modes of action.

A generic screening value of 1Gy/h (incremental dose rate) was recently deriaed, proposed as
the screening benchmark for ecological risk assessniror this work, the primary source of effects
data from radiation on non-human species was tHeDEHRICA database (www.frederica-online.org,
Copplestonest al, 2008), which is the most comprehensive compitatf raw biological effects data
from the scientific literature. A meta-analysisthis database was first processed by Garnier-Laplac
et al (2006), enlarged during the PROTECT progratp{/www.ceh.ac.uk/protect/yesulting in a large
and consistent set of chronic critical radiotoxioialues (EDR,, dose rate giving a 10% change in
observed effect). However, this work has pointetl that there are still large knowledge gaps for
radiation effects on non-human biota, mainly linkedour poor understanding of (1) chronic, low-
level exposure experiments linked to ecologicadlievant endpoints, and (2) the way effects of
external gamma irradiations can be extrapolatédtéonal irradiations with high-LET particles.

This is why the acquisition of chronic effect datader continuous irradiation nearby the [i®y/h
benchmark value.€. from background level of <1 pGy/h up to 100 mGy#fhe main line that will
drive the choice of exposure conditions during STAR

External gamma irradiation requires a specificdiation facility under controlled conditions (with
gamma sourcee.g., Co-60 or Cs-137 source). Dose(rates) are chosen affirst step of dose
calculation €.g., MCNP) for the identification of the exact locatioh any experimental unit in the
irradiation chamber to obtain the same dose-rée ¢hosen dose-rate is an exponential-decreasing
function of the distance to the irradiation sourcB)en, a pre-calibration of external dose rates is
needed, using adequate dosimeter calibration t@otg, ionisation chambers, thermoluminescence
detectors ...). A specific point in regard to the ichaf a series of external dose(rates) is the need
avoid as much as possible the intra-experiment@ wariation of dose(rates), which is highly
dependent on the geometry of the experimental uB (Norway), SCK (Belgium) and IRSN
(France) are equipped with adequate tools to sp#u#f external irradiation designs frara. 0.04 to

40 mGy/h.

Criteria for the choice of alpha radionuclide anecimn more critical. The main criteria that will letigb
choice of internal alpha emitter are:
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- Concentration factor of the selected species flmreposure medium is favourable
to rapid accumulation / low depuration;

- The target cell/organ/tissue(s) is(are) relatethéostudied endpoine(g., digestive
system for assimilation endpoints ; gonads foradpctive endpoints ; cell DNA for
genotoxicity...), or is homogeneously distributed,;

- The exposure route is manageable and reproduddsleirect route (high solubility
and bioavailability, low adsorption...) and/or trophioute (feasibility of food
contamination, high bioconcentration factor...);

- The needed activity to manipulate is consistent watioprotection constraints;
- The budget for source providing and waste treatnsemdt prohibitive;

- The chemical form of the source is compatible wattposure conditionse(g.,
element in highly acidic media ; presence of cesrigurity level);

- The analytical methods allow a precise charactinisaof exposure media and
internal activities (if possiblan vivg) and if possible without complex radiochemical
separation;

- A short period alpha emitter is favoured;

- The toxicity is due mainly to alpha radiation anot mther emissions from the
radionuclide and/or its daughters;

- The chemical toxicity of the radionuclide and/ardaughters is negligible.

Combining all of those criteria, the choice of aitiem (Am-241) as one of the preferred candidate
for alpha internal irradiations is viewed as a goothpromise.

The thermodynamic database on the speciation ofienma(lll) is quite well referenced and allows
to calculate the chemical speciation and solubiitythe radioelement in water (Biat al., 2005)
although experimental evidence would always be egedhis radioelement gives also a realism to
actual chronic contaminations: trace concentratiohsAm-241 are found worldwide in aquatic
ecosystems (IBto 10° Bg/L) as a consequence of former atmospheric ausleapon testing and
accidental releases from nuclear reactors inclu@hgrnobyl fallouts, with regional higher levels of
107° to 102 Bg/L in freshwaters (Matsunaga al, 1998; Choppin, 2006). Contaminated soils {16

10 Bag/kg on average, peaking locally up to 10 td BG/kg) are a potential source of Am-241 for
surface water and groundwater (Pourcelbtal, 2003; Agapkinaet al, 1995), while the highest
concentrations are found in the sediments of cental shelves (up to 105 Bq Ky Furthermore, in
the future Am-241 will become one of the dominapiiyiants in the Chernobyl affected areas due to
ingrowth from Pu-241 (Muravitsket al, 2005). Therefore, knowledge on biological effeofs
chronic exposure to alpha-emitting radionuclidesrgently needed both for post-accidental situgtion
and for the long-term management of radioactivdeanavaste disposals.

Experimentally, the precise quantification of im&r alpha irradiation of organisms will need to
guantify the bioaccumulation of Am-241 in relatimnconcentration and the corresponding calculation
of internal alpha dose rates. Several steps witidexled:

[STAR] 12
(D-N°:5.1) —Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



- Am-241 concentrations measurement in the mediund, ianthe organisms at
different time (a full biokinetic study would beedlly performed) and life stages.
After a proper mineralization, Am-241 activities samples can be precisely
determined alpha liquid scintillation counting wgia low background spectrometer
(e.g.,Quantulus 1220,Wallac Oy, Turku, Finland, the dia limit isca. 0.03 Bq);

- Dose conversion coefficients (DCC, expressed in MGyBg/ml) needs to be
calculated by an adequate methedg(, based on Monte Carlo calculations with
MCNP software). This calculation takes into accoalpha particles (5.5 MeV) and
beta(-) particles (from 4.6 keV to 1.0 MeV) emitted Am-241 that propagate over
distances from 2 to 400 um in the medium and inctir@aminated tissues. By this
way, Am-241 activities (Bg/ml) measured in each pantment (medium, tissues of
the organism...) can be converted to dose ratesadetivio daphnids (mGy/h) using
a simple calculation. Estimation of DCC needs ketmto account the changing
body shape and volume in growing organisms. Gelgenabdlumes are calculated
assuming that animals are ellipsoids growing

Such an experimental design for the study of Am-2#fécts was already implemented Brmagna
for the study of the effects of chronic internaple irradiation on physiology, growth and
reproductive success endpoints (Aloretcal, 2006; 2008). As an illustration, Am-241 was used
this study from 0.4 to 40 Bg/ml in the medium, wélbioaccumulation from 0.4 to 28 Bg/daphnid,
and subsequent average calculated dose rates f@nt® 1 mGy/h (>99% attributable to internal
alpha radiation from Am-241 bioaccumulation in diss).

3 Basic concepts and methods for establishing dosesponse
relationship for chronic exposure situations to aigsgle stressor

3.1 Test design

3.1.1 Selecting doses

Concerning the number of doses, OECD (2006) adtisesse of at least four different doses (control
included). In addition, for monotonic dose-responstationships, Environment Canada (2005)
recommends that observations encompass the theeeplof the relationship (first phase with low
effect, second phase with an increasing effect,thind phase with an asymptotic effect). Obviously,
these recommendations are mainly theoretical. bheroto obtain a good fit for the regression,
experimental data points have to be well distridua# along the dose(rate)-response curve. A pilot
study can be done previously to help.

For hormetic relationships, there is no specifivisel but the same pattern could be used,
observations spanning each of the three phasas$ ¢fimulatory phase at low doses, second phase
with an high increasing (or decreasing) effectdiphase with an asymptotic effect at high doses).

Environment Canada (2005) advises to use a geantetriogarithm) series of concentrations (or dose
(rate) for radionuclides), but here is no statétieason behind this recommendation. Some specific
tests €.g., OECD guidelines fo,emna minoror for Daphnids) suggest first to do a range figdi
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experiment in dilutions of 10 in order to find dime rough shape of the dose response curve and
subsequently to do two-fold diluted experiment witthe correct range.

3.1.2 Number of replicates
Here, the terminology given by Environment Can&005) is used:

"A replicate (as a noun) is a single test chamlmtaining a prescribed number of organisms (=
sampling unity either on one concentration ffeatmen} of test material, or in a control. In a toxicity
test with five test concentrations and a contrsing three replicates, 18 test chambers would bd,us
i.e. three chambers for each treatment. A replicate imaigin independent test unit, and therefore the
test material in a chamber must no have a conmetdithe test material in another chamber.”

From a theoretical point of view, there is no neédeplicates in order to estimate an ECp or EDp%
and its confidence interval. In other words, regths are not necessary to obtain an estimatiohneof t
curve's parameters or their standard errors. Th®y @epresent a security in case of accidental
damage. However, it is clear that replicates imerthe estimation of the parameters values and their
standard error. Moreover, estimation of the rediduen of square used to assess the fit of a madel i
only possible if replicates are present. It is dhiat only two replicates are needed to estimate th
residual sum of squares, but Environment Canad@5§2fecommends at least three replicates per
treatment if afterwards want to apply a regreséioto the data. It is also advised that it is preble

to increase the number of concentration or dosgatther than replicates. It means that in dialer
have a good estimation of the regression paranieierbetter to have more tested doses all lorg th
curve than 3 doses with a lot of replicates.

3.1.3 Randomization and blind
When toxicity experiment data are analyzed and thedidby regression analysis, procedures of
randomization are needed in order to avoid congidims in the ECp or EDp% estimate (Dawvits
al., 1998).

According to Environment Canada (2005), procedafegandomization should include:
- randomization of containers used for the diffeignotups (control and treatment) ;
- randomization of containers' placement within th@ibator or room ;
- randomization of sub-sample (organisms) into theaioers.

These kinds of procedures require a random nuntéie and are well described in the annex E
Environment Canada (2005).

When possible, a completely randomised design dhbelused. That means that the experimental
units can be assigned at random to a treatmenpgeperiment is performed at one time in one
location or it can be measured that time and lonatiave negligible effects on the experimental
material. Ranges of formal experimental designvestt described in many statistical textbooks e.g.
(Box et al., 1978; Festing, 2003; Festing and Altman, 2002)any case, the experimenters will
describe the used experimental design and theiasswstatistical methods.

However, especially when implementing external gamimadiation experiments, randomization
could be a difficult stage to accomplish. Actualgince the dose or dose rate delivered to any
experimental unit depends on the location from ¢fa@nma source, all replicates within each
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dose(rate) treatment will need to be placed togdiiea particular distance from the source, oain
particular incubator). Any effect of dose will thbe difficult to separate from any potential effe€t
position. This can be controlled by measuringvaht parameters such as light and/or temperature in
order to be able to exclude this as a confoundiatpf.

Moreover, (eco)toxicity test should be "blind" &e$br the experimenter, meaning that the containers
must be identified by a code rather than by a tmss.

3.1.4 Controls
The aim of the control is to provide a baselinéhef observed effect. Thus, it has to be identzdhé
other treatments for all, except for the stresserg null dose).

3.2 Dose-response curve modelling with R software and 'drc' add-on
package

3.2.1 Introduction about R software and 'drc' add-on package

R is a language and environment for statistical agimg and graphics. It provides a wide variety of
statistical methods (linear and nonlinear modellintpssical statistical tests, time-series analysis
classification, clustering,...) and graphical tecluais, and is highly extensible. R is available as fr
Software and provides an Open Source route. Rifurecand datasets are stored in packages, which
are:

- base packages (part of the R source code, dowedoadh R);

- or add-on packages (have to be specifically dowaaléal).
R and packages can be down-loaded at : http:/fepaoiect.org/
For more information see the FAQs at:http://cramaject.org/
‘drc' (for Dose-Response Curve) is an R add-on packabis. library provides a wide range of
functionalities for dose-response relationships eflody and analysis. A lot of common models for
dose-response curves are integrated into the packagconvenient usei.€. log-logistic model,
Weibull model, Mikaelis-Menten model (seeg., Scholzeet al., 2001).These models are translated
into general equations with associated parameteis.easy to use sub-models of them (i.e. specific
equations for instance with one or more paramdtedf. Estimation of critical ecotoxicological
values {.e. EDp% or EDRp%) and their standard deviation alifated, as the use of hypothesis
tests.drc' package uses non linear regression to model @sp@nse relationship.
Procedures to download R and 'drc' are describsdation 8.1; and procedures to import data sets in
section 8.2.

3.2.2 Monotonic dose-response curve modelling: the logdastic models
Several models can be used in order to fit monotdase-response data. Nevertheless the log-logistic
one appears as the most convenient because of:

- its parameters have a biological meaning;
- it could be employed with continuous or quantahéy) data;

- its use is very spread in ecotoxicity area;
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- the mathematical models used irc' to fit hormetic dose-response data are all
modifications of the 4-parameters log-logistic mlode

In 'drc' the 4-parameters log-logistic model is descrily@ the following parameterization :

_ (d-¢) .
y=c+ Equation 1
[1+exp@(log(x) - log(e))]
Where:
- bis the slope at the inflexion point (EC50, or paeter 'e’)
- cisthe lower limit of the response (asymptote tjmi
- dis the upper limit of the response (asymptotet)imi
- eis the the dose reducing the response 50%(ED3@gbad andc, i.e. point of inflexion
- Xisthe dose
- yisthe biological response (i.e., root length).
- In'drc' this model is named LL.4.
d @q--mmmmmmmmm e o experimental points
—— 4 parameters log-
logistic model
q) aQ
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Figure 3.1: example of monotonic dose-responseeconwdelling with a 4 parameters log-logistic

model.

According the direction of the curve (increasingdecreasing) and the type of the observed response
(continues or quantal) several simplificationsted #parameters log-logistic model can be considered
Three sub models are availabledis"

[STAR] 16
(D-N°:5.1) —Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



- a model, named LL.3, which contains only 3 parametsince the lower limit
('c' parameter) = 0 ; its equation is:

y=0+ (d-0) Equation 2

1+ exglb(log(x) ~log(e))]
- a model, named LL.3U, which also contains only Bapeeters since the upper limit (‘d’
parameter) = 1. This model can only be used widmntal data; its equation is:

y=c+ d-c) Equation 3

1+ exgb(log(x) ~log(e))]
- a model, named LL.2, which also contains only 2ap@ters since the lower limit (c
parameter) = 0 and the upper limit (d parametet) ¥his model can only be used with
gquantal data ; its equation is:

@-0)
1+expb(log(x) - log(e))]

Examples of different monotonic dose-response icglships and their corresponding log-logistic
models are given in section 8.3 for both continutats and quantal data.

=0+ Equation 4

3.2.3 Hormetic dose-response curve modelling

Definition and type of curves
Hormesis effect is defined by a biphasic respongk & stimulatory effect at the low dose levels.
Hormetic dose-response curves can have two shapes :

- an 'inverted U' shape ; it's the case for exampleen the observed response is the length of plant
leaves (at the control level leaves have a celéagth, this one increases at the low dose levads a
then falls gradually when strong doses of substaaoe administered), (Fig.3.2A).

- a 'U' shape; it's the case for example, wherotiserved response is e.g., the mortality of a speci
(at the control level there is a certain mortaldtio, this one decreases at the low doses levktram
increases gradually when strong doses of substameesiministered) (Fig.3.2B).

!

Response Response

Dose —

Figure 3.2: Hormetic dose-response curves, invedteaped curve (A) and U shaped curve (B).
(from Calabreset al.,2002).
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Mathematical models used to describe hormesisteffec
Two types of mathematical models are integrated ldtc' to describe the hormesis effect. Both
models come from the log-logistic model, with whitley are nested.

The Brain-Cousens's model (Brain and Cousens, 1@88ains 5 parameters, its equation is:

N d-c+ fx
1+exppb(log(x) —log(e))]

y=c Equation 5

Where:
- b has no direct meaning, it reflects “the slopait(is not strickly the “slope”)
- cis the lower limit of the response (asymptotatlim
- dis the upper limit of the response (asymptotét)im
- e has no direct meaning

- f measures the rate of growth stimulation at datese to zero (f should be positive, and
hormetic effect increases with increasing value§ of

- Xxisthe dose
- yis the biological response (i.e., root length).

An example of a 5 parameters Brain-Cousens's $ihasvn in the following figure.

response

Figure 3.3: Example of a 5 parameters Brains-Causedel's fit.

This model is named BC.5 in 'drc'.

It is important to note that this model is usefulyoto model ‘inverted U' shaped dose-response
relationship.
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The other hormetic model available in 'drc' is @edergreen-Ritz-Streibig's model (Cedergreeal.,
2005). This model contains 5 parameters too, anddqtation is different according the shape of the
curve to be modelled.

For inverted U shaped curve, its equation is:

=c+ d-c+ fexpl/x’) Equation 6

1+exppb(log(x) - log(e))]

Six parameters are present in the equation. Nealegh, alpha parameter is, in reality, fixed adogyrd
3 values of choice. In 'drc', Cedergreen-Ritz-8tges models used to describe inverted U shaped
curves are named CRS.5a when alpha=1, CRS.5b vipies=8.5 and CRS.5c when alpha=0.25.

When the curve has a U shape, equation of th€dergreen-Ritz-Streibig's model is:
(d-c)+ f exp1/x7)
1+ expb(log(x) - log(e))]

y=(c+d)- Equation 7

In 'drc’ these models are called UCRS.5a when aphadJCRS.5b when alpha = 0.5, UCRS.5¢ when
alpha=0.025.

Whatever the shape of the curve, meanings of tliei@esen-Ritz-Streibig model's parameters and of
the variables are:

- b : has no direct meaning

. is the lower limit of the response (asymptatet)

. is the upper limit of the response (asymptiobé)

: has no direct meaning

- DO Qo O

- measure the hormesis effect (f should be pasitand hormetic effect increases with
increasing values of f)

- o reflecting the steepness of the hormesis peéatdfat 1 (a), 0.5 (b) or 0.25 (c) levels)
- Xxisthe dose
- yis the biological response (i.e., root length).

An example of a 5 parameters Cedergreen-Ritz-$greilodel's fit, when dose-response relationship
has an inverted U shape, is shown in figure 3.4.
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response

conc

Figure 3.4: Example of a 5 parameters CedergreemSRieibig model's fit, when the dose-response

relationship has an inverted U shape.

An example of a 5 parameters Cedergreen-Ritz-$greibdel's fit when dose-response relationship
has a U shape is shown in figure 3.5.

response

10 1
d <«--

08

0.0

Figure 3.5: Example of a 5 parameters CedergreemSRieibig model's fit, when the dose-response

relationship has a U shape.
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Mathematical sub-models used to describe hormésiste

When the dose-response relationship has an invértetlape, models of Cedergreen-Ritz-Streibig
with 4 parameters, specifying that the lower liofithe curve ('c' parameter) =0 are directly a\dda

in 'drc’; they are named CRS.4a, CRS.4b and CR$h&ir equation is:

(d-0)+ f expE1/x7)
1+exgb(log(x) - log(e))]

y=0+ Equation 8

It's the same with the Brain-Cousens' model, itsaéqn is:
(d-0+ fx)
1+ exglb(log(x) - log(e))]

y=0+ Equation 9

It could be noted that when the dose-responsdaetip has a U shape, models of Cedergreen-Ritz-
Streibig with 4 parameters, specifying that thedowmit of the curve ('c' parameter) =0, are also
directly available in 'drc'. They are named UCRSU@ERS.4b and UCRS.4c. Their equation is:

(d-0)+ f exp1/ x?)

Y= O exdbiog) - log@)]

Equation 10

Nevertheless, the use of such models seems qfrigguent in ecotoxicology.

On the other hand, when dose-response relatiorisédpa U shape, there is no sub model of
Cedergreen-Ritz Streibig's model directly availabte'drc' specifying that the upper limit ('d’
parameter) is fixed tol. This type of model coudduseful when observations are quantal data (cf.
Figure in annexe 8.4) Nevertheless, this type @dehcould be fitted using the “ucedergreen” gelnera
function.

Examples of different hormesis dose-response ogishiips and their corresponding Brain-Cousens
and Cedergreen-Ritz-Streibig models are given ireae 8.4.

Nested models
Since Brain-Cousens models and Cedergreen-Ritibtrenodels are modifications of the log-
logistic models, it can be established that:

- BC.5 and LL.4 models are nested since BC.5 mod#l ¥parameter =0. is a LL.4 model.
- CRS.5a, CRS.5b, CRS.5c and LL.4 models are ndstethe same previous reasons.

- UCRS.5a, UCRS.5b, UCRS.5c and LL.4 models are defiethe same previous reasons
(even if it's less obvious to demonstrate).

- BC.4 and LL.3 models are nested, since BC.4 mod# ‘v parameter = 0 is a LL.3
model.
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- CRS.4a, CRS.4b, CRS.4c and LL.3 models are ndstethe same previous reasons.
- BC.5 and BC.4 models are nested since BC.5 wigal@dmeter = 0 is a BC.4 model.

- CRS.5a, CRS5b, CRS5c and respectively CRS.4a, BRERS.4c are nested since the
first ones with 'c’ parameter=0 equal the secomson

Examples of different hormetic dose-response miahips and their corresponding models are given
in section 8.4 for both continuous data and quatdtd.

An example of a complete analysis and modelling biormetic' dose-response relationship with
guantal observations) absence and in presence of overdispersiois provided in section 8.4.5.

