

ON THE EDGE OF ABYSS: MODELLING THE MARINE MIGRATION OF ATLANTIC SALMON

Aislinn Borland aislinn.borland@strath.ac.uk Supervisors: Dr Neil Banas, Dr Colin Bull Dr Douglas Speirs, Dr Alejandro Gallego

marine scotland science

INVESTIGATING HIGH MORTALITY RATES

 Declines in Atlantic salmon populations may be attributed to decreasing marine survival rates (e.g. Friedland et al (2009), Pardo et al (2021))

Pre-fishery abundances of Southern European salmon (ICES WGNAS reports)

- Low and variable survival probability following marine entry
- Narrowing the region of focus
- Investigating mechanisms behind high mortality rates

SMALL FISH ON BIG MIGRATIONS

- Migration to summer feeding grounds
- Thousands of kilometres migration for fish initially of length 120-140mm
- UK and Irish rivers, spatial extent of study
- How do migratory paths vary over time and with oceanographic conditions?
- Particle tracking model (ocean currents, diffusion, active movement)

An Atlantic salmon smolt (https://ness.dsfb.org.uk/salmon-lifecycle/)

PREVIOUS PARTICLE TRACKING STUDIES

Ounsley et al (2019)

- Passive movement and current following
- Directed swimming
- One-year average climatology

- Current following behaviour
- 2002 and 2008

BUILDING ON THESE STUDIES

- Interannual variation in migrations
- Wider range of start points
- 27 year Scottish Shelf Waters Reanalysis Service (SSW-RS)
- Significant physical changes between years

60

58

56

450

400

350 300

250

200 g

150

100

50

10

2003 (averaged over two-week periods)

MANY POSSIBILITIES FOR MODELLING SWIMMING BEHAVIOURS

- Basis: passive movement + diffusion
- Negative rheotaxis
- Directed swimming
- Environmental variable gradients
 - Depth, salinity, temperature
- Combinations of these behaviours
- Successful exiting study region

SSW-RS bathymetry with exit region

DIFFUSION + PASSIVE TRANSPORT + NEGATIVE RHEOTAXIS

- Inspired by Mork et al (2012)
- Actively swimming in the direction of local currents

2003

DIFFUSION + PASSIVE TRANSPORT + NEGATIVE RHEOTAXIS + SALINITY GRADIENT FOLLOWING

 \times

Negative rheotaxis + following salinity gradient 2003

2003

ADDING A DIRECTIONAL BIAS

- Inspired by Ounsley et al (2020)
- Bias movement in preferred direction
- Only following currents which are favourably directed
- Prevent particles from leaving the shelf-edge current
- Implemented through a "restoring force" if movement would otherwise be in the wrong direction
- Magnitude of this force varies
- Added at transition point representing shelf-edge

DIFFUSION + PASSIVE TRANSPORT + NEGATIVE RHEOTAXIS + SALINITY GRADIENT FOLLOWING + DIRECTIONAL BIAS

Negative rheotaxis + following salinity gradient + directional bias 1993

1993

Negative rheotaxis + following salinity gradient + directional bias 2003

2003

WHAT ARE THE IMPLICATIONS?

- Success rates (exiting study region within 100 days): 87% vs 89%
- Mean time taken: 70 days vs 52 days
- Mean progression rates:
 16.2km/day vs 19.4km/day
- Time in shallow (<100m) water:
 30.2% vs 40.2%
- Prey fields, predators, fishing activity

CONCLUSION & FUTURE WORK

- Negative rheotaxis + following a salinity gradient + addition of a directional component at shelf-edge
- Significant differences in conditions experienced between years
- Extending to other monitored salmon rivers across the UK and Ireland, investigating timing of river emigration
- Investigation of interannual variation (1993-2019) what conditions are linked to changes in migrations?

REFERENCES

Friedland, K.D., MacLean, J.C., Hansen, L.P., Peyronnet, A.J., Karlsson, L., Reddin, D.G., Ó Maoiléidigh, N. and McCarthy, J.L., 2009. The recruitment of Atlantic salmon in Europe. *ICES Journal of Marine Science*, 66(2), pp.289-304.

Gilbey, J., Utne, K.R., Wennevik, V., Beck, A.C., Kausrud, K., Hindar, K., Garcia de Leaniz, C., Cherbonnel, C., Coughlan, J., Cross, T.F. and Dillane, E., 2021. The early marine distribution of Atlantic salmon in the North-east Atlantic: A genetically informed stock-specific synthesis. Fish and Fisheries, 22(6), pp.1274-1306.

Mork, K.A., Gilbey, J., Hansen, L.P., Jensen, A.J., Jacobsen, J.A., Holm, M., Holst, J.C., Ó Maoiléidigh, N., Vikebø, F., McGinnity, P. and Melle, W., 2012. Modelling the migration of post-smolt Atlantic salmon (Salmo salar) in the Northeast Atlantic. *ICES Journal of Marine Science*, *69*(9), pp.1616-1624.

Ounsley, J.P., Gallego, A., Morris, D.J. and Armstrong, J.D., 2020. Regional variation in directed swimming by Atlantic salmon smolts leaving Scottish waters for their oceanic feeding grounds—a modelling study. *ICES Journal of Marine Science*, 77(1), pp.315-325.

Pardo, S.A., Bolstad, G.H., Dempson, J.B., April, J., Jones, R.A., Raab, D. and Hutchings, J.A., 2021. Trends in marine survival of Atlantic salmon populations in eastern Canada. *ICES Journal of Marine Science*, 78(7), pp.2460-2473.

Aislinn Borland aislinn.borland@strath.ac.uk

marinescotland science