4 Specific data needs for physiologically based modielg using
DEBtox
4.1 Background and principles

The DEB theory provides a conceptual framework Wisipecifies how energy is taken from food and
allocated to growth and reproduction (Fig. 4.1).

Nutrition

Reserve

Somatic _ __-
maintenance

---, Maturity
maintenance

Growth Reproduction

Figure 4.1: Diagram of the individual-based enatyjgcation model. Note that with a plant model
photosynthesis needs to be taken into accounningg input

DEBtox models describe how toxicants accumulate tage in exposed organisms and alter one or
many parameters of the DEB by coupling toxicokiceetind effects models. The approach has many
advantages, as opposed to standard ecotoxicol@ppabaches involving classical exposure-response
relationships :

=» First, DEBtox approach gives the possibility to aalyse jointly the effects observed on various
endpoints (growth and reproduction and eventually srvival), as a result of exposure to one or
several toxicants.

Five different primary modes of action are proposethe standard DEBtox model to explain effects
on reproduction (Table 3). Those include direceef on reproduction such as increased energy cost

[STAR] 22
(D-N°:5.1) —Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



of egg production or increased egg mortality dudogenesis (referred below as “Reproduction” and
“Hazard” effects). Energy allocation being dependensize and energy reserve, reductions in both or
in any of these two parameters — due to reducedggn&ssimilation, increased energy cost of

maintenance, or increased cost of growth - candiecict effects on reproduction.

Table 3: Sets of DEBtox equations describing groesiad reproduction as a function of time and
toxicant concentratiorDaphnia case as an illustration.

pssimiaton | S =¥ - mr - (10-0(0) 0| R()= o [(1—0(@42 _ar —z?;,j
Growih | G (0| RO ' [fz(ggizgi - —f";,J
Maintenance ‘;f = Uf - 11+ 0(C)) R(0) = 1?“29’; (1+ c5(0){” 2(g(HZ(,rc)f)_lM) -3
Reproduction % =pf -0) R(() = Fj 5 {ffz g+f J(1+ o)™
Hazard % = f - 1) R(V) = 1R s (ffz(g by J e

Symbols:f nutrition functional response, energy investment ratid, scaled body length =
L/Lmax ¢p Scaled body length at puberfyy/on Bertalanffy growth rateR(£) and reproduction
rate as a function @f Ry maximum reproduction rate, einternal or exposure concentration.
a(c) Is the stress function expressing the intensityoafc effect depending on exposure

level.

=» Second, estimated toxicokinetic parameters do ndepend on exposure time.
1) Time is taken into account through simple one-camnpent kinetics models
In fact, stress functions which relate effect isignof a toxic compound to internal concentrattn
in the organism is given at tinhdoy:
dc k.C

dltnt - Eext_ Im( e d_|n€3)

k . Lo N
where Ciyt =k—acext with k, and k. the elimination rates (in tiff¥ and c.. the exposure
e

concentration.
2) Effects are linked to exposure through stress funsta(c) :

Classically, DEBtox hypotheses assume that organisme disturbed by the chemically toxic
compound when its internal concentration exceedbreshold concentration called the no effect

[STAR] 23
(D-N°:5.1) —Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



concentration (NEC)(Fig. 4.2). Therefore at toxicanncentrations below thHdEC no difference is
observed between exposed and control organismse @edNEC is exceeded, effects on one of the
DEB parameters (as assumed from the selected mfodetion) are proportional to the difference
between exposure concentration &HeC.

o(c)=0 if c<NEC
o(c)=bl{c- NEC) if c= NEC

Stress o(c)

a2

3P R

NEC

Figure 4.2: Stress functioa(c) (dimensionless) affecting energy budget of expaggdnisms, as a
linear function of internal or exposure concentnat.

3) Particular cases:
In some cases, toxicants might affect a superfisgdue such as the digestive epithelium (with
reduction in assimilation as a DEBtox mode of antiand start causing toxicity as soon as they are
ingested without further requirement to be intdesal. In such cases, effects might be induced
immediately upon exposure and toxic stress migtiebeorrelate to external concentration or interna

concentration ruled by a hid& value reflecting rapid kinetics. In practice, gteess functiom(c) is

either related tay,, the internal concentration ruled by the kineticgiaion orce, the exposure
concentration and both assumptions are evaluatédednasis of compared goodness of fits.
In the case of ionising radiation, one can hypadteethat toxic stress is related to external garoma
internal alpha dose rate, cumulated dose etc. ffeégssfunction might write:
a(x)=0 if x<NEX
{J(X) =b{x- NEX) if x= NEX
with NEXthe no-effect exposure level and whetbe exposure level is either:
- the dose rata@lr translated from external gamma or internal alpidiation using size-
dependent dose conversion coefficiel€C),
- the total received dose cumulated over time,
- an index D) of cumulated damage subjected to some repainogegs and ruled by a
kinetic equation:
db _ dr -k, [D
dt
wherek; is a repairing rate.
=» Third, insights on the physiological mode of actio (Table 3) can be provided when it is
possible to identify the DEB parameter which is aktred. Identifying the mode of action of toxic
contaminants is essential to develop biomarkerssyme potential additivity or independence of
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actions between several toxicants in mixture, tedjt effects on organisms and extrapolate
consequences for the population. When equatiorditpointing which DEBtox parameter is altered,
other methods may be used to evidence the alteredegs(es), including complementary
physiological measurements (carbon assimilatioBaphnia exposed to uranium in Massaenh al.,
2011), histological observations (alteration of guitl epithelium inDaphnia exposed to uranium in
Massarinet al., 2011), gene expressioiCdenorhabditiswith various chemicals in Swaiet al,
2010)...

=» Moreover, complicated exposure patterns can be aganted for, including unsuitable range of
testing conditions or time-varying concentrations.

4.2 Parameterisation (assumptions, tools)
Parameterisation technigues:
In some cases, DEBtox equations can be parametesisparately for physiological parameters
(namelyg the energy investment rati6, the scaled body length at pubertythe Von Bertalanffy
growth rate andRy the maximum reproduction rate which describe hoexposed organisms behave
physiologically), based on the “control” datasetl doxico-kinetics parameters (nameWeC the no-
effect concentrationb the slope of the stress function akdthe elimination rate of the kinetics
equation), based on “exposed” data once the plogigal parameters are estimated. In other cases,
physiological and toxicokinetics parameters carfitted conjointly considering the whole (control
and exposed altogether) dataset.
The parameterisation is performed using a maximielihood method or least squares criterion. In
agreement with Jageet al. (2004), growth and reproduction equations must dstimated
simultaneously to take account of the close rafatigp between both endpoints. This is commonly
achieved using a weighted sum of squaseq for each endpoini (i being either growth or
reproduction) calculated as:

B N 1 {isim(t)—i i (t)JZ
ssq = X | —| ——Fmw —

o)

t=1 "
sirr(t) the simulated value ofat timet, ij (t) one of the j replicate observationsi @t timet,

and a(i (t)) the variance between the obser\ieic(t) values andn; the number of observations bof

with i

when the different endpoints are not measuredahesiumber of times.
If the weighted sum of squarassq is greater for one endpointthan for the other, their relative
contribution to the global sum of squassg,, can be balanced using weighting fac&sqmax

ssq

SSQot =2 ——— —

i SSQ,max

with ssqmax the maximum value afsq estimated as:
N

t=1 "

wherei is the average value of all observations of
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Confidence intervals for the different parameteas be built using a bootstrap technique. To do so,
datasets were simulated by randomly sampling fraohe&oncentration and time the same number of
values (among the measured values) as the obsdatadet (with replacememtg., possibility to
select the same value several times). On each sdrdptasets, model was adjusted to determine the
parameters as described previously. This proceslaseperformed 10,000 times.

Experimental design:

Properly parameterisation of the NEC requires that value is included in the range of tested
exposure conditiong.g.that the lowest tested concentration lies bel@vNEC value (with no effect
observed on reproduction and growth at that conatomn). The tested range should include several
exposure concentrations above the NEC, one clogeetblEC (with only slight effects observed) and
others with significant effects, to maximise chanoé identifying NEC and b values. The parameter
ke is best explored with several measurements staoltly after exposure induction.
Recommendations:

1) In exposed organisms: reduced number of repkcper treatments (minimum = 3 for bootstrap
requirements) to increase number of time pointscamtentration conditions.

2) In control organisms: higher number of replisats per time points for example) for
parameterisation of “physiological” parameters.

4.3 Type of parameters to measure throughout the experiments for
DEBtox parameterisation
Parameterising DEBtox equations requires that cepoon and growth is monitored at
several exposure conditions (at least 4 differaposure concentrations plus a control) over
the life time of tested organisms. The choice ef ldboratory species is taking this necessity
into account €.9., species with relatively fast growth and short gatien timeandthat are
easy to maintain in the laboratorg.q., C. elegansr D. magna. If several organisms are
tested, these should be fratifferent trophic levels.
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Figure 4.2: Example of fitted DEBtox equations twéffect on assimilation- equations in first row of
table 3, as confirmed by assimilation measuremeamis histological damages observed on the
epithelial wall) to growth and reproduction andvéual equation forDaphnia magnaexposed to
different concentrations of depleted uranium (base@xperimental results by Massaginal. 2010).
Stress functions were correlated to exposure caratem. NEC value for uranium is between 0 and
10 pg.L*. With exposure concentrations ranging from 108d.7, the exact value was not identifiable
based on the dataset and observed increase i sffegrity across generations yielded differennes i
NEC which were not significant.

5 Approaches to understand mechanisms underlying thenode of
action of radiation exposures

Compared to many other environmental stressorsutigerlying mechanisms and modes of action
(MoA) of ionising radiation toxicity are rather walefined, even though the majority of work has

been driven by a focus on human effects, and eshecancer.

This section will provide a brief review of the t&taf the-art regarding our understanding of the
biological effects and mode of action of ionisiragiation specifically focussing on differences in

radiosensitivity between and within species, arg ¢bntribution that toxicogenomics can play in

gaining insight into modes of action. Based ortexditure search a preliminary overview on possible
biomarkers for chronic radiation or radiosensijivitas produced (Table 4). This table will be used a
a starting point to develop a common experimergpt@ach.

5.1 Cellular and biological features driving radiosensitivity

Radiosensitivity of organisms is influenced by anftwer of different factors, and is known to vary for
different endpoints€.g., reproduction versus mortality); life stage (emisrytarvae, and juveniles
stages are the most sensitive), individuals andispeMammals are generally considered to be among
the most radiosensitive species (at least basetdDgn with LDso30 beingca 6-10 Gy for small
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mammals and 1.5-2.5 Gy for larger animals and démigestock; UNSCEAR, 1996) whereas some
bacteria from théeincoccus-Thermugroup are extremely radioresistant and can sumvigee than

12 000 Gy (UNSCEAR, 1996; Daly, 2009). The exactmamisms/reasons for this huge variation in
radiosensitivity are not completely understood.

Some general parameters known to determine théisgn®f an organism to radiation are: the DNA
content {.e. mean chromosome volume) of the cell; the efficyeaed types of DNA repair/pathways;
the cell repopulation capacity; and the abilitytieSue and organs to regenerate (reviewed in téarris
and Anderson, 1996). It is also recognised thatr i combined exposure to other stressors can also
influence an organism’s radiosensitivity. Theseiésswill be further discussed in WP-4. Already in
1961 Sparrow and co-workers reviewed nuclear paem@etermining the sensitivity of plants to
radiation. They recognised that it correlated vétharger nucleus or chromosome, more acrocentric
chromosomes and with lower chromosome or endoploddso plants that mainly reproduced by
sexual reproduction or had longer intermitotic tis®wed higher sensitivity (Sparrow and Miksche,
1961).

5.1.1 Initial infliction of DNA damage
Generally, it appears that species with high DNAteat are more radiosensitive (Hall and Giaccia,
2006; Harrison and Anderson, 1996; UNSCEAR, 1998)s is because the linear density of DNA
double strand breaks inflicted per Mbp (0.004-0.&l)similar for different organisms following
irradiation, and therefore cells with small genomseffer fewer double strand breaks (DSBs) than
cells with large genomes (discussed by Daly, 20B@)easing ploidy to more than two, on the other
hand, would be expected to reduce radiosensitiowever, the sensitivity can vary substantially fo
the same chromosome volume, so other factors aieudby also important (UNSCEAR, 1996).
In different cell types the number of radiationticdd DNA lesions might vary to some extent
depending on the levels of low-molecular-mass sugees (reviewed in Okunie#t al, 2008), the
level of oxygen (anoxia, hypoxia) (Hall and Giacck006), and physical protection afforded by
different degree of packaging of DNA&.{., histonesversusproteamines etc). For example, the high
radioresistance of mature spermatozoa has beeibutdtt to the extremely condensed sperm
chromatin €.g.,Haineset al, 1998).

5.1.2 Checkpoint control mechanisms and DNA repair
The consequence of the induced DNA damage dependdether the lesions are repaired, and if the
mode of repair is error-free or error-prone. Fitlse damage has to be recognised, leading to & lrioc
cell cycle before the cells enters into S-phase-Ilfétk) or into mitosis (G2-block). These
checkpoints apparently give the cells additionaletifor DNA repair. The various types of DNA
damage are repaired by different repair pathwapg;wdiffer with respect to the speed and fidelity.
is clear that inherent radiosensitivity relateshe efficiency of checkpoint control mechanisms and
the repair capability of the cells (reviewed by UDESAR, 2000). The factors that influence the
efficiency and fidelity of DNA repair are fundamahin determining cell and organism sensitivity to
ionising radiation and this relates in particularSBs repair. This is because when both strands of
the DNA are damaged in the same location no teeagtand is available for repair. Homologous
recombination repair (HR) and non-homologous emiijgj (NHEJ) are the two pathways for DSB
repair, of which the former is more complex and sidered to be less error prone than the latter
(reviewed in UNSCEAR, 2000).
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The extreme radioresistance Bf radioduranshas been ascribed to a highly efficient homologous
recombination, although the underlying mechanismtlits is not understood (discussed by Daly,
2009). Interestingly these bacteria do not contagimer concentrations of DNA repair enzymes, but
have compared to more radiosensitive microorgantsigis [Mn]/[Fe] ratios. Daly (2009) proposed
that the accumulation of near millimolar concendrzs of Mrf* in the cells makes manganese
complexes that prevent the production of iron-deleen reactive oxygen species. This would prevent
protein oxidation during irradiation, with the réisthat sufficient repair enzymes survive radiation
damage and allow subsequent DNA repair.

5.1.3 Induction of cell death
Exposure to ionising radiation can lead to différies of cell deathi.é. necrosis, apoptosis and
mitotic death). Apoptosis (programmed cell deatin) be viewed as a complementary way of getting
rid of cells with DNA damage (UNSCEAR, 2000). Awladoses this is probably the most efficient
response since it removes damaged cells from tpelgion and reduces the probability of misrepair.
Cells that are seriously damaged by ionising ramhafe.g., containing asymmetric exchange type
chromosome aberrations) will undergo mitotic de@bnetic death), leading to loss of proliferation
capacity. It is well known that rapidly dividing lteare more radiosensitive than non-dividing cells
and that the sensitivity varies within the cell leyUNSCEAR, 1996). When it comes to mitotic
death, the highest and lowest sensitivity is apgast mitosis (and late G2 phase) and S phase,
respectively, whereas the opposite pattern apfdiepoptosis. Furthermore, the mitotic death shaws
substantial dose rate effect, whereas the induatibmpoptosis for a given dose appears to be
independent of dose rate and dose fractionatiorl @tal Giaccia, 2006; UNSCEAR, 2000). In
response to radiation, the relative importancéneftivo mechanisms varies with dose and dose ate, a
well as with the cell type and its developmentafiet(UNSCEAR, 2000).

5.1.4 Tissue regeneration
For higher, multicellular organisms, the abilitydanapacity of cells to repopulate themselves, to
replace cells damaged or killed by radiation andtchestrate tissue and organ regeneration can
influence both organ and species radiosensitiwigny primitive organisms tend to show more
efficient tissue and organ regeneration, severalloth appear to be relatively radioresistant adtad
(Harrison and Anderson, 1996).

5.1.5 Cell cycle sensitivity
Cells are generally found to be most sensitiveattiation at the beginning of the mitosis and least
sensitive during S-phase. The varying sensitivitgals in different phases of the cell cycle ig no
fully understood but several correlations have eend. The varying amount (duplication during S-
phase) or form (relaxed versus condensed) of DNAnduwa cell cycle might influence the sensitivity.
There is also a correlation between radiosengitiaiid the levels of naturally occurring sulfhydryl
compounds in the cell through the cell cycle. They as free-radical scavengers, and can facilitate
direct chemical repair at sites of DNA damage bgrbgen atom donation (Hall and Giacca, 2006).
The efficiencies of different repair processes iffietent phases of the cell cycle can also impact
radiosensitivity.

5.1.6 Life Stage
Reproduction is known to be one of the most radisisee life stages, and it might be impaired at
doses corresponding to less than 10% of the dasgngamortality. This can in part be explained by
the fact that actively dividing cells are most stves, and consequently the highest radiosensitiigt
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likely to be found in cell systems undergoing rapmdll division for either renewale(g.,
spermatogonia) or growtlre@.,the developing embryo) (UNSCEAR, 1996). It is wiatlown that
irradiation leads to apoptosis of cells in the yatiages of spermatogenesis, thereby reducing the
production of spermatozoa. Furthermore, the sutidasansfer of the genome to the offspring may be
disturbed by gene mutations induced in the gerrs.cklduction of recessive and dominant lethal
mutations in male and female germ cells may leaahtearly death of the developing embryo. Other
more “subtle” mutations may lead to developmeralmiormalities influencing the fitness and fertility
of the offspring in the next and subsequent geimgrat Understanding the underlying mechanisms for
differences in sensitivity of germ cells (reproduetorgans) and embryonic tissues between different
species would therefore be of high relevance sthese factors would also be of importance for
reproductive strategye(g.,sexualversusnon-sexual reproduction, parthenogenesis).

5.2 Application of biomarkers and toxicogenomics in mechanistic

studies
A biomarker can be defined as a biological parambétg can be measured in a given subject and is in
some way related to a biological effect (Duran@)7. Brooks (1999) distinguished three different
classes of biomarkers: exposure, sensitivity asgatie. For exposure biomarkers a dose-response
relationship can be established. Biomarkers of iBeityg are genetic markers associated with an
increase in individual susceptibility towards ergdiation. Finally, biomarkers of disease are those
biological events that can be used to anticipagediagnosis of a specific illness. The latter clakss
biomarkers is in our objective not relevant. Exaespbf biomarker of both exposure and sensitivity
that can be utilized within both human and ecolalgtoxicology to identify the response to ionising
radiation, ranging from molecular, cellular and amigm levels are given in table 4. We have
classified the biomarkers according to whether tiesy for DNA damage and repair, oxidative stress
or general stress responses. This table does of@sprto be complete, but will be used within WP-5
as a working instrument to design a common experiah@pproach to test for hypotheses within task
5.2.
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Table 4: Overview of biomarkers of both exposuré sensitivity that can be utilized within human amblogical toxicology to identify the response to

ionising radiation.

Biomarker Method/assay Tested endpoint Correlatiitn dose or radiation Species tested reference
sensitivity
DNA damage and repair mechanisms
Antibody against | Fluorescence imaging, DNA damage (Double strand Sensitive to and correlating with degree pHuman gamma- | (Redonet al, 2011)
Gamma-H2AX | Western blot, 2-D gel | breaks) damage H2AX (Kuo and Yang, 2008)
electrophoresis, flow phosphorylation
cytometry site has been
ELISA shown to be highly
High-throuput conserved
throughout
eucaryotes
Cytogenic Chromosomal Genotoxicity Validated correlation with long-term Human blood (Durante, 2007)
biomarker abberations morbidity endpoints like risk to induce

cancer

Mitochondrial Sequence analysis

DNA mutation

Not sensitive endaganvironmental

Compost worm

(Wilding et al, 2006)

DNA mutation relevant concentrations (Eisenia fetida)
frequency
Oxidation of 7,8-Dihydro-8-oxo- DNA damage and repair Not clear whether this is@dgbiomarker | Numerous?? (Collins et al.,1996;
DNA guanine (8-OHgua) (Collinset al, 1996) due to high Including Compost Hertel-Aaset al.,2011)
(HPLC-analysis, GC- background worm (Eisenia
MS, fetida)
modified Comet-assay)
Oxidation of 8-OHgua detection DNA damage and repair Linear relationship with gaa¥imadiation (Bruskovet al.,1999)
DNA with antibodies) dose and sensitive

(HPLC-analysis, GC-
MS)

Comet-assay
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Repair capacity o

fComet assay

DNA damage and repair

Correlate witbnit exposure

Numerous

(Plappertet al, 1997)

blood cells Including blood (Hertel-Aaset al.,

cells of chronic 2011)

(Chernobyl)

exposed people
Cytogenic DNA repair Human (Abdel-Rahman and H
endpoints Zein, 2011)-
Methylation Bisulphite sequencing| Reduced transcription through | Relation between radiosensitivity and Human gliomas (Liet al.,2009)

status of DNA
specifically of

RT-PCR

Methylation specific-
PCR

Western blotting

gene silencing of protein involved

in DNA-repair

methylation status of ERCC1 (excision
repair cross complementing protein 1)
promotor

Oxidative stress

Antioxidants and | Spectrophotometric | Oxidative stress No correlation between oxidativess Bacteria (Shashidhast al,
antioxidant assays of enzyme tolerance and gamma radiation resistange 2011)
enzymes activities (POD, SOD, Nb Anti-inflammatory agents
catalase) (corticosteroid) reduce the oxidative stress
Carotenoids levels (NFKB activity) in macrophage cells
(personal data, UMB)
Fe/Mn ratio Atomeric Absorption | Protection of proteins and DNA forlnverse correlation between [Mn]/[Fe] rati@acteria: (Confalonieri and
Spectrometry oxidative damage and level of protein oxidation (ConfalonigeiDeinococcus, Sommer, 2011);
and Sommer, 2011) Thermophyllus (Shashidhaet al,
No direct correlation with radiation 2011)
resistance (Shashidhetral, 2011)
General stress responses
Heat Shock Antibody detection: Stress induced proteins (Lewiset al, 1999)
Proteins Western blot

Transcriptomic
changes

Microarray
etc,..

Changed gene expression

Acute exposure was conipaoatther
abiotic stressors whereas chronic expos
revealed a complete distinct gene

Arabidopsis
UKegetative
(Kovalchuket al.,

expression profile (Kovalchuét al, 2007)

2007),Arabidopsis

(Kim et al, 2007;
Kovalchuket al, 2007)
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Down regulation of growth/rhythm
responses and up-regulation of
defence/stress regulation in post irradiat
reproduction state (KIMQ7)

during flowering
(Kim et al.,2007)
on

Radiation
metabolomics

GS-MS
QTOFMS

Changed metabolite abundance
Some could be linked to food
deprivation and starvation
(Johnsoret al.,2011)

Dose and time dependent, cross-species
(Johnsoret al.,2011)

Rat, cell and
mouse

(Coyet al.,2011
Johnsoret al., 2011
Lanzet al, 2009)
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Developments in molecular biology have the potémtamprove the mechanistic understanding of
the effects of stressors and underlying procesBE&C( 2007; Ankleyet al, 2009). Improved
understanding of the underlying modes of action M©f toxicity for different types of pollutants
can aid in the development of methods for assessimpsure and effects, thereby reducing
uncertainties related to extrapolation across sgeandpoints and chemical groups with similar
function or structure (Anklewt al, 2009). In recent years, the “omics” approach@siscriptomics,
proteomics, and metabolomics, have been adoptddghsthroughput and high density analysis to
study the transcriptome (the complete makeup of RidAscripts), proteome (the complete makeup of
proteins), and metabolome (the complete makeup efalnolites), respectively (Boverhof and
Gollapudi, 2011).

A key promise of the omic technologies is theirgmtial to offer a more holistic understanding of
interactions and the responses of biological pagswand networks to chemical perturbations
(Boverhof and Gollapudi, 2011). Unlike targeted ragghes €.9., investigating a small subset of
genes, proteins or metabolites), the omic toolsopemn, non-targeted techniques that do not reguire
priori knowledge about the pathways or systems that reaffected by exposure to the stressors. The
techniques examine multiple expression changescamgequently, may reveal new genes, proteins or
metabolites involved in toxicological responseg tieave not been described previously (Figure 5.1.).
This is an obvious advantage when possible interectof chemical mixtures are to be studied,
including those involving ionising radiation. (S84°-4 for more details). Because of this non-tajete
approach, omic experiments are often hypothesisrgéng rather than hypothesis testing, in thag the
can provide the basis for further investigationspogsible modes of action using other techniques
(e.g.,Boverhof and Gollapudi, 2011).

Non Targeted
Data

Covs Iranscriptomics

- DNA microarray
- cDNA-AFLP

- SAGE

- MPSS

- Next generation sequencing

Targeted
Multiple Transcripts

-Multiplex Polymerase Chain reaction (PCR)

Single Transcripts
Throughput
-Quantitative PCR Ease of
application
-Reporter Systems

Figure 5.1: Overview of single and multiple tramgtand transcriptomic techniques......
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Although the promise is great, there are some gémed specific limitations related to the differen
omic tools that need to be considered. Omic-teduies acquire hundreds to thousands of variables
for a very limited number of repeated observatidrtaus, bias and confounding factors can make it
difficult to distinguish actual differences in ergsion levels associated with the toxicant exposure
from the background fluctuations (Monsinjon and ¢g&, 2007). Furthermore, it can be challenging
to organize the data and interpret them in a bio&dgneaningful way. The interpretation of omicalat

is therefore highly reliant on advanced computai@mnd statistical methodse| bioinformatic tools),
many of which are still being developed (van Agged¢ al, 2010). A full review of the omic tools
and their application in radiation effect studiexluding combined exposures) will be provided in a
later STAR deliverable. In table 5, an overvievgigen of the pros and cons specific to the differen
omic techniques.

Table 5: Overview of advantages and drawbacksftdrdnt toxicogenomic approaches.

Techniques Advantages limitations
Transcriptomics DNA microarray Measure changes at the | Limited to few model species with
cDNA amplified level of gene expression | known genome
fragment length Limited number of genes | Expression needs to be combined|to
polymorphism (AFLP)| compared to proteins and| functional gene ontology
Serial analysis of geng metabolites Gene expression profile varies with
expression (SAGE) For next generation both dose and time after exposure
Massive parallel sequencing, no need for théexpression of adaptive,
signature sequencing | genome map compensatory and adversity genesg)
(MPS) From all omic approaches greatest
Next generation difference seen between gene
sequencing expression and eventual phenotyge
Proteomics Electrophoresis Protein expression Currently no techniques that can
combined to profiling sometimes handle complete proteome
Mass Spectrometry | specifically Huge difference in concentration
Possibility to focus on levels between abundant
post-translational changes housekeeping proteins and proteins
e.g. phosphorylations interest

Successful identification and
annotation of proteins are also
dependent on sequenced and
annotated genome

Metabolomics NMR Measures changes in Large amount of different
LC-MS, GC-MS or metabolites metabolites
DIMS Most closely linked to Metabolites are often transient and
phenotype are rapidly biotransformed

No need for genome
sequencing as metabolites
are universal

Possibility to analyse non;
invasive samples such as
blood/urine

An international consortium on fish toxicogenomi@san Aggelenet al, 2010) concluded that
variability in omics data is an ongoing concerne¥lgave an overview of the sources of technical and
biological variations that need to be considere@gmwhsing the different omic tools, and provided

[STAR] 35
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



recommendations on how these should be managednns f experimental design. (Van Aggeédtn

al., 2010, supplemental material, doi:10.1289/ehp.098(2B claimed that technical variability and
artefacts can for example arise from study desigrdequate sample numbers, and methods of sample
acquisition, preparation, storage, processing, aralysis. They concluded that the major sources of
variability were methods of normalization and st&tal interpretation. Inter-individual biological
variability can be classified into genotypic ancepbtypic variation. The general recommendations
are that experiments should be designed to minitmi¢le technical and intra-class variation, thereby
maximising inter-class differences that can be @qal using data mining techniques (Van Aggelen

al., 2010 and supplemental material).

At this point we can conclude that the developnaamt increased application of biomarker and omics
techniques are ongoing and their potential to plevinew insight related to mode of action is
promising. However, expertise within several diBogs @.g., genetics, analytical chemistry,
bioinformatics) is needed to utilize the informatiobtained in an ecological relevant context. Due t
the large numbers of factors impacting on radiasigitg, and the enormous number of species and
life stages that could be tested, it will obvioushly be possible to perform some few targetedistud
to gain further insight into mechanisms. Given thquirement for any laboratory omics study to
include conventional toxicological endpoints sushpathological changes, reproductive output and
growth (Denslowet al, 2007), it should be clear that the use of thtesbniques would be most
fruitful in combination with the studies carriedtdn task 5.2.1A good example of an integrated
approach for endocrine disruptors in fish is sumgear in Ankleyet al (2009). They used a
combination of different omic tools, bioinformati@nd standard toxicity testing and modeling
approaches, performed in different experimental spba to develop response linkages across
biological levels of organization. Furthermore,kBnbetween transciptomics, metabolomics and
DEBtox models have also been tested in recentegudnC elegans (Swainet al, 2010). Both
approaches could make a useful guideline for h@MSIRAR participants could plan and proceed with
the experimentation during different phases.

The overall approach would be to use the omic etudiand preferably transcriptomics or
metabolomics) as hypothesis generating rather thgothesis testing experiments, hence more
concrete hypothesis will be postulated after seleadf organisms. Since the types of organisms for
which full omic capabilities existe(g., C elegans, Arabidopsisand zebrafish), are rather
radioresistant (although there are admittedly ladféerences in the radiosensitivity between the
species), the application of omics on these spawoiedd be limited to studies that can give a broade
insight into mode of action, including differendesRBE. There are also quite extensive omics data o
C elegans, Arabidopsiand zebrafish, including studies of radiation eproduction and life-history
studies. One aim of the omics investigations calfb be to enable more targeted biomarker and
effect studies in other more sensitive and ecolilyicelevant species, or life stages. This potiiit s
needs to be discussed further among partners.

To conclude, the different methods will be thordygleviewed within STAR in order to select those
that are practically feasible within the consortiamd that can best provide answers to our scientifi
questions.
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6 The pilot study

6.1 Background

6.1.1 Objectives
The aim of this study is to use and to developaeiérgetics approach based on the DEB theory
(Dynamic Energy Budget) developed by Kooijman (20@0increase knowledge about links between
assimilation disruptions, growth, reproduction, difie span fluctuations in exposed organisms to
ionizing radiation.
This study will be conducted using a model organi€aenorhabditis eleganfhematode). ThE.
elegansmodel can be summarised by a short life cycleanallssize and a great ease to handle and
cultivate in various devices (Brenner, 1974). Theisgracteristics make it a suitable model to cohduc
this type of study. In addition, a first experimevds already done at IRSN to investigate the effeft
external gamma radiation on the growth and repriclucof C. elegans In the pilot study, the
objective is to obtain accurate data to implemetEBtox model applied to gamma radiation. The
ultimate target is to assess potential consequencése population.

6.1.2 Biological model: Caenorhabditis elegans
Nematodes are phytophages, bacteriophages, fuegimod/or predator. They can be defined as
cosmopolitan species, easily reared in labs. Theybe found in soil at high density depending @n th
level of organic matter. Nematodes presence irs geilhighly important for the ecosystem and
particularly for the mineralization process (Jaggeal, 2004).
Caenorhabditis eleganis an ubiquitous free nematode living in soilscdigered by Maupas (1990).
This bacteriophage organism is found at the same th warm and cold earth are&s. elegans
measure 250 pum long at hatching and up to 1.6 madat stage. It cultivates easily at 15, 20 and
25°C although effect have been showed on eggs ahd25°C. At its reference temperature (20°C), it
breeds in 3 days and lives up to 21 d&yselegansntegument is transparent so its development and
effects of stressors on the organism are observhlieproduces by androdioecy. Hermaphrodites can
fertilize themselves and the presence of male imiogl. In the N2 strain, males occur at a very low
density (<0.1%).
C. elegansdevelopment is well known. Hermaphrodites have 888s at adult stage, 2n=12 (10
autosomes + XX) and produce male gamete beforeléegaamete. As a consequence, the egg laying
size depends on the number of sperm cell.
C. eleganglevelopment, presented in figure 6.1 and tabie Biade in two steps: embryonic and post-
embryonic. This development is invariant and thedige as well as the cell genealogyoklegans
are determined. In the hermaphrodite, 1090 cefigperduced including 131 for apoptosis.
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1.5-fold

2-fold

®WormAtias

Figure 6.1.C. elegandife cycle at 22°C (Altun and Hall, 2009).

Table 6: Development df. eleganst different growth temperatures (based on Byetrlgl, 1976)

16°C + 0.3]| 20°C + 0.5| 25°C £ 0.2
Egg laid Oh Oh Oh
Egg hatches 16-18 h 10-12 In 8-9h
First molt 36.5h 26 h 18 h
Second molt 48 h 34.5h 25.5h
Third molt 60 h 435h 31lh
Fourth molt 75h 56 h 39h
Egg—laying begins ~90 h ~65 h ~47 h
Egg-laying maximal ~140 h ~96 h ~62 h
Egg-laying ends ~180 h ~128 h ~88 h
Length at first molt 360 um 370 pum 380 um
Length at second molt 490 pn 480 um 510 gm
Length at third molt 650 um 640 pmn 620 pum
Length at fourth molt 900 pm 850 um 940 um
Length at egg-laying onset 1150 um | 1060 um| 1110 um
Maximal egg-laying rate 5.4h 9.1h" 8.1 h'
Total eggs laid 275 280 170
= Embryo

Embryogenesis is done in two stage€irelegansinitially, the first growth consists in a celiMigion

until reaching 550 cells essentially undifferergtht At the end of this first phase, the embryo is
spheroid in shape and is composed of three gerardagctoderm, mesoderm and endoderm). The
second phase of embryogenesis is the phase ofaggaesis and morphogenesis. At the end of this
phase, the larva begins to move within the egguAéind Hall, 2009).
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= Larval stages
The post-embryonic development takes place in Biages separated by molts during which the
nematode enters into lethargy (Araiz al, 2008, Alda Alvarezt al, 2005, Altun and Hall, 2009,
Jageret al, 2005). Table 6 showS. elegandength for each molt at different growth temperasucC.
elegansbody size increases between molts unlike its Hucasity which increases only during
moulting (Alda Alvarezt al, 2005, Jageet al, 2005, Knightet al, 2002).

L1 stage: After hatching, the larva is in L1 staljaneasures about 250 um long, has 558 cells and
begins to feed. The post-embryonic developmentdsenaffected by organogenesis events and cell
mass modifications than by mitosis (Araizal,, 2008).

Environmental conditions can lead L1 larvae toefsguations:
e Stopping the growth and death
e Switching to resistance stage
e Transition to L2 stage

L2 stage:According to Altun and Hall (2009), fewl civisions occur during the L2 stage. This author
suggests that germ cells are among the few celldiide during this stage and that they will
quadruple their number.

L3 stage: According to Alda Alvarezt al. (2005), the end of the third larval stage is cbimdsed by

a shift in gamete production of the hermaphroditeus, the male gametes located in the proximal
gonad become mature. This causes a change inpgheofymatured gamete in the distal part of the
gonad. Now, only oocytes are matured.

L4 stage: L4 stage is characterized by the entiefypnadogenesis process and by the generation of
the terminal cells of the vulva and of the uterigun and Hall, 2009).

= Adult stage
At about 48 h (at 22°C) after hatching, a matunaria@hrodite begins to lay its first eggs (Byeely
al.,, 1976). The adult hermaphrodite will lay up to leéipn of its sperm supply (about four days). It
will then survive for 10 to 15 days. Hermaphroditen be fertilized by males. In this case, egg lgyin
may continue until oocytes stock is depleted (AMlsarezet al, 2005).

6.1.3 Dynamic Energy Budget
The DEB theory (Kooijman, 2000) provides a concapftamework which explains mechanistically
how organisms acquire their energy from food atatate it to survival, growth and reproduction. On
this basis, DEBtox models describes how toxicantai@ulate in exposed organisms and alter main
DEB processes (Kooijman and Bedaux, 1996). A sigebiEBtox models was recently developed for
C. elegangJageret al. 2005) and was used to identify possible primargesoof action of various
chemical compounds, together with complementamstiaptional analyses (Swaat al. 2010; Wren
et al.2011).C. elegan®DEBtox model or its revised version (as part &ftd project) will be used to
analyse conjointly effect data of gamma radiatiom survival, somatic growth and offspring
production (if these are available from experimegriRequired data should at least include sizer#t bi
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and puberty and maximum adult size and reproduatede. Experiments must be carried out at
constant, well defined temperature aablibitumfeeding condition.

6.2 Experimental protocol for external gamma irradiation

6.2.1 Organism husbandry
The wild-type N2 nematode (ie. the most classicakbgd strain) is maintained on the nematode
growth medium (NGM) plates seeded whHlscherichia colistrain OP50, at 20 °C (Brenner, 1974;
Stiernagle, 2006). Gravid worms are selected frioenstock population and placed on a Petri dish at
t = Oh. After 2 hours, laid embryos are considecele age-synchronized.
Eggs are individually placed into petri plate camtegy NGM seeded with OP5B. coli (for each
treatment). Worms are cultured at 20°C and 80%1RtHdé dark.

6.2.2 External gamma irradiation
For the purpose of the study we will use 5 nomitase rates of: 0, 1, 10, 100, 1000 mGy/day
delivered by for Cs-137 sourcésee photos 1 to 4 at the end of sectiorE6¢h source is installed
in independent incubator and experimental units @ezed around the source. During the test,
temperature and moisture are continuously measusied data logger.
The choice was made on the use of liquid and smigrces of Cs-137 of various activities. The
experimental units (e.u) of small size containing samples to be irradiated are laid out in circle
around the source of caesium. Table 7 gives theitees of the various sources used in the device o
irradiation.

Table 7: Activities of 137-Cs sources used in thadiation facility

Bqg Type of source
S1 1.6E+09 solid
S2 2.16E+08 liquid
S3 2.30E+07 liquid
S4 2.12E+06 liquid

To allow daily handling of the experimental unésgevice allowing the lowering of a lead protection
is dimensioned for the experiments. The supportacaomodate two models different of protection:

« a cap thickness 20 mm, which could be used WwitHitjuid sources of weak activity,

* a cap thickness 30 mm, intended for the handinthe liquid sources of strong activity as well as
the solid sources. Figure 6.2 presents a diagrammwiatv of the system of irradiation.
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Figure 6.2: Scheme of the Irradiation facility

In order to be able to implement within an expernitre sufficient number of u.e, the adopted solution
is to lay out several e.u. rings some around tliecgo Figure 6.2 presents the configuration rethine
the most restrictive case of the study. The charestics of the geometry used as a e.u. are given o
figure 6.3.

L [

Source

[
\
S~

_/
~_ | Configuration 10 e.u.

Figure 6.3: Configuration for irradiation (10 e.lyiewed from the top

Thermoluminescent dosimeters (TLD) will be laid aldng the lower, median and higher lines of the
u.e for the various configurations given and theltof the sources available. The flows of Kerma
were also calculated by digital simulation withimetTLD in order to compare the calculation and
results of measurement, and thus to validate tteeatathe activity of the sources. In complemérd, t

isotropy of the radiation field on the level of tkeu. for the solid source was studied using TLD.
Moreover, the absorbed dose rates inside the geprokthe e.u. were determined by calculation
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(modelling the transport and the interactions @& plarticles charged or neutral in the air. Onlg th
transport of the principal line of cesium 137 td @keV was taken into account).

Measurements will be realized with lithium fluoridewder doped Mg, Cu, P (GR207) conditioned in
polypropylene tubes. For each configuration ofdiation and all the sources used, a series of
dosimeters will be placed at the center of the emuthe various stages of the e.u. A number of e.u.
identical to the use in routine was used so takitg account the radiation diffused by the adjacent
samples of the site of the dosimeters.

6.2.3 Endpoints measurement

= Broodsze
To assay brood size we will daily transferred wornte new individual plate containing NGM from
t=72h (beginning of lay) till the end of spawn. Efad progeny will be counted twice, the day
following each transfer (Swakt al, 2004).

= Growth
Growth will be measured (using a stereomicroscofib @& connected camera) twice a day from
hatching to maturity then once a day until maxisiaé.

= Lifespan
Lifespan will be studied by daily counting dead moiThe death of a nematode will be recorded upon
failure to respond to repeated touch stimulatiothefposterior end.

6.2.4 Statistics and data treatment
The endpoints will be compared among the treatmasiisg generalized mixed-effect models and
Tukey’s multiple comparisons. ‘Growth’ endpoint whe analyzed using a normal distribution,
‘Brood Size’ using a Poisson distribution, andetipan’ using a binomial distribution. Depending on
the number of censored data, ‘lifespan’ endpointdalso be studied using a survival analysis.

Prior to the experiment, power analyses will bedusefigure out what sample size (number of worms
per condition) would be needed to observe a giveatinent effecfe.g.,5% change in fecundity or
growth). These power analyses will be done sinndatiata based on the variance structure estimated
from a preliminary study (Browne et al, 2009 antd,2009).

(see the following links:

http://seis.bris.ac.uk/~frwjb/esrc/MLPOWSIMmanudk.p
http://www.unc.edu/~toddjobe/blog/2009/09/powerigsia-for-mixed-effect-models.html

6.2.5 DEBtox modelling
= Specificities related to the nematode DEBtox model
C. eleganDEBtox model (Kooijman and Bedaux1996; Jageal. 2005; Swairet al. 2010) will be
used to analyse toxic effects of gamma irradiation survival, somatic growth and offspring
production. Different sets of equations descrilhgnges in survivorship, body size (length or mass)
and reproduction rate with age (assumiagd libitum feeding) are available each specifically
corresponding to a possible mode of action fordamxis proposed by the standard DEBtox model
among:
1) increased cost of maintenance,
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2) reduced assimilation,

3) increased cost of growth,

4) increased cost of egg production,

5) increased mortality during oogenesis.

Further effects of toxicants have been introduaethke account of nematode specificities,
including:

6) reduced size at puberty

7) decreased maximum reproductive rate

8) decreased toxicant intake with feeding condgifmot appliable in the present study)

» Specificities related to the experimental setup dam
Fitting procedure implies the underlying assumptibat observed values of survival, reproduction
and size are independent e.g. values at differeme tpoints should be measured on separate
individuals. For practical reasons, individual néoadigs are monitored over their entire life in tliletp
study. Thus, DEBtox equations will be fitted in relpninary procedure, in order to check that model
parameters do not differ significantly among indivéls. This is achieved graphically based on the
comparison of parameter confidence intervals anmamgatodes.

= Screening of DEBtox stress factors and modes of &mh
The different modes of action have differential @smuences for maximum adult size, age at puberty,
reproductive outcome, allowing a first screeningna. In order to identify possible modes of action
for gamma radiation, sets of equations are fitteddta obtained on the range of dose rates and most
probable modes are selected using a weighed lgaates criterion as an estimate of goodness of fit
(Jageret al. 2004). Different hypotheses will be also compavgdinking the toxic stress function to
the dose rate, the cumulated dose or an index miulated damage level subjected to a repairing
process. Our overall objectives will be to estimadies of No Effect Dose Rate (NEDR), cumulated
Dose (NED) or damage Level (NEL) and to point ptggrmetabolic modes of action for gamma
radiation.

6.3 Expected outcomes and alternative options

As presented above, the expected outcome of tloisgpidy is to build a set of effects data of exd
gamma radiation on the life history traits of €egansand to obtain accurate data to implement a
DEBtox model applied to gamma radiation. This stwilihelp the different teams involved in STAR
WPS5 to implement, for the first time a DEBtox apgeh on gamma irradiation (see chapter 4.1). This
will be the firs step towards a full DEBtox paraeviation.

The generated dataset will also be used to implemePower analysis (chapter 6.2.4), in order to
refine the test design for future studies (chapi#): the observed variation in the measured emdgoi
and difference between control and irradiated dard will help to define the needed number of
treatments, replicates per treatments, accuraepdifoints measurements...

There is a risk for the planned study to fail imgeating such a dataset, mainly due to the teggmes
actual limitation €.g.,up to a maximum of 30 replicates par conditioredi dose-rate range...). This
could result in a lack of sensitivity of the measlirendpoints to gamma irradiation, under those
specific conditions. In this case, other optionsldde:
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- to change th€. elegansstrain to a potentially more sensitive straingeen to change the
species used to a more sensitive speeigs,daphnid, earthworm...);

- to increase the tested dose-rates and/or to iretb@snumber of tested replicates: this
would need to use a larger irradiation facilgyd.,irradiation facility at UMB, Norway);

- to examine other sensitive endpoints to be measured

- to enhance the accuracy of endpoints measurenrentslér to decrease the variation due
to individual measurements.@.,to evolve towards a liquid medium exposure design)
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lllustrations of the Pilot study: Photos 1 to 41 Bonzom/IRSN

Photo 1: Experimental Units around the irradiasonrce (liquid)
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Photo 2: 5 independent incubators with irradiatemilities
(1, 10, 100, 750 and 1000 mGy/d)
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Photo 3: Counting and photography of nematodesrusmfenocular
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Photo 4: Size of nematode from day 1 to day 10
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7 Perspectives

This report justifies our first choices for the gt experiments that will support our research
development under WP-5. Two biological models haeen selected first to support both dose rate —
response relationship on life history traits undeternal gamma and internal alpha irradiation
exposure: one plant moddl.(minon and one animal modeC( elegangs Both of them will also be
used for DEBTox parameterisation. External gammadiation exposure will use irradiation facilities
that allow to cover a range of dose rates from gemknd up to 100 mGy/h if needed. The selected
alpha-emitting radionuclide is Am-241.

The next step viewed as “go-no go” actions willeglace in our next meeting in January 2012 where
we will discuss:

(iv) the main conclusions from our sensitivity analysistcoming from the theoretical
approach where we combined radiosensitivity infaromafrom FREDERICA and Leslie
matrices for a wide range of species (task 5.13:dIscussion will help to decide whether
we need to implement experiments (or not) to obtadme robust conclusions about the
propagation of effects observed at the individasaél to the population level;

(v) the results and lessons learnt from the pilot sttioig discussion will help to refine the
experimental design if needed, to conclude on #asibility of DEBTox development
(task 5.3);

(vi) the hypotheses we would test to progress in thermstehding of the mechanistic modes
of actions at the (sub)cellular level (task 5.2).
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8 Annex

8.1 How to download and install R and 'drc' add-on package
8.1.1 R software

R software can be freely downloaded at the addhags!/cran.r-project.org/. Then in the 'Download
and Install R windows it's necessary to choosedable click on its own exploitation system.

Fichier Edition  Affichage Favers | outls 7
-_— ? ; ~ .
B~ |G v B 6o 4 B Transiate + P sreencord (9 chiness Y M. dsckson [ ger (B Gomes () Ringtones % Lottery |

5 & | (8 The Comprahensive R rchive Matiiork | |

19 o B
i - [rage - [ -

The Comprehensive R Archive Network

Frequently used pages

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of
{these versions of R:

Linux

MacO$ X
R Homepage B
The R Journal

|Source Code for all Platforms

Software
R Sources ‘Windows and Mac users most likely want the precompiled binaries listed in the upper box, not the source code. The sources
R Binaries thave to be compiled before vou can use them. If vou do not know what this means, vou probably do not want to do it!
Packag:
Other » The latest release (2009-06-26): R-2.9.1 tar gz (read what's new in the latest version).

Documentation » Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

A new window, names 'R for windows' for examplegiening. It's necessary to double click on the
'base’ option; it permits to import base package¢lke same time of the download of R.

R for Windows
This directory contains binaries for a base distribution and packages to nm on 1386/x64 Windows.

Note: CRAN does not have Windows svstems and cannot check these binaries for viruses. Use the normal precautions with downloaded executables.

Subdirectories:
Binaries for base distribution {managed by Duncan Murdoch)
contrib Binaries of contributed packages (managed by Ue Ligges)

The latest version of R is available by doublekitig on 'download' as shown in the following
window.
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R-2.9.1 for Windows

SN

Installation and other instructions

Mew features in this version: Windows specific, all platforms.

If vou want to double-check that the package vou have downloaded exactly matches the package distributed by R, vou can compare the md3sum of the exe to the
true fingerprint. You will need a version of md3sum for windows: both graphical and command line versions are available.

Then, it's necessary to save and execute the file.

R-2.9.1 for Windows

Download R 2.9.1 i

X

Téléchargement de fichiers - Avertissement de sécurité

Installation and other | ] .
Youlez-vous exécuter ou enregistrer ce fichier ?

\j Ham: R-2.9.1-win3z2.exe
Type : Application, 35,7 Mo

De: cran.r-project.org

New features in this ve

If vou want to double-checld
true fingerprint. You will nee

be distributed by R, vou d
fne versions are available

Exécuter ][ Enregistrer ] [ Apinuler l

Frequently a

» How do [mstall R wh . Bien que les fichiers télécharges depuis Intemet puissent étre utiles, ce
« Howdol o] date Dac | ?l tupe de fichier présente un danger potentiel. N'exécutez pas et
& nenmegishiez pas ce programme i vous n'gtes paz =0r de son origine.

e Huels sont les risgues ? s :
Please see the R FAQ for g4 specific information.

A short cut appears on the desktop.

Double-clicking on the shortcut permits to openkheonsole where commands lines will be used.
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Fichier Edition WYoir Misc Packages Fenétres Aide

: R Console

R wersion 2.9.1 (2009-06-26)
Copyright (C) 2002 The B Foundation for 3tatistiecal Computing
ISEN 3-900051-07-0

F est un logiciel libre livré sans AUCUNE GALEANTIE.
Vous pouvez le redistribuer sous certaines conditions.
Tapez 'license()' ou 'licence()' pour plus de détails.

R est un projet collasboratif avec de nonmbreux contributeurs.
Tapez 'contributors()' pour plus d'information et
'citation()' pour la fagon de le citer dans les publications.

Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
en ligne ou 'help.start()' pour obtenir 1'aide au format HTHML.

Tapez 'gi)' pour guitter R.

> |

8.1.2 'drc' add-on package :

The easiest way to download and instit" and all the other add-on packages neededrbyis to

use the following commands in the R console.

CRAN mirror

R wversion 2.10.1 {(2009-12-14)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISEN 3-200051-07-0

Australia (Canberra)
Australia (Melbourne)

R est un logiciel libre livré sans AUCTUNE GARANTIE. Aust_rla
Vous pouvez le redistribuer sous certaines conditions. gigz'””?;m
Tapez 'license()' ou 'licence(]' pour plus de détails. Brazil (RJ)

Brazil (SP 1)
R est un projet collaboratif avec de norbreux contributeurs. Brazil (SP 2}
Tapez 'contributors()' pour plus d'information et Canada [BCy
'vitation(]' pour la fagon de le citer dans les publications. iAo

Canada (OM)

Canada (QC 1)
Tapez 'demo()]' pour des démonstrations, 'helpi)]' pour l'aide Canada (QC 2)
en ligne ou 'help.start(]' pour obtenir 1'aide au format HTHL. Chile

hina (Bsijing 1)

| ! ;

Tapez 'qf) pour cuitter R, Chita oine 2
China {Hong Kong)

[Sauvegarde de la seszion précédente restaurée] China {Xiamen)
Colombia

¥ install.packages ("dre™, dependencies=TRUE] Denmark

France (Toulouse)

France {Lyon 1)

France {Lyon 2)

Germany (Berlin)

Germany {Gosttingen)
Germany (Muenchen)

Germany (Muernberg)

Germany {Wiesbaden) =
Greece

—-— 3VFP sélectionner un miroir CRAN pour cette session --—-
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Next a 'Cran mirror' windows opens and a site loabe chosen. Thenrc' and all others needed
packages are download automatically.

To finish, in order to use all the functions of tpackagedrc', it's necessary to enter the following
commands: library(drc).

IF: R Console:

Tapez 'license()' ou 'licence()' pour plus de détails.

E ezt un projet collaboratif avec de nombreux contributeurs.
Tapez 'contributors()' pour plus d'information et
'citation() ' pour la fagon de le citer dans les publications.

Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
en ligne ou 'help.starti)' pour ochtenir 1l'aide au format HTHL.
Tapez 'gf)' pour guitter E.

[Sauvegarde de la session précédente restaurée]

> install.packages ("drc'", dependencies=TRUE]

——— SVFP sélectionner umn miroir CRAN pour cette seszion --—-

bvis : impossible d'accéder & 1'index de 1'entrepdt http://www.stats.ox.ac.uk/p$
essai de 1'URL 'http://eran.univ-lyonl.fr/bin/windows/contrib/2.10/dre 2.0-1.21%
Content type 'applicationfzip' length 449384 bytes (438 Eh)

UREL ouverte

downloaded 438 Eb

le package 'drc' a été décompressé et les sommes MDS ont été verifiées avec such

Lez packages téléchargés sont dans
C:hDocuments and SettingsiClaireiLocal Settings) Temp' RtmpGdowOihdownload
e library(drc”

< | ¥

8.2 Import of a dataset

One of the more easy ways to import a dataseti;it®use an Excel File. First, the decimal separat
must be the comma symbol. Then the file has tcabedsin a 'csv' format (semicolon delimited file).
Then the import in R is done using the followingreoand:read.csv2(file.choose()) which

permits to open a window for dataset selection.
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8.3 Log-logistic models

8.3.1 Strategy of analysis and modelling of monotonic desresponse relationships with
continuous observations

When observations are continuous daba; library uses least square non linear fitting $toreate the
model's parameters, and uses parametric methodstimate the parameters' uncertainty. These
parametric methods need the validity of three agsioms: independence of data, normality of the
residuals, and homogeneity of the residuals. Thagge assumptions are also needed for the validity
of the'Lack of fit'test and the one of thE' test for nested models, both tests used in des@snse
relationships analysis.

In case of continuous response, dose-responsmnslaip analysis and modelling contains 5 levels:
1) Use of the full log-logistic model (e.g. the 4pamdars log-logistic model) to fit the data.

2) Assessment of residual normality and homogeneiguraptions (with use of Box-Cox
transformation if needed).

3) Assessment of the quality of the model's fit Byack of fit'test

4) Reduction, if possible, of the full model (e.g. thearameters log-logistic model). That means
assessment of the equality to O of the lower lmhithe curve ('c’ parameter), by the way of an
'F' test for nested model. The simplest model is kepording the Parsimony rule.

5) Estimation of the EDp% and its uncertainty.

The strategy of analysis and modelling of dosearse relationship with continuous observation is
summarized in Fig.8.1.
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» Fit of the full model

c

o

=

g l
>O< 5 Assessment of residual normality and homogeneity assumptions residuals residues
St
é E /\

L At least one of the two assumptions is Both assumptions are accepted
rejected l

Assessment of the model's fit quality

—

Model’s fit is accepted Model's fit is not accepted
Fit of another full model Theoretical arguments
(other family of model, i.e., (biological and historical )
Weibull) to continue

~

Reduction of the full model:
(fit of the reduced model)

|

Comparison of the full and reduced

models' fit
Not significant Significant 'F' test
"F' test (p-value (p-value<0.05)

"/ l

Reduced model is kept

(Parcimony rule) Full model is kept

N— e

Estimation of the EDp and its
uncertainty

Figure 8.1: Strategy of analysis and modelling ohotonic dose-response relationship with

continuous data.
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Residual normality assumption is usually assessaeblNy, by the way of a 'quantile-quantile’ plot,
where points have to approximately follow a straigie. Residual normality assumption can also be
assessed by a statistical test as the Shapirostkt (Ritzt al, 2008).

As the same, residual homogeneity assumption isrgby assessed visually, by the way of a 'fitted
values vs. standardized residuals' plot, where tpdirave to be distributed without any pattern.
Residuals homogeneity assumption can also be asskgstatistical tests as Levene's test or Bastlet
test.

Independence assumption of the data is also nebdedsually it's only validated on the experiménta
design basis.

When at least one of the homogeneity and normadisgumptions is rejected, a Box-Cox
transformation (both side type in order to consaheerelation between the response and the doses)
can be used. Nevertheless there is ho warrantyt alsubsequent validity of the assumptions. Box-
Cox transformation is empiric power transformatidetined by:

y/1 -1 Az0
h,(y)=5 A Equation 11
log(y)] A=0

If the use of the Box-Cox transformation doesnjpriove the residual normality and/or homogeneity
assumption, a weighted non linear regression cambsidered.

Concerning the quality of the model's fit, it isngeally assessed graphically, and then completed by
the way of al'ack of fit test. For the visual assessment, 2 plots caobe:d

- the first one displays both the experimental poiatsl the fitted model ; proximity
between them is needed in order to consider tlaes fdatisfactory

- the seconds one is a 'residuals vs. fitted' plat.each dose level, a uniform distribution of
the residuals on both sides of a 0 X-axis line esded in order to consider the fit as
satisfactory.

The principle is to compare the fit of the 4 parterelog-logistic model with the fit of a more geale
model (considered as a reference model) whicheistie-way ANOVA model. The statistic of the test
is:
E = (RS$L4 B RS%NOVA)/(n - P~ deNOVA)
RS&NOVA/deNOVA

Equation 12

Where:
- RSSmeans 'residuals sum of squares'
- dfmeans 'degrees of freedom'
- nmeans number of data (total)

- p means number of parameters of the model (hereaubef the LL.4 model).
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'F' statistic follows an F distribution with (n-paflova, dfanova) degrees of freedom. If the
p-value of the F test is not significant (p-vak@05), then the fit of 4 parameters log-logisticdabis
considered as satisfactory than the one of theerefe model ; and so the model is accepted On the
contrary, if the p-value is significant (e.g., pt@<0.05) , it means that the fit of the 4 paramseleg-
logistic model is not as satisfactory than the ofthe ANOVA model, and then it's rejected.

Concerning the reduction of the full model, in ca$econtinues data and when the dose-response
relationship is decreasing, a 3 parameters logimginodel can be considered (is the reduced model)
The 4 parameters log-logistic and the 3 paramdtmydogistic models are nested since the 3
parameters model is the 4 parameters one witlarahpeter =0. Then the fits of these two models can
be assessed by a&f test (similar to the FLack of fit tes), the statistic is:

E = (Rs%educed B RS$UII )/(deeduced B dfFuII )
RSS,, /dfFull

Equation 13

'F' statistic follows an F distribution with (gfi.ce dfrun, dfrur) degrees of freedom. If the p-value of
the 'F test is not significant (p-value0.05), then the fit of 3 parameters log-logistic dabis
considered as satisfactory as the one of the 4rgdess model. In other words, it means that theefow
limit is not significantly different from 0, and @hthe 3 parameters model is kept. On the contifary,
the p-value is significant (e.g., p-value<0.05)miéans that the fit of the 3 parameters log-logisti
model is not as satisfactory as the one of therdmpaters model. Thus, the 3 parameters model is
rejected and the 4 parameters model is kept.

Once the final model is obtained, the EDp(%) valae be estimated based on this kept model, using
the following equation:

1/b
P .
EDp=¢ —— Equation 14
p {(100_ p)} quation

Meanings of e and b parameters have been giveiopedy. drc' use the delta method to estimate the
uncertainty of the EDp.
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8.3.2 Strategy of analysis and modelling of monotonic desesponse relationship when
observed response are quantal data

Observations are quantal (or binary) data when toegern an event which can take only two levels
E*or E~ for each individual (dead or alive for example).

Table 8.1: example of observed responses of quiypka) with different replicate's size.

Number of
Dose Repliquat Individual Response individuals in Y. P;;
(i) 5) (1) (Rijk) the replicat 1 obs obs
(Nij
0
0
N°3 0
0 1 N4 1 6 1 0.17
N°5 0
N°6 0
N°1 0
N°2 1
0 2 N3 0 4 1 0.25
N°4 0
N°1 1
N°2 1
5 4 N°3 1 5 4 0.8
N°4 1
N°5 0

When observations are quantal (or binary) dataibdelled response variable is the percentage of
event (P, ). drc’ use the maximum likelihood method to estimatertivelel's parameters and the

model's parameters uncertainty. Estimation of tardard error of the model's parameters is based on
a Binomial distribution and requires the data irefefence. When observed data are quantal data, it's
necessary to check the absence of an overdispeesiprthat the observed variance is not highar tha
those calculated according the binomial distributd/hen an overdispersion is highlighted, estimated
standard errors of the model's parameters have tmiyected in the increasing direction. This could
be easily done withdtc' using thetype="binomial" argument in th@rm function and using the
od=T argument in thesummary function. Moreover, in case of overdispersion, tasult of the
'‘Goodness of fittest (used to assess the quality of the moded) tla@ result of thdikelihood ratio'

test (used to compare the fit of two nested mogdatg)not valid.

In case of quantal response, dose-response cumdelling contains 5 levels too:
1) Fit of the full 4 parameters log-logistic model
2) Assessment of the model quality fit
3) Assessment of an eventual overdispersion

4) If possible, reduction of the full model, e.g. tése equality to O of the lower limit ('c'
parameter) and or test the equality to 1 of thesufimit (‘'d' parameter). The simplest model
is kept according the Parsimony rule.
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5) Estimation of the EDp and its uncertainty.
Management of the steps 4 and 5 will be differfeat?overdispersion is detected or not.

The strategy of analysis and modelling of doseaase relationships, when observations are quantal
data and wheno overdispersion was highlightedis summarized in the Figure 8.2.

Fit of the full log-logistic model

y

»

Assessment of the quality fit

Satisfactory fit /\ Not satisfactory fit

Theorical arguments

) to continue \
Fit of another type of full Assessment of a possible
model overdispersion
Overdispersion is not Overdispersion is
highlighted highlighted

! !

Fit of the 1 restricted model and cf. Figure 8.3
comparison of its fit and he one of the full

‘/mOdel\>

Log ratio test significant Log ratio test not significant
(pvalue>0.05)

(pvalue<0.05)

Fit of the 2" restricted model and
comparison of its fit and the one of the

first restricted model

—

Significant likelihood ratio Not Significant likelihood ratio
test (pvalue<0.05) test (pvalue>0.05)

' } !

The full model is kept The second restricted The first restricted model
model is kept is kept

N —
SE—
Estimation of the EDp and its
uncertainty
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Figure 8.2 : Strategy of analysis and modellingnohotonic dose-response relationships with quantal
data, when no overdispersion has been highlighted.

In case of quantal (binomial) observations, indejeece hypothesis is accepted or rejected only on
the basis of the experimental design. When obsenstire quantal data, it is needed to precise thei
type using the typedinomial' argument in the drm function. It is also necegdar give the total
number of observations by the way of theight=n argument.drc' package needs both information
in order to give an adequate estimation of therpatars, and above all of their standard error.

Concerning the assessment of fit's quality, itasegally done graphically and completed by theaifise
a statistical test. For the visual assessmenit® phan be done:

- the first one displays both the experimental poiatsl the fitted model ; proximity
between them is needed in order to consider ttzes ffatisfactory.

- The seconds one is a ‘residuals vs fitted' platefach dose level, a uniform distribution of
the residuals on both sides of a 0 X-axis line eeded in order to consider the fit as
satisfactory.

When observations are quantal data, the test osassess the quality of the fit is call€dodness of
fit' test. Its principle is different of those of thack of fit test, since here there is no reference model
(one-way ANOVA for thel'ack of fit test), and since no replicates are needed. Thefihe

'‘Goodness of fit' is to assess if the sum of thaddrdized squares between the observed number of
events(Y;,,;) and the number of events predicted by the m@¥gl,) is not too big. These squares

ijobs

are called 'standardized' because they are reported residual variance. The statistic of th¢ites

Vi oo~ Yicae)
Q(n-paa =ZZ{( liisar&_C;IC) ] Equation 15
i

Theoretically, numbers of observed eve(l‘t’jgbbs) are distributed according a Binomial distribution
with parametersN; and p, (theoretical probability that an event appearsafgiven dose leve(x;) .

Numbers of events predicted by the mod¥|

jcal

) are also distributed according a Binomial
distribution; percentages of predicted eveffs) are then depending of the parameters model.

The varianceVar(Y; ;) is the one predicted by the Binomial distribution:

Var(Y;) =n, xp, x(L- p,) Equation 16

With:

- i:index of the doses
- j:index of the replicates

- P : percentages of individuals presenting the e\iehat each level of i.
The Qstatistic of theGoodness of fittest is based on the Pearson's statistic whibbwie a Chi-2
distribution withn— p degrees of freedom. If the p-value of the tesbissignificant (p-value0.05),

[STAR] 65
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor$1/10/2011



then the fit of 4 parameters log-logistic modetasidered as satisfactory. On the contrary, ifghe
value is significant (e.g., p-value<0.05), it med&mst the fit of the 4 parameters log-logistic made
not satisfactory.

In case of overdispersion, result of the test isvatid.

A very simple method can be used in order to agbespresence of an overdispersion. It consists in
comparing the ratiqg) of the Q statistic over its degrees of freedom, to the dlu

Q

n-p

Q= Equation 17

If the ratio equalsca. 1 then there is no overdispersion. If the ratiohigher than 1, then an
overdispersion is highlighted.

Concerning the reduction of the full 4 parameteosleh, since the quantal data are bracketed by the
values 0 and 1, three sub-models can be considered:

- the 3 parameters log-logistic model (LL.3), withvkr limit (‘'c' parameter) =0 and higher
limit (‘'d' parameter) <1;

- the second 3 parameters log logistic model (LL.@uth lower limit ('c' parameter) >0
and higher limit ('d" parameter) =1;

- the 2 parameters log-logistic model (LL.2), withvkr limit ('c' parameter) = 0, and higher
limit ('d' parameter) = 1.

In absence of overdispersion, the reduction ofuliel parameters log-logistic model needs the
following several steps:

- fit a restricted model with 3 parameters (LL.3 &r3u according the situations) ;

- compare its fit with the one of the full (4 paraers) model by a 'likelihood ratio'
test ;

- keep the restricted model if its fit is satisfagt{p-value of the test 0.05), or in
controversy keep the full model if the fit of thestricted model is not satisfactory (p-
value>0.05) ;

- if the restricted model is kept, do again the pssagith the restricted 2 parameters log-
logistic model (LL.2).

All the log-logistic models available are descriliedrigure 8.7.

The statistic of the 'likelihood ratio’ test useccompare the fits of two nested models is:

Restreint

R= 2Ln(MJ = Ln{Vesmpe) - LnVaearen )] Equation 18

The R statistic follows a Chi-2 distribution withdf.,ieq — dfr, ) degrees of freedom. With:

dfey =N= Peyrs
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deestricetd =n- pRestricted;

N, the number of data ;

Peu - the number of parameters of the full log-logistiodel;

Presticted - 1N€ NuMber of parameters of the restricted model.

If the p-value of thdikelihood ratid test is not significant (p-valued.05), then the fit of the restricted
model is considered as satisfactory as the onéefull model. On the contrary, if the p-value is
significant (e.g., p-value<0.05), it means thatfihef the restricted model is not as satisfactasythe
one of the full model. Thus, the restricted modekjected and the full model kept.

Once the final model is obtained, the EDp value banestimated based on this kept model (cf.
paragraph 8.3.1)

An example of complete analysis and modelling afm@notonic dose-response relationship with
gquantal observations and when no overdispersiotdas highlighted is given in annexe 8.3.5
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The strategy of analysis and modelling of monotoda@se-response relationship with quantal
observation and wheam overdispersion is highlighteds summarized in the Figure 8.3.

> Fit of the full model

|

Assessment of the quality of the fit

—

Not satisfactory fit Satisfactory fit

—

Fit of another type of full
model

Theoric arguments to

continue

Assessment of a possible
overdispersion

—

Overdispersion not

Overdispersion highlighted
highlighted

/

Choice of the final model assessing both:

cf. Figure 8.2

e The possibility to fix the lower limit to 0 looking at
the 't' test of equality to 0 of the 'c’ parameter, given
by the summary function with the od=T argument.

e The possibility to fix the higher limit to 1
by :

comparing, visually, the fit of a model with 'd’
=1 and another one with 'd'<1.

Having a look on the 'd' parameter estimate of
the model fixing 'd’ parameter <1.

l

Estimation of the EDp from the final kept model using the
od=TRUEargument in the ED function
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Figure 8.3: Strategy of analysis and modelling ohotonic dose-response relationships with quantal

data, when an overdispersion has been highlighted.

In case of overdispersion, the result of thelihood ratid test used to compare the fits of two nested
models is not valid. The used strategy is then letgit consists in estimating alternately (theeord
dependent on data):

- The equality of the lower limit to O, by using tpevalue of thet" test concerning the
parameter ' ¢ ' which is supplies by thenmary function. However, it is indispensable to
have used the argumesd=T in this last one.

- The equality of the higher limit to 1, by studyitige estimation of the parameter 'd" of in
the full previous model, and\or by comparing visuéte fits of the models fixing and not
fixing the parameter 'd' to 1. In this assessmenlly the estimation of the parameter is
considered, the use ofl=T is not thus indispensable. However it seems morefdato
always use this argument when an overdispersiorhwgadighted.

In case of overdispersion, the use of theest to assess the possibility to fix the lowenitl ('c’
parameter) to 0, in other words to reduce the drpaters model in a 3 parameters model is presented
in figure 8.4.

summary(deguelin.li4, od=T)

model fitted: log-logistic (ed50 as parameter) (4 p arms)
parameter estimates:

estimate std. error t-value p-value

b:(intercept) -3.46316 6.74243 -0.51364 0.607
c:(intercept) 0.31003 0.18623 1.66472 0.096
d:(intercept) 1.01870 0.24968 4.07996 4.504e-0
e:(intercept) 18.50393 3.44660 5.36875 7.929e-0

couou

Figure 8.4: Use of the 't' test to estimate, ireaafssurdispersion, the possibility of fixing treser
limit (‘'c' parameter) to 0, in other words the ploilisy of reducing the model of 4 parameters todgar

a model in 3 parameters.

Here, thet' test concerning the assessment of the equalitheofc' parameter to O, is not significant
(p-value=0.0960). Thus, the estimate of the 'capeter is not significantly different from 0. Hence
the use of the 3 parameters log-logistic modeligsified. The possibility of fixing the higher litndf
the curve ('d' parameter) to 1 is then studied.

The evaluation of the possibility of fixing the higr limit of the curve ('c' parameter) to 1, byually
comparing the fits of the 3 parameters ('c'=0 al'wdil: left graph) and the 2 parameters ('c'=0 and
'd'=1: right graph) log-logistic models is presentein the Figure 8.5 belaw
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Figure 8.5 : Assessment of the possibility of fekithe higher limit of the curve ('d' parameter)lidy
comparing the fits of the 3 parameters log-logistmdel (c=0 and d< 1: left graph) and of the 2
parameters log-logistic model (c=0 and d=1: rigiaipdp).

In that case, it is obvious that the fit of theéBgmeters log-logistic model leads to an over-eston
of the higher limit because the d' parameter'snedé exceeds the value 1. This is confirmed by the
outputs of thesummaryfunction because the 'c' parameter's estimate €428 (cf. Figure 8.).

summary(deguelin.li3,0d=T)

model fitted: log-logistic (ed50 as parameter) with lower limit
at 0 (3 parms)
parameter estimates:

estimate std. error t-value p-value
b:(intercept) -1.22214 0.73312 -1.66704 0.0955
d:(intercept) 1.23503 0.47594 2.59491 0.0095
e:(intercept) 14.72358 11.69516 1.25895 0.2080

Figure 8.6 : Visualization of the 3 parametersllogjstic model's estimates fitted to the ‘deguelin’
dataset.

An example of complete analysis and modelling ofanotonic dose-response relationship with
quantal observations and when an overdispersiobdes highlighted is given in annexe 8.3.6.
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8.3.3 Examples for different situations and correspondindog-logistic models

Named in .
dre' Continues data Quantal data
Decreasing Increasing Decreasing Increasing
relation relation relation relation
A y A A Y A
y d<1
LL.4
c>0 >0 b2 c>0
> |x >
A A A A
y y y y
d<1
LL.3 ° .
° [ )
c=0 — X ¢=0 ° =0 ° X
Y A
d=1
LL.3u
c>0
A y 4
d=1 d=1
LL.2 .
[ )
c=0 < =0

Figure 8.7 : Log-logistic models available in ‘dicanalyse monotonic dose-response relationships

according the type of the observations and theesbfthe relationship
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8.3.4 lllustration for DRC application to the analysis and modelling of a monotonic
dose-response relationship with continuous data

Data used in this example are those of the 'ryspdasaset included in thdr¢' add-on package.

In the following pages, commands used widit" are in red colour and the R outputs are in blue

colour. In green and bracketed by # symbols arerifgi®ns of the commands.

# loading of the drc package #

library(drc)
#opening of the help page about ryegrass dataset#
?ryegrass
#display of the ryegrass dataset#
ryegrass

rootl conc
1 7.5800000 0.00
2 8.0000000 0.00
3 8.3285714 0.00
4 7.2500000 0.00
5 7.3750000 0.00
6 7.9625000 0.00
7 8.3555556 0.94
8 6.9142857 0.94
9 7.7500000 0.94
10 6.8714286 1.88
11 6.4500000 1.88
12 5.9222222 1.88
13 1.9250000 3.75
14 2.8857143 3.75
15 4.2333333 3.75
16 1.1875000 7.50
17 0.8571429 7.50

18 1.0571429 7.50
19 0.6875000 15.00
20 0.5250000 15.00
21 0.8250000 15.00
22 0.2500000 30.00
23 0.2200000 30.00
24 0.4400000 30.00

# visualization of the data in x vs y plot #
plot(ryegrass$conc,ryegrass$rootl,lwd=2,col=3)
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ryegrass$rootl
oo 0o
o

ooo

L 1]

ryegrass$conc

# display of the dose variable levels #
levels(as.factor(ryegrass$conc))
[1] IIOII IIO.94II l|1.88ll Il3.75ll ll7.5H ll15|l II3OII

# display of the number of data per dose level #
table(as.factor(ryegrass$conc))

00.941.883.75 7.5 15 30
6 3 3 3 3 3 3

#fit of the full 4 parameters log-logistic model#
ryegrass.ll4<-drm(rootl~conc, data=ryegrass, fct=ll
# display of the parameters estimates #
summary(ryegrass.li4)

model fitted: log-logistic (ed50 as parameter) (4 p
parameter estimates:

estimate std. error t-value p-valu
b:(intercept) 2.98222 0.46506 6.41251 2.960e-0
c:(intercept) 0.48141 0.21219 2.26876 0.034
d:(intercept) 7.79296 0.18857 41.32722 3.822e-2
e:(intercept) 3.05795 0.18573 16.46440 4.268e-1

residual standard error:
0.5196256 (20 degrees of freedom)

# visualization of the fit#
plot(ryegrass.ll4,type="all",col=3,lwd=2)

20

25

30

40)

arms)

W OO O
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root

conc

# visual assessment of the residuals normality assu mption by ggplot #
ggnorm(residuals(ryegrass.ll4))
qqline(residuals(ryegrass.ll4))

Normal Q-Q Plot

10

Sample Quantiles

o

Theoretical Quantiles

Since the residuals are distributed along thegditdine, the normality assumption is accepted.

# assessment of the residual normality assumption b y a shapiro-wilk's test#
shapiro.test(residuals(ryegrass.ll4))

shapiro-wilk normality test
data: residuals(ryegrass.ll4)
w = 0.9823, p-value = 0.9345

Since the p-value is higher than 0.05, the hypathefgesidual normality is not rejected.

#visual assessment of the residual homogeneity assu mption by 'standardized
residuals vs. fitted values' plot #
plot(fitted(ryegrass.ll4),(residuals(ryegrass.ll4,t ype="standardised")))

abline(h=0,col=2)
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"standardised"))

0
@© om0 oo

(residuals(ryegrass |14, type

fitted({ryegrass I14)

There seems to be an overall increasing trend imitheasing fitted values. In others words the

variance seems to be an increasing function ohtean. Residuals homogeneity assumption is thus

rejected.

#assessment of residuals homogeneity assumption by a levene's test#

library(car) #loading of "car" package containing the levene's t est#
levene.test(residuals(ryegrass.ll4),as.factor(ryegr ass$conc))

levene's test for homogeneity of variance
df f value pr(>f)
group 6 1.9266 0.1344
17

The test is not significant (p-value>0.05), thus lomogeneity assumption is not rejected.

#assessment of residuals homogeneity assumption by a bartlett's test#
bartlett.test(residuals(ryegrass.ll4),as.factor(rye grass$conc))
bartlett test of homogeneity of variances

data: residuals(ryegrass.ll4) and as.factor(ryegra ss$conc)
bartlett's k-squared = 13.2162, df = 6, p-value =0 .03973

The p-value is significant (e.g. <0.05), thus tbhenbgeneity assumption is rejected. Taking in actoun
this latest results and the pattern of the resglualthe "standardized residuals vs. fitted" plot,
residuals homogeneity assumption is finally rejgcté Box-Cox transformation could be used in

order to try to improve the homogeneity.

# use of a box cox both side transformation #
ryegrass.ll4bc<-boxcox(ryegrass.ll4)

The latest command permits both to use the box-cox transformation and
to fit the model.
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# display of the estimates obtained with the box co x transformation #
summary(ryegrass.ll4bc)

model fitted: log-logistic (ed50 as parameter) (4 p arms)
parameter estimates:

estimate std. error t-value p-valu
b:(intercept) 2.61839 0.39151 6.68795 1.649e-0
c:(intercept) 0.39083 0.10429 3.74744 0.001
d:(intercept) 7.86633 0.29558 26.61364 2.176e-1
e:(intercept) 3.01662 0.21005 14.36124 5.354e-1

N~NWOo D

residual standard error:
0.2962958 (20 degrees of freedom)

non-normality/heterogeneity adjustment through opti mal box-cox
transformation

estimated lambda: O.m 4//\

confidence interval for a: [0.269,0.949]

Estimate of the
Box Cox lambda

parameter
# visualization of the fit#
plot(ryegrass.ll4bc,type="all",col=3,lwd=2)
0 1 10
Fit seems to be good since the curve is closd theabbserved points.
# visual assessment of the residuals normality assu mption #
ggnorm(residuals(ryegrass.ll4bc))
qgline(residuals(ryegrass.ll4bc))
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Normal Q-Q Plot

Sample Quantiles

T T T T T
-2 -1 0 1 2

Theoretical Quantiles

Globally, points are always distributed along ttraight line, the normality assumption is accepted.
# assessment of the normality residuals assumption by an evaluation de

shapiro-wilk's test#

shapiro.test(residuals(ryegrass.ll4bc))

shapiro-wilk normality test
data: residuals(ryegrass.ll4bc)
w = 0.9716, p-value = 0.7066

The test is again not significant, thus residualsnmality assumption is not rejected.

#visual assessment of the residuals homogeneity ass umption #
plot(fitted(ryegrass.ll4bc),residuals(ryegrass.ll4b c, type="standardised"))
abline(h=0,col=2)

"standardised")

residualsiryegrass.|4BC, type
1
o

T T T T
1 2 3

o

fitted({ryegrass I4BC)

Now, there is no more an overall increasing treitth Wmcreasing fitted values. Residuals seem to be
distributed on both side of O (the red line) fdrthk fitted values levels. Thus residuals homodgne

assumption is no more rejected.

[STAR] 77
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



#residuals homogeneity assumption by levene's test#
levene.test(residuals(ryegrass.ll4bc),as.factor(rye grass$conc))

levene's test for homogeneity of variance
df f value pr(>f)

group 6 1.529 0.2282
17

# residuals homogeneity assumption by bartlett's te st #

bartlett.test(residuals(ryegrass.ll4bc),as.factor(r yegrass$conc))
bartlett test of homogeneity of variances

data: residuals(ryegrass.ll4bc) and as.factor(ryeg rass$conc)

bartlett's k-squared = 9.1898, df = 6, p-value = 0. 1632

With the Box-Cox transformation both tests are sighificant. Thus, after Box-Cox transformation,

the residuals homogeneity assumption is no moeetegj.

#visual assessment of the fit of the 4 parameters | og-logistic model with
box cox transformation#

plot(ryegrass.ll4bc,type="all",col=3,lwd=2)

rootl

conc

The fit seems to be satisfactory since the cunedosed to all the points.

#visual assessment of the fit of the 4 parameters | 0g-logistic model with
box cox transformation by the use of a 'residuals v s. fitted' plot#
plot(fitted(ryegrass.ll4bc),residuals(ryegrass.ll4b c))

abline(h=0,col=2)
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fitted({ryegrass. IMBC)

Whatever the fitted value, residual are globallifarmly distributed on both sides of the red linfeOo
y-axis. Thus the fit seems satisfactory.

#assessment of the fit's quality by 'lack of fit' t est#
modelfit(ryegrass.ll4bc)

lack-of-fit test

modeldf rss df f value p value
anova 17 1.4292
drc model 20 1.7558 3 1.2949 0.3084

Since the p-value is higher than 0.05, 'theek of fit'test is not significant. Thus, the 4 parameters log
logistic model is acceptable. Next, the reductibthe full 4 parameters log-logistic model is goiiag
be undertaken. For this, the 3 parameters logtiogisodel (saying that lower limit, e.g. 'c' paraare

= 0) is fitted.

# fit of the 3 parameters log-logistic model (lower limit, e.g. 'c'
parameter = 0) with box cox transformation #
ryegrass.lI3bc<-drm(rootl~conc,data=ryegrass,bcval= 0.5,fct=11.3())

bcval argument permits to give the Box-Cox lambda vahseit was determined previously when

using theboxcox function.

Theupdate function can also be used.
ryegrass.lI3bchis<-update(ryegrass.ll4bc, fct=I1.3( )

# visualization of the fit #
plot(ryegrass.lI3bc,col=3,lwd=2,type="all")
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Visually the fit seems to be satisfactory.

# comparison of the 4 and 3 parameters log-logistic models' fit by the f
test#
anova(ryegrass.ll4bc,ryegrass.li3bc)

1st model
fct: 11.3()
2nd model
fct: 11.4()
anova table

modeldf rss df f value p value
2nd model 21 2.8883
1st model 20 1.7558 1 12.9002 0.0018

The F' test is significant (p-value < 0.05). The fitthe 3 parameters log-logistic is then significantly
less satisfactory than those of the 4 parametédmss,Tit's the 4 parameters log-logistic model whch

kept in order to estimate the EDp values.

#estimation of the ec10, ec25 and ec50 with their s tandard error and their
95% confidence interval)

ed(ryegrass.ll4bc,c(10,25,50),interval="delta")

estimated effective doses

(delta method-based confidence interval(s))
estimate std. error lower upper

10 1.30341 0.21405 0.85690 1.7499

25 1.98290 0.21698 1.53029 2.4355

50 3.01662 0.21005 2.57846 3.4548

For more details about the ED function and its arguts, see the ED help page using the following

command?ED
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8.3.5 Example of DRC application to the analysis and modkng of a monotonic dose-

response relationship with quantal data in absencef overdispersion

The data used in this example are those of théhlgarms' dataset included in thikec' packageMore

derails about this dataset are given in its hefgepavhich can be consulted usihgarthworms

command.

# loading of the 'drc' package #
library(drc)

ew<-earthworms  # permits to give a shorter name to the dataet #
ew #display of the dataset#

dose number total
0.00
0.00
0.00
0.00
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# visualization of the data #
plot(ew$dose,ew$number/ews$total)
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ewdnurmberew$total
04 a6

0z

00

enddose

#fit of the full 4 parameters log-logistic model#

ew.ll4<-drm(number/total~dose, weight=total, data=e

type="binomial",fct=Il.4())

#display of the estimates' parameters#

summary(ew.ll4)

model fitted: log-logistic (ed50 as parameter) (4 p

parameter estimates:

estimate std. error t-value p-valu
b:(intercept) 4.243855 3.155072 1.345090 0.178
c:(intercept) 0.023154 0.014404 1.607473 0.108
d:(intercept) 0.489633 0.083342 5.874965 4.229¢e-0
e:(intercept) 0.417026 0.081438 5.120804 3.042e-0

arms)

~NOOoo
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When observations are quantal data, it is needadséothetype="binomial" argument in thedrm

function in order to precise the type of the daBoreover, it is also needed to precise the numibef

individual through theweight=total argument. This information is used by the likelihood methad
estimate the model's parameters and above allgtagidard error; since a percentage of event obderith
2 individuals is not the same situation than ag@etage observed with 200 individuals.

# visual assessment of the fit's quality #
plot(ew.ll4,type="all", col=3,lwd=2)

06

numberitotal

doge

Globally, the fit seems to be good despite a weskagthe control level.

# other visual assessment of the model's fit qualit y by a residuals vs.
predicted values plot#

plot(fitted(ew.ll4),residuals(ew.l14))
abline(h=0,col=2,lwd=2)
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fitted(ew li4)

For each level of predicted response (abscissy, atabally residuals are uniformly spread bothesid
of the red line (0 y axis) ; except those concagrtine higher predicted percentage for which all the

residuals are higher than 0. This phenomenon weaady observed in the previous graph.

#assessment of the fit(s quality by a '‘goodness of fit' test #
modelfit(ew.ll4)

goodness-of-fit test
df chisqg value p value

drc model 31 26.444 0.6998

The'Goodness of fitest is not significant (p-value > 0.05). Takimgaiccount this result and those of
the previous graph, the 4 parameters log-logistdehseems satisfactory.

# asessement of a possible overdispersion #

R= 26444

=1. No overdispersion is brought to light. thus theaosion of theégoodness of fit'

test remains valid.

# first reduction of the full 4 parameters log-logi stic model#

# fit of the first restricted model, i.e., the 3 pa rameters log-logistic
model for which the lower limit ('c'parameter is fi xed to 0) #
ew.lI3<-update(ew.ll4,fct=I1.3()) # the update function permits tofit

very easily a model from a previous' one#

summary(ew.lI3)

model fitted: log-logistic (ed50 as parameter) with lower limit at O
(3 parms)
parameter estimates:

estimate std. error t-value p-valu
b:(intercept) 1.505679 0.338992 4.441641 8.928e-0
d:(intercept) 0.604929 0.085800 7.050498 1.783e-1

N O D
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e:(intercept) 0.292428 0.083895 3.485636 5e-0 4

# visulaization of the ew.lI3 model's fit#
plot(ew.lI3, col=3,lwd=2,type="all")

numberftotal

dose

This fit is more satisfactory at the control leydbse=0) than the fit of the full 4 parameters log-
logistic model.

Since no overdispersion was highlighted with tHerfwdel, fits of the 4 and 3 parameters log-lagist
model can be compared by thikelihood ratio'test.

# likelihood ratio test#
anova(ew.ll4,ew.lI3)

1st model
fct: .40
2nd model
fct: 11.3()
anova-like table
modeldf loglik df Ir value p value
1st model 4 -34.670
2nd model 3-36.155 1 2.970 0.0848

Since the test is not significant (p-vah®05) the fit of the 3 parameters log-logistic momeas
satisfactory as those of the 4 parameters logtiogimodel. According the Parsimony rule, the 3

parameters log-logistic model is kept, and a seceddction is going to be done.

# second reduction of the full 4 parameters log-log istic model#
#fit of the 2 nd restricted model, i.e., fit of the 2 parameters log logistic
model (e.g. with lower limit (c parameter) = 0 and higher limit (d

parameter) =1 #
ew.lI2<-update(ew.ll4,fct=I1.2())

# display of the estimates#
summary(ew.l12)

model fitted: log-logistic (ed50 as parameter) with lower limit at O
and upper limit at 1 (2 parms)
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parameter estimates:

estimate std. error t-value p-valu
b:(intercept) 1.260321 0.246707 5.108564 3.246e-0
e:(intercept) 0.145140 0.036797 3.944389 1le-0

AN

# visualization of the plot #
plot(ew.ll2, col=3,lwd=2,type="all")

number/total

dose

The fit of this model is not satisfactory at theatol's level.

# comparison of the 3 and 2 parameters log-logistic models #
anova(ew.ll2,ew.lI3)
1st model
fct:  1.2()
2nd model
fct: 1.3()
anova-like table
modeldf loglik df Ir value p value
1st model 2 -347.55
2nd model 3 -36.16 1 622.79 0

The test is significant (p-valued), then the 2 parameters log logistic model'ssfitot as satisfactory
as those of the 3 parameters model. Thus, the @neters model is rejected and the 3 parameters

model is kept. And then, the 3 parameters modélbeilused to estimate the EDp parameters.

# estimation of the ed5, ed30 et ed85, for example#
ed(ew.lI3,c(5,30,85),interval="delta")

estimated effective doses
(delta method-based confidence interval(s))

estimate std. error  lower upper
5 0.041374 0.027118 -0.011776 0.0945
30 0.166581 0.062886 0.043327 0.2898
85 0.925430 0.225137 0.484169 1.3667

[STAR] 86
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



8.3.6 Example of DRC application to the analysis and modkng of a monotonic dose-
response relationship with quantal data in presencef overdispersion

The data used in this example are the ones ofltigrielin dataset included in thért' package. These
data come from a study which aim is to assess ¢tienaof thedeguelinon theMacrosiphoniella
sanbornispecies. The predictive variable is the inseatiaddse, 6 doses were used. The total number
of insects put in touch with the insecticide isaded in the variable 'n'. The number of dead itssisc
reported in the variable 'r'. The observed and thedieariable is the percentage of dead insects (‘'n
'r"). For each dose, there are no replicates. lyittzé dataset contains 6 couples of dose-respasise

In the presence of replicates the approach wouktrimly identical to that presented below.

library(drc) # loading of the 'drc' package#
deg<-deguelin #permits to give a shorter name to the dataset#
deg #displaying of the dataset#

dose log1l0dose r n

1 5128614 0.7116 49
210.000000 1.00 18 48
320.417379 1.313448
430.199517 1.4847 49
540.738028 1.6147 50
650.118723 1.70 48 48

# visualization of the data #
plot(deg$dose,deg$r/deg$n,lwd=2, col=3)

deg$rideg$n
a5 a6 a7 08 (0ke] 10
1 1 1 I

04

03

T T T T T
10 20 30 40 50

degfdose

# fit of the full 4 parameters log-logistic model #

deg.ll4<-drm(r/n~dose, weight=n, data=deg, type="bi nomial",fct=I1.4())
summary(deg.ll4)
model fitted: log-logistic (ed50 as parameter) (4 p arms)

parameter estimates:

estimate std. error t-value p-valu e

b:(intercept) -3.46316 4.56542 -0.75856 0.448 1

c:(intercept) 0.31003 0.12610 2.45854 0.014 0

d:(intercept) 1.01870 0.16907 6.02548 1.686e-0 9

e:(intercept) 18.50393 2.33375 7.92882 2.216e-1 5
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When observations are quantal data, it is necedeamge thelype="binomial" argument in thedrm
function in order to precise the type of the dé#tés also necessary to give the total number cleobations
by the way of theveight=n argument.drc' package needs both information in order to givedequate
estimation of the parameters, and above all of gtandard error.

# visual assessment of the fit's quality#
plot(deg.ll4,lwd=2,col=3)

09

05

07

rin

06

05

04

03 — T

dose

Globally, the fit seems satisfactory.

# visual assessment of the fit's quality by a 'resi duals vs fitted' plot #
plot(fitted(deg.ll4),residuals(deg.ll4))
abline(h=0,col=2,lwd=2)

0.04
|

0.02
|

0.00

residuals(deg [14)
[+]

-0.02

03 04 05 06 07 08 09 1.0

fitted{deg I4)
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Globally, the residuals are randomly distributedbath sides by of the line of O Y-axis, thus the fi

seems satisfactory.

#assessment of the quality of the fit by a ‘goodness of fit' test #
modelfit(deg.ll4)

goodness-of-fit test
df chisqg value p value
drc model 2  4.3622 0.1129

The 'Goodness of fittest is not significant (p-vale®.05). Taking in account this result and the
previous graphs, the fit of the full 4 parametexglogistic model is satisfactory.

#assessment of the possible overdispersion #

43622

R = 218. The ratio is widely higher than 1, thus an overelispn is highlighted. This

has three major consequences:

- the'Goodness of fitest previously done is not valid. Neverthelelss,quality of the fit is

always considered as satisfactory considering idual’assessment.

- the'likelihood ratio' test permitting to compare the fit of two nesteddels couldn't be

used ;

It will be necessary to specify the presence ofaerdispersion in theummary andED functions,

using theod=T argument,in order to apply a correction to the parameteasddrd error's estimates.

#displaying of the parameters'estimates#
summary(deg.ll4, od=t)

model fitted: log-logistic (ed50 as parameter) (4 p arms)
parameter estimates:

estimate std. error t-value p-valu
b:(intercept) -3.46316 6.74243 -0.51364 0.607
c:(intercept) 0.31003 0.18623 1.66472 0.096
d:(intercept) 1.01870 0.24968 4.07996 4.504e-0
e:(intercept) 18.50393 3.44660 5.36875 7.929¢e-0

[ocN ) N &) N¢))

From these estimations, two remarks can be domsthyfisince 'd' parameter's estimate is slightly
superior to 1, then the higher limit seems to e &bbe fixed to 1. Secondly, the lower limit Sessim

be able to be fixed to 0 because the p-value ottmeesponding"test is not significant (p—value
0.05).

#first reduction of the full model — fit of the 3 p arameters log-logistic
model fixing the higher limit ('d' parameter) to 1 #
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deg.ll3u<-update(deg.ll4,fct=I1.3u()) # the update function permits to
easily fit a new model from a previous one#

summary(deg.ll3u, od=t)

model fitted: log-logistic (ed50 as parameter) with upper limit at 1
(3 parms)
parameter estimates:

estimate std. error t-value p-va lue
b:(intercept) -4.136805 1.154850 -3.582116 3e -04
c:(intercept) 0.323801 0.068429 4.731937 2.224e -06
e:(intercept) 18.603779 2.522874 7.374041 1.655e -13

Having fixed the 'd' parameter to 1, the 't' temtaerning the parameter 'c' is become significant (
<0.05). Thus, It is not justified to reduce onceiagthe model by fixing the lower limit to 0. The
reduction of the full model stops in this stageeTBCp parameters will be estimated from the 3
parameters log-logistic model.

# visulization of the ew.lI3's fit #
plot(deg.ll3u, col=3,lwd=2,type="all")
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Visually, the fit of the 3 parameters log-logistodel is satisfactory. By the end ECp% are estithate

from this 3-parameters log-logistic model.

# for example, estimation of the ed5, ed30 and ed85 #
ed(deg.ll3u,c(5,30,85), od=t, interval="delta")

estimated effective doses

(delta method-based confidence interval(s))
estimate std. error lower upper

5 0.1303 2.8536 3.5374 14.723

30 15.1583 2.7584 9.7519 20.565

85 28.2947 2.6303 23.1394 33.450
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8.4 Hormetic models

8.4.1 Strategy of analysis and modelling of hormetic rel@onship, when observed
response are continuous data

The first aim of the hormetic dose-response mauglis generally to assess the significance of the
hormesis effect. This assessment is based on thparson of the fits of a 'hormesis' model and its
corresponding log-logistic model. Indeed, these efmdre nested (cf. 0), and their difference comes
only from the added 'f' parameter of the 'hormes@lel, which characterizes this effect.

Hormesis dose-response relationship modellingage ©f continuous observations, contains 7 steps:
1) Fit of all the available full hormesis models (5gaeters models)

2) Selection of the best full hormesis model using efisdfit visualization and / or lowest
residual variance

3) Assessment of the residual normality and homoggreisumptions (with use of a Box-Cox
transformation if needed)

4) Assessment of the quality of the model
5) If possible, reduction of the best full hormesisdmio

6) Assessment of the hormesis effect by comparisonthef fits of the 'hormesis’ and
corresponding log-logistic models by 'F test' fested models

7) Estimation of the EDp and their standard error {sdew).

The strategy of analysis and modelling of hormetase-response relationship with continuous
observations is summarized in Figure 8.8.
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Fit of all the available full hormesis models

|

Selection of the best full hormesis model
(visual assessment, lowest residual variance)

Assessment of the residual normality and homogeneity assumptions

At least one of the two assumptions are Both assumptions are accepted
L rejected l

Assessment of the model's fit quality

4/\

Not satisfactory fit Satisfactory fit

—

Fit of another type of full Theoretical arguments
hormesis model to continue

N\

If possible, reduction of the
best full 'hormesis’ model

(fit of restricted models)

)

Comparison of full and
restricted models’ fit

A/\>

Non significant 'F' Test
(p-value >0.05)

Fit of the 3 parameters
log-logistic model

\

Non Significant 'F’ Test
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hormesis effect is not significant

!

Estimation of EDp and their
standard error from the kept
log-logistic model

the restricted model is kept

Significant 'F' Test
(p-value <0.05)
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Fit of the 4 parameters
log-logistic model

/

Comparison of the fits of the kept
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/\
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Figure 8.8: Strategy of analysis and modelling@iiesis dose-response relationships with

continuous data.
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The number of full ‘hormesis’ models which canitted depends on the shape of the dose-response
relationship to be modelled (cf. Figure ):

« If the relationship has an ‘inverted U' shape, #héuall 'hormesis’ models (with 5 parameters)
can be fitted:

= the Brain-Cousens' model (BC.5),
= the 3 models of Cedergreen-Ritz-Streibig : CRSERS.5b, CRS.5¢.
« If the relationship has a 'U' shape :

= only the 3 full Cedergreen-Ritz-Streibig's mod&l€RS4a, UCRS4b, UCRS4c.

The use of these models can leads to more or W&fastory fit, but difficulty predictable. Our
approach will be to try them all, and to use the @rhich is better adapted to the data. Since these
models are not nested, their fits can't be diremtiypared by a statistical test. The kept fullnhesis’
model will be the one for whom the fit will be vesly the best. Generally this model has also the
lower residual variance. In case of not concordare®etter to choose the model having visually th
best fit (cf.annexe 8.4.4)

Assessment of residual normality and homogeneisuraptions and Box-Cox transformation are
described in paragraph 8.3.1. It is important tteribat after the use of a Box Cox transformattas i
needed to visualize the fit of the best full 'hosisemodel in order to check that the hormesiscefte
still well fitted (cf.annexe 8.4.4)

Assessment of the quality of the fit is generalpne visually and completed by leatk of fit test.
These approaches are described in details in @gla@:.3.1.

Reduction of full 'hormesis' model concerns onlg timverted U' shaped relationship. Firstly, the 4

parameters sub-model (e.g. with 'c' parameter sffesponding to the kept 5 parameters 'hormesis'
model (the best full model), is fitted. Secondhge fits of the 5 parameters and 4 parameters hismes

models are compared by an 'F' test for nested sodel

- If the test is not significant (p-valee0.05), then the fit of the 4 parameters modesis a
satisfactory that the one of the 5 parameters meaael so the restricted model is kept
(according to the Parsimony rule).

- On the contrary, if the test is significant, (pwek0.05), then the fit of the 4 parameters
'hormesis’ model is less satisfactory than theabriee 5 parameters model, and so the full
model is kept.

It is important to note that it is needed to vi&zethe fit of the reduced model in order to chekt
the 'hormesis’ effect is still well described.

Assessment of the 'hormesis' effect is based ocdmparison of the fits of the 'hormesis' model and
its corresponding log-logistic model. Hence, attfit is question of fit the log-logistic model
corresponding to the kept 'hormesis' model:

« if the relationship has an ‘inverted U’ shapes it i
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= the 4 parameters log-logistic model if the keptrhesis’ model contains 5 parameters.

= the 3 parameters log-logistic model if the keptrinesis' model contains 4 parameters
(lower limit, e.g. 'c' parameter = 0).

« if the relationship has a 'U' shape, it is oblig#tdhe 4 parameters log-logistic model.

In a second phase, fits of the kept 'hormesis' inadd its corresponding log-logistic model are
compared, using an 'F' test for nested modelpérhgraph 3.2.3).

- if the test 'F' is not significant (p-vala®.05) then the 'f' parameter of the 'hormesisceffe
is not significant. Thus the hypothesis of a 'haisieeffect is rejected.

- if the test 'F' is significant (p-value <0.05) thitve 'f' parameter of the 'hormesis' effect is
significant. Thus the hypothesis of a 'hormesigafis not rejected.

Estimates of EDp% of the Brain-Cousens model arwiodd solving the following equation
(Cedergreen en al, 2005):

d-c+ fEDp :c+[ b
1+ exdb(log(EDp) - Iog(e))]

Estimates of EDp% of the Cedergreen-Ritz-Streibigdels are obtained solving the following
equation (Cedergreen en al, 2005):

1- d —¢) Equation 19
100)( ) Eq

o d-c+ f exp1/x) — C+(1_Ljd Equation 20
1+ exgb(log(x) - log(e))] 100

In both cases, uncertainty of EDp% is estimatedgugie delta-method (Cedergreen en al, 2005).

An example of a complete analysis and modellingadhormetic' dose-response relationship with
continuous observation is given in annexe 8.3.4.

8.4.2 Strategy of analysis and modelling of hormetic rel@onship, when observed
response are quantal data

Definition of quantal data is given in paragrapB.8. A reminder of the estimation of the parameters
their uncertainty and the hypotheses needed farvhhdity is present in the same paragraph.

The first aim of the of hormetic dose-response imgeis generally to assess the significance ef th
hormesis effect. This assessment is based on thparson of the fits of a ‘hormesis' model and its
corresponding log-logistic model. Indeed, these el®dre nested (cf. paragraph 3.2.3), and their
difference comes only from the added 'f' parametéine 'hormesis' model which characterizes this
effect.

Hormesis dose-response relationship modellingage of quantal observations, contains 7 main steps:
1) Fit of all the available full hormesis models (5aaeters) ;

2) Selection of the best full hormesis model using etisdit visualization and / or highest log-
likelihood value;
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3) Assessment of the quality of the model ;
4) Assessment of a possible overdispersion ;
5) If possible, reduction of the best full hormesisdw®io;

6) Assessment of the hormesis effect by comparisonthef fits of the 'hormesis’ and
corresponding log-logistic models by 'F test' fested models ;

7) Estimation of the EDp% and their standard error.

The management of steps 5 ad 6 will be differeahibverdispersion is highlighted or not, at thegpst
4.

The strategy of analysis and modelling of hormedizse-response relationship with quantal
observation and when no overdispersion has bedétidiged is summarized in the figure 8.9.
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»  Fit of all the full 'hormesis’ model available

}

Selection of the best full 'hormesis' model
(visual assessment,log likelihood)

Assessment of the quality of the model

4/\

Not satisfactory fit Satisfactory fit
Fit of another type of Theoric argument l
full 'hormesis' model (biological, historical) Assessment of a possible

to continue overdispersion

—

Overdispersion not Overdispersion is
highlighted highlighted

Reduction of the model

(fit of a restricted model corresponding to
the full selected model)

}

Comparison of the full and restricted

cf. Figure 8.10

models’ fits.
Not significant 'likelihood ratio’ test Significant 'likelihood ratio’ test
(p-value>0.05) (p-value<0.05)
The restricted model is kept The full model is kept
Fit of the 3 parameters log- Fit of the 4 parameters log-
logistic model logistic model

!

Comparison of the kept hormesis and log-logistic models’ fits

—

Non significant likelihood ratio test Significant likelihood ratio test
(p-value >0.05) hormesis effect is not (p-value <0.05)hormesis effect is
significant significant l
Estimation of the ECp% and their Estimation of the ECp% and their
uncertainty from the kept log-logistic uncertainty from the kept hormesis
model model
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Figure 8.9 : Strategy of analysis and modellinthofmetic' dose-response relationships with quantal

data, when there is no overdispersion.

The management of steps 5 ad 6 is different ihardispersion is highlighted or not at the step 4.

First of all, in case of quantal (binary) obsereati, independence hypothesis is accepted or rdjecte
only on the basis of the experimental design. Tliteis needed to precise the quantal type of the
observation using theype="binomial"argument in the drm function. It is also necessargive the
total number of observations by the way of theight=n argument. 'drc' package needs both
information in order to give an adequate estimatibthe parameters, and above all of their standard
error.

The number of full 'hormesis' models which can belépends on the shape of the dose-response
relationship to be modelled (cf. Figure ):

« If the relationship has an ‘inverted U' shape, #héuall 'hormesis’ models (with 5 parameters)
can be fitted:

= the Brain-Cousens' model (BC.5),
= the 3 models of Cedergreen-Ritz-Streibig: CRS.®$6b, CRS.5c.
* If the relationship has a 'U' shape :
= only the 3 full Cedergreen-Ritz-Streibig's mod&l€RS4a, UCRS4b, and UCRSA4c.

The use of these models can leads to more or W&fastory fit, but difficulty predictable. Our
approach will be to try them all, and to use the @rhich is better adapted to the data. Since these
models are not nested, their fits can't be diremtiypared by a statistical test. The kept fullnhesis’
model will be the one for whom the fit will be vesly the best. Generally this model has also the
higher log-likelihood value. In case of not conamde it's better to choose the model having viguall
the best fit.

Assessment of the fit's quality is generally dorsially. Thus, two plots can be done: the first one
showing the observed data with the fitted moded, dther being a plot of the residuals vs. theditte
values. This visual assessment can be completaddnodness of fitest (cf. paragraph 8.3 .2).

The presence of a possible overdispersion (defasedn observed variance higher than the variance
predicted by the Binomial distribution) has to lssessed. Indeed, in case of overdispersion thiésesu
of the 'likelihood ratio’ test and of the 'Goodnes$dit' test are not valid, and the estimationtlo¢

parameters' uncertainty are biased. The descrijygach consists in comparing the rafi) of the
Q statistic over its degrees of freedom, to 1 (cii&apn 17). If the ratio approximately equals Erth
no overdispersion is highlighted. If the ratio ighter than 1, then an overdispersion is highlighted

In case of overdispersion, estimation of parametersertainty has to be corrected using deT
argument in theummaryandED functions

If there is no overdispersion is highlighted, tl&uction of the full model contains the following

several steps:
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« Inafirst time, it is question of fitting the rested 4 parameters model. When observed
responses are quantal data, reduction concernsbagtes of curves :

= when the relationship has a 'inverted U' shaperasigicted model is the one
specifying that the lower limit (‘c' parameter) £€f, Figure ).

= when the relationship has a 'U' shape, the restrictodel is the one specifying that
the higher limit ('d' parameter) =1 (cf. Figure ).

In a second time, since full and restricted 'hoigi@sodels are nested, their fits are comparechby t
likelihood ratio’ test :

= if the test is not significant (p-vale®.05), then the fit of the restricted 4 parameters
model is as satisfactory as the fit of the fullé&Bameters model. According the
Parsimony rule, the restricted 4 parameters madetpt.

= if the test is significant (p-value<0.05), then thef the restricted 4 parameters
model is less satisfactory than the fit of the fuparameters model. Thus the kept
model is the 5 parameters model.

Assessment of the hormesis effect is based ondimparison of the fits of the 'hormesis' model and
its corresponding log-logistic model:

« In a first time, it's question of fitting the logdistic model corresponding to the kept hormesis
model. This is :

= the 4 parameters log-logistic model if the keptrhesis' model has 5 parameters;

= the 3 parameters log-logistic model if the keptrinesis' model is a restricted one
with 4 parameters. In this case, if the curve has a

'inverted U’ shape, then the lower limit ('c" paeden) is fixed
to O (cf.Figure);

- 'U'shape, then the higher limit (‘'d' parametefixisd to 1 (cf.Figure ).

* In a second time, since the 'hormesis’' and logstimgnodels are nested, their fits are compared
by a 'likelihood ratio’ test :

= |f the test is not significant (p-vale8.05), then 'f' parameter of the hormesis effect is
not significantly different from 0. In other wortlse presence of a hormesis effect is
rejected.

. On the contrary, if the test is significant (p-ved.05), then 'f' parameter of the
hormesis effect is significantly different froml@.other words the presence of a
hormesis effect is accepted.

Estimation of the EDp% is described in the paragi&g.1.
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The strategy of analysis and modelling of hormeatizsse-response relationship with quantal
observation an@hen an overdispersion has been highlighteid summarized in the figure 8.10.

Fit of all the available full 'hormesis’ models

!

Selection of the best full 'hormesis’ model
(visual assessment + 'log-likelihood test

.

Assessment of the model's fit quality

—

Satisfactory fit

-

Not satisfactory fit

Fit of another full

Theoretical argumentS\
'hormesis’ model

- Assessment of a possible
to continue

overdispersion

—

No overdispersion overdispersion
highlighted highlighted
(cf.Figure ) /

Reduction of the model : fit of the restricted model corresponding to the full selected model:
‘inverted U’ shape : assessment of the possibility to fix the lower limit ('c’
parameter) to 0, using the p-value of the t test of the summary function used with
the od=T argument.

‘U’ shape : assessment of the possibility to fix the higher limit ('d’ parameter) to 1
by visual comparison of the fits of the full and restricted models + consideration of
the higher limit estimate ('d' parameter) in the full model

—

Reduction done Reduction not done

— ~

Assessment of the hormesis from the 4
parameters model using od=T in the summary

function

't' test corresponding to
the 'f' parameter is non the 'f' parameter is
significant (pvalue>0.05) significant (pvalue<0.05)

| |

Not significant significant
hormesis effect hormesis effect

" |

't test corresponding to

Assessment of the hormesis effect from the 5
parameters model using od=T in the summary

function

't' test corresponding to
the 'f' parameter is non the 'f' parameter is
significant (pvalue>0.05) significant (pvalue<0.05)

| |

Not significant significant
hormesis effect hormesis effect

| |

't' test corresponding to

Estimation of the EDp%
from the reduced log-

Estimation of the EDp%
from the reduced

Estimation of the EDp%
from the full log-

Estimation of the EDp%
from the full hormesis

logistic model hormesis model logistic model model

[STAR] 100
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor1/10/2011




Figure 8.10 : Strategy of analysis and modellinthofmetic' dose-response relationship with quantal
data, when there is an overdispersion.

When an overdispersion has been highlighted, thdtref the 'likelihood ratio’ test used to compare
the fit of two nested models is no valid anymorkud, the strategy used to reduce the full hormesis
model is rougher and is different according toghape of the dose-response relationship to be
modelled:

- when the relationship has a 'inverted U' shapepdissibility to fix the lower limit ('c’
parameter) will be assessed using the p-valueeot'ttest given by theummary
function, used with thed=T argument. If the test is not significant (p-vak@®05), then
the restricted 4 parameters model is kept. Inrikierse case, it's the 5 parameters model
which is kept.

- when the relationship has a 'U' shape, the poggitnl fix the upper limit (‘'d' parameter)
will be assessed comparing the fits of the 5 apdrameters 'hormesis' model. The
estimate of the 'd’' parameter can also be usedXamnple, if the estimate is higher than 1,
or slightly lower than 1, then the upper limit coblde fixed to 1. And the 4 parameters
model is kept.

Concerning the assessment of the hormesis efféetn an overdispersion has been previously
highlighted, the comparison of the hormesis anddgistic models' fit can't be done directly by the
'likelihood ratio’ test. Thus, in this situatiohethormesis effect can be assessed using the g-oflt
test corresponding to the 'f' parameter providethegummary function, used with thed=T
argument :

- If the test is not significant, then the hormedfeat will be considered as non significant,
and the restricted model will be is for the estioabf the EDp%.

- Inthe inverse case, hormesis effect will be cargd as significant and the 5 parameters
model will be used to estimate the EDp%.

Estimation of the EDp% is described in the paragi@g.1.
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8.4.3 Different hormesis situations and corresponding Bran-Cousens and Cedergreen-
Ritz-Streibig models

Inverted U shaped curves
Name of the models Continuous data Quantal data
Vv A A
CRS.5a() q
- d<ie--
CRS.5b()
CRS.5¢()
>C ¢ - . <--
BC.5() c>C 0 » c>C X
0 >
A A
CRS.4a() v
‘, -
CRS.4b() d d<le--
CRS.4c()
BC.4() c=C > X
X c=C >
U shaped curves
Continuous data Quantal data
Y y 4
d <-- --- d<1<-- -
UCRS.5a()
UCRS.5b()
>(Ce--§
UCRS.5c¢() et c>CE -
0 ¥ X
0 >
VA
d=1<—
No models directly
available c>(e--
X
O >

Figure 8.11 : available models in 'drc' to analysametic dose-response relationships according the
type of the observations and the shape of theaakdtip.
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8.4.4 Example of DRC application to the analysis and modkng of a hormesis dose-
response relationship with continuous data

Data used in this example arte those of lituce dataset included in thdrt' package. These data
come from an experiment which aim was to assesskiigitory action of thesobutanol(dissolved in

a solution of nutriments) on the biomass of letsjceeasured after 21 days of exposure.

The observed variable is the mass of lettuce legvesight' variable). Seven concentrations of
isobutanolhave been tested. Two replicates are reporteddadn concentration. Finally the dataset is
composed of 14 dose-response couple.

#opening of the help page of the lettuce dataset#
?lettuce

# display of the dataset#
lettuce

conc weight
0.00 1.126
0.00 0.833
0.32 1.096
0.32 1.106
1.00 1.163
1.00 1.336
3.20 0.985
3.20 0.754
10.00 0.716
10 10.00 0.683
11 32.00 0.560
12 32.00 0.488
13 100.00 0.375
14 100.00 0.344

OCO~NOUITRAWNEF

# visualization of the experimental points #
plot(lettuce$conc,lettuce$weight,log="x")

10 12

lettucedweight
a8
1

oo

04

]
o

T T T T T T T T
05 10 20 50 100 200 500 1000

lettuce$cone

#fit of the de 5 parameters brain-cousens' model #
lettuce.bc5<-drm(weight~conc,data=lettuce,fct=bc.5( )

[STAR] 103
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



summary(lettuce.bc5b)

model fitted: brain-cousens (hormesis) (5 parms)
parameter estimates:

estimate std. error t-value p-va
b:(intercept) 1.502065 0.352231 4.264439 0.0
c:(intercept) 0.280173 0.248569 1.127142 0.2
d:(intercept) 0.963030 0.078186 12.317149 6.164e
e:(intercept) 1.120457 0.612908 1.828100 0.1
f:(intercept) 0.988182 0.776136 1.273207 0.2

residual standard error:
0.1149117 (9 degrees of freedom)

# fit of the 5 parameters cedergreen-ritz-streibig'
lettuce.crsba<-drm(weight~conc,data=lettuce,fct=crs

summary(lettuce.crsb5a)

model fitted: cedergreen-ritz-streibig (5 parms)
parameter estimates:

estimate std. error t-value p-va
b:(intercept) 1.334285 0.358663 3.720169 0.0
c:(intercept) 0.448019 0.080675 5.553390 0.0
d:(intercept) 1.035664 0.077329 13.392999 3.006e
e:(intercept) 1.336143 1.184243 1.128267 0.2
f:(intercept) 1.996199 2.021349 0.987558 0.3

residual standard error:
0.1305057 (9 degrees of freedom)

# fit of the 5 parameters cedergreen-ritz-streibig'
lettuce.crs5b<-drm(weight~conc,data=lettuce,fct=crs
summary(lettuce.crsbb)

model fitted: cedergreen-ritz-streibig (5 parms)
parameter estimates:

estimate std. error t-value p-va
b:(intercept) 0.834820 0.459691 1.816046 0.1
c:(intercept) 0.326694 0.170299 1.918358 0.0
d:(intercept) 0.970761 0.081559 11.902501 8.254e
e:(intercept) 0.959902 2.407158 0.398770 0.6
f:(intercept) 2.927607 5.229475 0.559828 0.5
residual standard error:
0.1170469 (9 degrees of freedom)

# fit of the 5 parameters cedergreen-ritz-streibig'
lettuce.crs5c<-drm(weight~conc,data=lettuce,fct=crs
summary(lettuce.crs5c)

model fitted: cedergreen-ritz-streibig (5 parms)
parameter estimates:

estimate std. error t-value p-va
b:(intercept) 0.981944 0.559332 1.755565 0.1
c:(intercept) 0.336670 0.182883 1.840906 0.0
d:(intercept) 0.969845 0.088261 10.988317 1.624e
e:(intercept) 3.883893 2.462305 1.577340 0.1
f:(intercept) 1.027935 0.766821 1.340516 0.2

s model with alpha=1#

-5a())

s model with alpha=0.5#

:5b())

s model with alpha=0.25#

:5¢()
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residual standard error:
0.1256841 (9 degrees of freedom)

The lowest residual standard error is the one efBhain-Cousens' model. Nevertheless, in order to

select the best 5 parameters 'hormesis' moded, ieéded to visualize the fit of those 4 'hormesis'
models.

# splitting of the graphical window in 4 parts, 2 b y column and 2 by raw #
par(mfrow=c(2,2))

plot(lettuce.bc5,type="all")

plot(lettuce.crs5a, type="all")

plot(lettuce.crs5b, type="all")

plot(lettuce.crs5c, type="all")

weight
weight

conc canc

weight
waight

conc conc

Visually, the CRS.5a model can be considered asnibeel having the best fit because it is the one
which describes best the effect hormesis (at tloe pf a less good fit at the high dose levels).

On the other hand, if it is the residual error tammch is considered, then it is the CRS.5a model
which has the biggest one, and so which has tlseskssfactory fit. This is because of the distance
between the experimental points and the curve eathtgh dose levels. However, as notified in the
paragraph 8.4.1, in case of conflict between tlseali evaluation and the residual error, the visual

approach must be privileged. Hence, the lettucgacrsodel will be considered as the best model '
hormesis .
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# visual assessment of the normality assumption of the residuals#
ggnorm(residuals(lettuce.crs5a))
qgline(residuals(lettuce.crsb5a),col=2)

Normal Q-G Plot

000 005 010
| | |

Sample Quantiles
-0.05

-0.10

-0.15

-0.20

Theoretical Quantiles

Visually, the normality of the residuals is notisfictory.

# assessment of the normality assumption of the res iduals using a shapiro-
wilk's test#

shapiro.test(residuals(lettuce.crs5a))

shapiro-wilk normality test
data: residuals(lettuce.crs5a)
w = 0.8596, p-value = 0.03003

Shapiro-Wilk's test is significant (p-value <0.08)s the normality assumption is not satisfactBey.
the end the residual normality assumption is repecthus, a Box-Cox transformation is going to be
used at this level without waiting the assessmétiieohomogeneity assumption.

# use of the box-cox transformation #
lettuce.crs5abox<-boxcox(lettuce.crs5a)

# visualization of the fit after the use of the box cox transformation#
plot(lettuce.crs5abox, type="all")
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weight

conc

After the Box-Cox transformation the fit of the CB8& model is no more satisfactory. Hence it is
necessary to start again with another 5 paramétersesis' model. Visually, the model having the
best fit after the CRS.5a model is the BC.5 motgh( left corner of the previous graph displaying
the fit of the 4 hormesis models). The BC.5 modellso the one which has the lowest residual error.

At the end, the BC.5 model is considered has tkefhb 'hormesis' model.

# visual assessment of the normality assumption of
ggnorm(residuals(lettuce.bcb))
qgline(residuals(lettuce.bc5),col=2)

Normal Q-G Plot

the residuals#

Sample Quantiles
I I I I 1
o

-015 010 -005 000 005 040 015
|

Theoretical Quantiles

Visually the residual normality assumption is quiggisfactory.

# assessment of the normality of the residuals by t
wilk's test#

shapiro.test(residuals(lettuce.bcb))
shapiro-wilk normality test

data: residuals(lettuce.bcb)

he use of a shapiro-

[STAR]
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011

107



w = 0.9714, p-value = 0.8942
The Shapiro-Wilk's test is not significant (p-vale@.05), thus the normality of the residuals is
satisfactory. By the end, the residual normalisuasption is accepted.

# visual assessment of the homogeneity assumption o f the residuals #
plot(fitted(lettuce.bc5),(residuals(lettuce.bc5h,typ e="standardised")))
abline(h=0,col=2)

15

"standardised"))
10

o

00

-05
1
oo

(residuals{lettuce bes, type
-1.0

-15

04 06 08 10 1.2

fitted(letiuce bcs)

Globally, it seems to be an increase trend of ds@duals value with the increase of the fitted galu
To have a better view of this phenomenon, the sgraph could be done with the absolute value of
the residuals.

plot(fitted(lettuce.bc5),abs(residuals(lettuce.bc5, type="standardised")))

15

"standardised")}
o

10

abs(residuals(lettuce bch, type
05

00
|
o

04 06 08 1.0 12

fitted{lettuce bes)

Here the increase trend of the residuals with amxeof the fitted values is more visible (but i$ no
very strong). Homogeneity assumption of the redglsaems thus rejected. Since there are only two

replicates by concentration levels, Bartlett's Ardene's tests are not reliable and are not used he
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On the other hand, a Box-Cox transformation carused in order to try to improve the residuals’
homogeneity.

# use of the box-cox transformation #
lettuce.bc5box<-boxcox(lettuce.bcb)

# visualization of the fit after the box-cox transf ormation #
plot(lettuce.bc5box, type="all")

weight

conc

After the Box-Cox transformation, the BC.5 modelsctibes less well the 'hormesis' effect but

remains satisfactory.

# visual assessment of the normality assumption of the residuals #
ggnorm(residuals(lettuce.bc5box))
qgline(residuals(lettuce.bc5box),col=2)

Normal Q-Q Plot

0.1

00

Sample Quantiles
o

-0.1

Theoretical Quantiles

The residuals normality which was already satisigcbefore the Box-Cox transformation seems to
have still improved.
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# assessment of the normality assumption of the res iduals by the shapiro-
wilk's test#

shapiro.test(residuals(lettuce.bc5box))

shapiro-wilk normality test
data: residuals(lettuce.bc5box)
w = 0.9572, p-value = 0.6774

The Shapiro-Wilk's test is still not significantyplue >0.05). By the end the normality assumptibn
the residuals is accepted.

# visual assessment of the homogeneity assumption o f the residuals #
plot(fitted(lettuce.bc5box),(residuals(lettuce.bc5b ox,type="standardised"))
)

abline(h=0,col=2)

05 1.0
L
o
o

"standardised"))

0.0
oo

-05

(residuals(lettuce bcSBox, type
-10

-15

T T T T
-1.5 -10 -0.5 0.0

fitted(letiuce bcSBox)

In a general way, after the Box-Cox transformatiom residuals’ values don't seem to increase when
the fitted values increase. A same plot with theohlte values of the residuals can be used to have
better view.

# plot with the absolute values of the residuals#

plot(fitted(lettuce.bc5box),(abs(residuals(lettuce. bc5box,type="standardise
d”)))
abline(h=0,col=2)
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On the last plot it appears that, in a general whg, values of the residuals don't systematically
increase when fitted values increase. Indeed, tfvout the X axis, the values of residuals are
alternately more or less high. By the end, aftez Box-Cox transformation the homogeneity

assumption of the residuals is accepted. Now, taity of the lettuce.bc5Box's model must be

assessed.

# visual assessment of the quality of the lettuce.b c5box's fit by a
residuals vs. predicted values plot#

plot(fitted(lettuce.bc5box), residuals(lettuce.bc5b 0x))

abline(h=0,col=2)

0.1

00

oo

residuals(lettuce bc5Box)
-0.1
=]

02
1

T T T T
-15 -10 -05 0o

fitted({lettiuce beSBox)

Throughout the X axis, residuals are globally distied in a uniform way on both sides of the ree li
of 0 Y axis. Thus the fit is satisfactory.

# assessment of the quality of the lettuce.bc5box model by the use of a
'lack of fit' test #
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modelfit(lettuce.bc5box)
lack-of-fit test

modeldf rss df f value p value
anova 7 0.14388
drc model 90.18230 2 0.9346 0.4368

The'Lack of fit'test is not significant (p-value >0.05), strengihg the good quality of the fit of the

lettuce.bc5Box model. The reduction of this kept full hormesisdabis going to be considered.

# displaying of the estimates of the lettuce.bc5box 's parameters#
summary(lettuce.bc5box)

model fitted: brain-cousens (hormesis) (5 parms)
parameter estimates:

estimate std. error t-value p-va lue
b:(intercept) 1.190709 0.161643 7.366268 4.253e -05
c:(intercept) -0.244189 0.681644 -0.358236 0.7 284
d:(intercept) 0.963425 0.094805 10.162184 3.129%¢ -06
e:(intercept) 0.675545 0.459283 1.470871 0.1 754
f:(intercept) 2.316550 2.204442 1.050856 0.3 207

residual standard error:

0.14232 (9 degrees of freedom)

non-normality/heterogeneity adjustment through opti mal box-cox
transformation

estimated lambda: -0.75

confidence interval for lambda: [-1.565, 0.358]

Since the p-value of 'c' parameter is not signifiga-value >0.05), the lower limit of the curveeses
to be fixed to 0. In order to confirm this hypotisethe 4 parameters Brain-Cousens' model is gaing t
be fitted. And then its fit will be compared withet one of the 5 parameters model by an 'F' test for

nested models.

# fit of the 4 parameters brains-cousens's model wi th box-cox
transformation #
lettuce.bc4box<-drm(weight~conc,data=lettuce,fct=bc .4(),bcval=-0.75)
summary(lettuce.bc4box)
model fitted: brain-cousens (hormesis) with lower | imit fixed at O
(4 parms)
parameter estimates:

estimate std. error t-value p-va lue
b:(intercept) 1.273794 0.026176 48.662518 3.242e -13
d:(intercept) 0.952145 0.086389 11.021615 6.473e -07
e:(intercept) 0.786673 0.510281 1.541645 0.1 542
f:(intercept) 1.741208 1.386622 1.255720 0.2 378

residual standard error:

0.1373192 (10 degrees of freedom)

non-normality/heterogeneity adjustment through opti mal box-cox
transformation

specified lambda: -0.75
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# visualization of the fit #

plot(lettuce.bc4box,ylim=c(0,1.4),xlim=c(0,1e+06),t ype="all")

weight

0 10 1000 1e+05

conc

Visually, the fit is satisfactory.

# comparaison des ajustements par un test f#
anova(lettuce.bc4box,lettuce.bc5box)

1st model
fct:  bc.4()
2nd model
fct:  bc.5()
anova table
modeldf rss df f value p value
1st model 10 0.18857
2nd model 90.18230 1 0.3096 0.5915

P-value of the 'F' test is not significant (p-vaki@.05). Thus, the fit of the 4 parameters Brain-

Cousens' model is as satisfactory as the one db fherameters model. According to the Parsimony

rule, it's the 4 parameters model which is keperlhithe 'hormesis' effect is going to be able to be

assessed. For this, the 3 parameters log-logistidem(lower limit, e.g. 'c' parameter fixed to 8) i

going to be fitted. Next, its fit is going to benspared with the hormesis model's one by the wagnof

'F' test for nested models.

# fit of the 3 parameters log-logistic model#

lettuce.ll3box<-drm(weight~conc,data=lettuce,fct=ll .3(),bcval=-0.75)

summary(lettuce.ll3box)

model fitted: log-logistic (ed50 as parameter) with
(3 parms)
parameter estimates:

estimate std. error t-value p-va
b:(intercept) 0.608503 0.096860 6.282287 0.0

lower limit at O

lue
001
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d:(intercept) 1.118760 0.097981 11.418178 1.936e -07
e:(intercept) 28.191811 10.296944 2.737881 0.0 193

residual standard error:
0.1645451 (11 degrees of freedom)

non-normality/heterogeneity adjustment through opti mal box-cox
transformation

specified lambda: -0.75

# visualization of the fit #
plot(lettuce.ll3box,ylim=c(0,1.4),xlim=c(0,1e+06), type="all")

weight

0 10 1000 Te+05

conc

# assessment of the 'hormesis' effect by comparing the fits of the
'hormesis'and log-logistic models by a 'f' test#

anova(lettuce.ll3box,lettuce.bc4box)

1st model
fct:  1.3()
2nd model
fct:  bc.4()
anova table

modeldf rss df f value p value
1st model 11 0.29783
2nd model 10 0.18857 1 5.7943 0.0369

The 'F' test is significant (p-value < 0.05). Thius fit of the 'hormesis' model is better thandhe of
the log-logistic model. In other words, the 'f' @aweter characterizing the hormesis effect in trarBr
Cousens' model is significantly different from Gertée the presence of a 'hormesis' effect is validat

Now the EDp% can be estimated.
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# estimation of the ed5, ed10 et ed55 and their err
confidence interval#

ed(lettuce.bc4box,c(5,10,55),interval="delta" refer

estimated effective doses
(delta method-based confidence interval(s))

estimate std. error lower upper
5 3.67928 1.60085 0.11235 7.2462
10 4.55723 1.88486 0.35749 8.7570
55 55.94498 19.53743 12.41288 99.4771

or standard and

ence="control")
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8.4.5 Example of DRC application to the analysis and modkng of a hormesis dose-
response relationship with quantal data

Data used in this example are those of the 'wormsldtaset. This is a modification of the 'eartwdrms
dataset included in thelrc' package. These data can be perceived as conng dr fictitious
experiment, the purpose of which would be to assiessaction of a toxic substance on the not
migration of earthworms. The predictive variablewdobe the dose (7 levels). The total number of
used earthworms would be reported in théal' variable. The number of worms remaining in their
contaminated container and no migrating would lpented in thedumbel variable. The observed and
modelled variable would be the percentage of najratting worms, in others words, worms staying in
their container. Five replicates per dose level ldidae used. Thus, at the end the dataset would

contain 35 dose-response data.

The dataset is displayed in annexe 0. To be imgoner, in a first step data have to be copied and
pasted in an Excel sheet with, obligatorily, a casa decimal separator symbol. In a second s$tep, t
Excel sheet has to be saved in ‘csv' format (sdamatelimited file). By the end, importation in B i
done using theead.csv2(file.choose()) command which permits to open a window of

selecting dataset (cf. annexe 8.2)

A single dataset is employed to illustrate thetstgy of analysis both in absence and in the presehc

an overdispersion.

# loading of the 'drc’' dataset #
library(drc)

# import of the dataset#
wormshu<-read.csv2(file.choose())

# display of the data — not shown here#
wormshu

# visualization of the data#
with(wormshu,plot(dose,number/total,log="x"))

warning message:
in xy.coords(X, y, xlabel, ylabel, log) :
5 x values <= 0 omitted from logarithmic plot
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The'Warning' message says that the 5 control observationsoamisplayed on the graph because

of the X axis logarithm scale.

Since the relationship has a 'U' shape only theef@eden-Ritz-Streibig's models can be fitted.

# fit of all the available full hormesis models#

wormshu.ucrs5a<-drm(number/total~dose,type="binomia
fct=ucrs.5a(),data=wormshu)

wormshu.ucrs5b<-drm(number/total~dose,type="binomia
fct=ucrs.5b(),data=wormshu)

wormshu.ucrs5c<-drm(number/total~dose,type="binomia
fct=ucrs.5c¢(),data=wormshu)

# display of the parameters' estimates #
summary(wormshu.ucrsba)

model fitted: u-shaped cedergreen-ritz-streibig (5
parameter estimates:

estimate std. error t-value p-va
b:(intercept) 2.152428 0.705520 3.050840 0.0
c:(intercept) 0.278079 0.049853 5.577967 2.433e
d:(intercept) 0.972763 0.024361 39.930462 0.0
e:(intercept) 0.312795 0.074950 4.173397 3.001e
f:(intercept) -1.571590 1.828073 -0.859698 0.3

summary(wormshu.ucrs5b)

model fitted: u-shaped cedergreen-ritz-streibig (5
parameter estimates:
estimate std. error t-value p-va

b:(intercept) 2.310165 0.276420 8.357446 3.205e
c:(intercept) 0.417944 0.085524 4.886878 1.024e
d:(intercept) 0.981034 0.014988 65.456285 0.0
e:(intercept) 0.071362 0.035446 2.013220 0.0
f:(intercept) 45.093502 42.327543 1.065347 0.2

I",weight=total,
I",weight=total,

I",weight=total,

parms)

lue
023
-08
000
-05
900

parms)

lue
-17
-06
000
441
867
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summary(wormshu.ucrs5c)

model fitted: u-shaped cedergreen-ritz-streibig (5 parms)
parameter estimates:

estimate std. error t-value p-va lue
b:(intercept) 2.149295 0.419078 5.128627 2.919¢ -07
c:(intercept) 0.416251 0.089831 4.633722 3.592e -06
d:(intercept) 0.980798 0.014875 65.935022 0. 000
e:(intercept) 0.189352 0.040773 4.644025 3.417e -06
f:(intercept) 1.998914 1.037598 1.926482 O. 054

# visualization of the fits #

par(mfrow=c(2,2))# permet de diviser la fenetre gra phique en 4#
plot(wormshu.ucrsba, type="all",lwd=2)

plot(wormshu.ucrs5b, type="all",lwd=2)

plot(wormshu.ucrs5c, type="all",lwd=2)

numbentotal
nurnbertotal

nurnber/total

dose

Visually, the best fit is the one of th&/ormsHU.ucrs5b  model (high right corner). This model is
those which describe the data best.

# estimation of the log-likelihood of the different models#
loglik(wormshu.ucrs5a)

'log lik.' -51.37844 (df=5)

loglik(wormshu.ucrs5b)

'log lik." -47.99751 (df=5)

loglik(wormshu.ucrs5c)

'log lik."' -49.23641 (df=5)

[STAR] 118
(D-N°:5.1) — Experimental plan
Dissemination levelPU
Date of issue of this repor#1/10/2011



TheWormsHU.ucrs5b  model is also the one who has the highest ‘Lagiikod' value.

# assessment of the model's fit by a 'residuals vs. fitted'#
plot(fitted(wormshu.ucrs5b ), residuals(wormshu.ucr s5b))
abline (h=0, col=2)
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Globally, during the X axis, residuals are disttdmion both sides of the 0 X-axis red line. Theofit
the model WormsHU.ucrs5b is thus satisfactory.

# assessment of the model's fit by a ‘goodness of fit' test #
modelfit(wormshu.ucrs5b)

goodness-of-fit test
df chisqg value p value
drc model 40 31.941 0.8143

Since theGoodness of fitest is not significant (p-value 0.05), then the fit of the wormsHU.ucrs5b
model is satisfactory.

# assessment of a possible overdispersion #
31.941/40
[1] 0.798525

The ratio of the statistic of th&bdodness of fitest out of its degrees of freedom being lesa tha
then no overdispersion is highlighted. Thus, theulteof the'Goodness of fittest is valid. The
reduction of the full hormesis model is going todmne. For this, in a first step, a model speciyin
the upper limit ('d" parameter) is fixed to O igefdl. Taking in account that the 'd' parametetisnase
of the full hormesis model equals 0.981, this higpstis is very likely.
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#reduction of the best full 'hormesis' model#

# fit of the model specifying that the upper limit =1, and the alpha
parameter = 0.25 as it in the case in the wormshu.u crs4b model #
wormshu.ucrs4b<-drm(number/total~dose,type="binomia I",weight=total,
fct=ucedergreen(fixed=c(na,na,1,na,na),names = c("'b "otet, tdn et

"f"),alpha=0.5),data=wormshu)

Since no 'hormesis' model directly specifying tihatupper limit (‘'d' parameter)=1 is availabledirc",

it is needed to use thacedergreen general function. Thdixed=c(NA,NA,1,NA NA)
command permits to fix the 'd' parameter to 1. fits¢ element in the parenthesis corresponds to the
'b' parameter, the second to the 'c' parameterthing to the 'd' parameter, the forth to the ‘e’
parameter, and the fifth to the 'f' parameter. T symbols permit to not fix the value of the
corresponding parameter.

# displaying of the estimations#
summary(wormshu.ucrs4b)

model fitted: u-shaped cedergreen-ritz-streibig (4 parms)
parameter estimates:

estimate std. error t-value p-va lue
b:(intercept) 2.063757 0.154216 13.382245 3.840e -41
c:(intercept) 0.402674 0.087278 4.613722 3.955e -06
e:(intercept) 0.050064 0.032346 1.547778 0.1 217
f:(intercept) 80.449217 94.662702 0.849851 0.3 954

# visualization of the fit#
plot(wormshu.ucrs4b, type="all", col=3, lwd=2)

numberitotal

0 0.1 1

dose

# superimposition of fits of the 4 and 5 parameters models #
plot(wormshu.ucrs5b, type="all",lwd=2)
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plot(wormshu.ucrs4b, type="all",lwd=2,col=3,add=t)

numberitotal

0 01 1

dose

In black colour there is the fit of the full 5 paraters model, in green the one of the 4 parameters
model. Looking at this plot, the 4 parameters madeims to describe a little bit less fine the haime

effect, but is still satisfactory.

# comparison of the 5 and 4 parameters models using a 'likelihood ratio'
test #

anova(wormshu.ucrs4b,wormshu.ucrs5b)

1st model
fct: ucedergreen(fixed = c(na, na, 1, na, na) , hames = c("b",
"o
2nd model
fct:  ucrs.5b()
anova-like table
modeldf loglik df Ir value p value
1st model 4 -49.806
2nd model 5-47.998 1 3.617 0.0572

P-value of thdlikelihood ratio'test is slightly higher of the significant level@5). Nevertheless, since
it is exceeded, the fit of the 4 parameters moslalansidered as satisfactory that the one of the 5

parameters model. By the end, the restricted miedelpt.

If an overdispersion would have been detected 4dtlparameters model would also has been kept

because of the 'd' parameter's estimate is vesg ¢tol.

# assessment of the 'hormesis' effect #

Since no overdispersion has been highlighted, firsastep, the log-logistic model corresponding to
the restricted 'hormesis' model is fitted. It i® tB parameters model having the higher limit ('d’

parameter) fixed to 1.
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# fit of the log-logistic model#

wormshu.ll3u<-drm(number/total~dose,type="binomial" ,weight=total,
fct=I1.3u(),data=wormshu)

# display of the estimatation #
summary(wormshu.ll3u)

model fitted: log-logistic (ed50 as parameter) with upper limit at 1
(3 parms)
parameter estimates:

estimate std. error t-value p-va lue
b:(intercept) -1.830545 0.274881 -6.659413 2.749¢ -11
c:(intercept) 0.262651 0.049109 5.348298 8.879%e -08
e:(intercept) 0.288021 0.045116 6.383980 1.725e -10

# visualization of the fit #
plot(wormshu.lI3u, type="all",lwd=2,col=4)

numberitotal

dose

# comparison of the fits of the hormesis and log-lo gistic models #
anova(wormshu.lI3u,wormshu.ucrs4b)

1st model

fct:  1.3u()

2nd model

fct: ucedergreen(fixed = c(na, na, 1, na, na) , hames = c("b",
ey

anova-like table
modeldf loglik df Ir value p value

1st model 3-53.974
2nd model 4-49.806 1 8.337 0.0039

The'likelihood ratio' test is significant (p-value < 0.05), and then ‘thearameter of the 'hormesis'

model is significantly different from 0. In otheiowds, the hypothesis of a hormesis effect is aetept
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If an overdispersion would have been detected, tioemesis effect would has been assessed from the
p-value pf the 't' test corresponding to the ‘capeeter, which is given by tleeimmary function used

with od=T argument.

summary(wormshu.ucrs4b,od=t)

model fitted: u-shaped cedergreen-ritz-streibig (4 parms)
parameter estimates:

estimate std. error t-value p- value
b:(intercept) 2.063757 0.220386 9.364290 3.82 8e-21
c:(intercept) 0.402674 0.124726 3.228474 O .0012
e:(intercept) 0.050064 0.046224 1.083065 O .2788
f:(intercept) 80.449217 135.279818 0.594688 0 5521

Here the p-value of the 't' test correspondinghte 'f' parameter being higher than 0.05, the 'f'
parameter would has been considered as no différemt 0. The hypothesis of a hormesis effect
would has been rejected. Thus in case of overdigperthe conclusion would be contrary to that one
obtained in absence of this phenomenon. This ofiposs explained, by part, by the increase of the
standard error of the 'f' parameter during the digpersion correction, which leads a 't' test more
difficulty significant. Another reason which can beoked is the less robustness of the 't' test with
regard to thdikelihood ratio'test.
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WormsHU dataset

dose number total
0 2 5
0 2 5
0 1 4
0 3 8
0 4 8
0.0475 3 10
0.0475 2 8
0.0475 1 5
0.0475 2 9
0.0475 3 8
0.095 1 9
0.095 1 7
0.095 1 5
0.095 2 11
0.095 1 8
0.19 7 11
0.19 5 9
0.19 6 8
0.19 5 8
0.19 2 4
0.38 7 9
0.38 4 4
0.38 5 11
0.38 7 11
0.38 11 15
0.76 11 11
0.76 5 6
0.76 7 8
0.76 9 9
0.76 8 8
1.53 6 6
1.53 9 10
1.53 10 10
1.53 10 10
1.53 8 8
3.05 5 5
3.05 9 9
3.05 7 7
3.05 8 8
3.05 7 8
6.11 3 3
6.11 7 7
6.11 11 11
6.11 10 10
6.11 6 7
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8.5 Specific Glossary
Definitions are all adapted from (OECD, 2003). Terne listed by alphabetic order.

sConfidence interval

A x % confidence interval for a parameter is an inteofavalues that theoretically covers the true
value of the estimated parameter with x % of canfimk. Note that the confidence level reflects the
proportion of cases that the confidence intervalld@ontain the true parameter value in a longeseri
of repeated random samples under identical comditio

=Continuous data
Data are continuous when they can theoreticallg taky value in an open interval
*ECp, EDp, EDRp

In ecotoxicology, the terrBCpis defined as the concentration associated witeffattp wherep is
defined as the percent change in the (average) | lexd#@ the endpoint

Y(ECp)
y(©)

dose rateEDRp).These parameters are estimated by modelling (otrati®n-effects, dose-effects or
dose rate-effect modelling).

sEffect
An effect is the change in an endpoint under camratibn when it is compared to a control.

consideredy% :10{ —1}%. The same definition can apply for the DoE®{y) or the

=Endpoint

In toxicity testing and evaluation it is the biolcgl response that is measured. Endpoints vary thih
level of biological organization being examined andude response at the subcellular level to the
community level such as biomarkers (subcellulaellgvsurvival, growth, reproduction (individual
level), primary production, and changes in struet(@nd abundance) and function in a community
(population or community level). Endpoints are usetbxicity tests as criteria for effects.

=Experimental Unit/replicate

The experimental unit is the smallest unit of ekpental material to which a treatment can be
allocated independently of all other units. By diibn, experimental unitse(g. aquariums, beakers,

or plant pots) must be able to receive differeefittments. Each experimental unit may contain
multiple sampling unitse.g. fish, daphnia or plants) on which measurementdaen. Within each
experimental unit, sampling units may not be indelemt. However, in some special case situations,
individual organisms (housed in common units) canrbated as the experimental units: these special
cases require some proof or strong argument opentdence of organisms

=Exposure concentration, dose or dose rate

The exposure concentration, dose or dose rateisatnount” that an organism is exposed to. For a
chemical element radioactive or stable, it can kpressed as a concentration (quantity of the
substance per volume or mass of the exposure sdareeol or g or Bq per L or per g)For a
radionuclide, the dose is the total quantity ofisorg radiation absorbed by the organism@y), the
absorbed dose rate refers to the quantity of ingisadiation released over a specified unit of time

(e.g. pGy/h
=Hormetic /non-hormetic
Hormetic- or dose(rate)-effect relationship exhslat biphasic shape with a stimulatory effect at the

low dose levels, and then an inhibitory effect et high dose levels; Hormetic etic dose-response
curves can have two shapes :"inverted U" and "@dpsh.
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= OEC (or LOED or LOEDR) and NOEC (or NOED or NOEDR)

The Lowest Observed Effect-Concentration is the ektw Concentration out of the tested
Concentration at which a statistically significdifterence from the control group is observed.

The No Observed Effect -Concentration is the tesmttentration just below the LOEC. They are
obtained by hypothesis testing.

The same definitions apply for Dose and Dose Ratpléce of Concentration).
=Monotonous /non-monotonous

A monotonic concentration- or dose(rate)-effecatiehship exhibits an increase or a decrease over
the range of concentrations or dose(rate)s intilndysin a non-monotonic relationship, the variatio
in effects are not consistent across the concentsabr dose(rate)s.

sPower

Power is the probability of rejecting the null hytpesis in favour of the alternative hypothesisggiv
that the alternative hypothesis is the true. Pougfea test varies with sample size, variance of the
measured response, the size of an effect thabftirgerest to detect, and the choice of staastiest.
Power to detect differences can be increased logasitng the sample size and/or reducing variation i
the measured responses.

=Quantal data

These data can exhibit two stateg:an individual shows an effect or not. Typicallgese data are
presented as the number of individuals showingthperty out of a total number in the experimental
unit.

=Response

A response corresponds to an observed value okadgoint. This term has been avoided as far as
possible to avoid confusion.

=Statistical significance

In hypothesis testing, a result is statisticaltyn#ficant at the chosen levelif the test statistic falls in
the rejection region. The finding of statisticagrsficance implies that the observed deviation from
what was expected under the null hypothesis iskelylito be attributable to chance variation. In
general, the-level will be 0.05 unless otherwise stated.

=Type | and Type Il errors

Type | errors (false positives) occur when the hypothesis is the true but the hypothesis testitses
in a rejection of the null hypothesis in favourtleé alternative hypothesis. The probability of nagki
a Type | error is often referred to @sand is usually specified by the data analyst eroét 0.05, or 5
%. Type Il errors (false negatives) occur whendhernative hypothesis is true but the test fails t
reject the null hypothesis €. there is insufficient evidence to support theratiéive hypothesis). The
probability of making a Type Il error is often refed to af (1 — power).

=OMICS
Refers to the study of biological systems, andudets genomics (DNA), transcriptomics (mRNA
transcripts), proteomics (proteins) and metabolsr{pcoducts of biological reactions).

=DEB and DEBTox
The Dynamic Energy Budget (DEB) theory describew hadividuals acquire and use energy based
on simple rules for metabolism. Organisms are mapred as dynamic systems with mass and energy
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balance. The DEBTox version, based on the DEBrihes a biology-based model describing how
toxicants accumulate over time in exposed organianus alter energy acquisition and allocation to
growth and reproduction. The approach analyseflyaffects induced on several endpoints (survival,
growth and reproduction) by one or several toxisartd delivers estimates of No Observed Effect
Concentration and insights on the physiological&helic mode of action.
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