Terrestrial NPP Discussion meeting 17-18 Dec 2013, CEH Lancaster

Estimating NPP using flux towers

Helen C. Ward

Overview

The eddy covariance technique

- theory
- instrumentation
- data processing

What do we actually measure?

Interpretation of results

- footprint modelling

Selected results (Ross Morrison) - carbon balance in The Fens

Questions & discussion

Atmospheric turbulence 1

Transport of momentum, heat, water, CO_2 , etc, in the atmosphere occurs via turbulent eddies.

These eddies create 'heat haze' seen on a hot day.

Fluctuations are seen in measurements made at a point in space.

Atmospheric turbulence 2

- Measurements at 10/20 Hz using fast response sensors
 - sonic anemometer
 - infra-red gas analyser (IRGA)

Eddy covariance

Turbulence consists of irregular fluctuations about a mean. It is stochastic, i.e. it has a predictable and a random element.

Reynold's decomposition of a variable into mean and fluctuation

$$x = x + x'$$

Measurements made

- Three wind speed components: *u*, *v*, *w*
- Temperature: T
- Water vapour: ρ_{H2O}
- Carbon dioxide: ρ_{CO2}
- Methane: ρ_{CH4}

Calculate **covariances** over 30 min period

Sensible heat flux:
$$H = \rho c_p \overline{w'T'}$$

Latent heat flux: $LE = L_v \rho \overline{w'q'}$
CO₂ flux: $F_{CO2} = \rho \overline{w'c'}$

- Most accepted method for measuring fluxes.
- Several complex corrections required.

Instrumentation

Siting

Obtaining fluxes

What is actually measured?

Eddy covariance \rightarrow vertical CO₂ flux = **Net Ecosystem Exchange**

– Net Ecosystem Exchange = Net Ecosystem Production

+ Inorganic CO₂ sinks – Inorganic CO₂ sources

CO₂ flux partitioning

Net Ecosystem Production = Gross Primary Production – Ecosystem Respiration $NEP = GPP - R_{eco}$ autotrophic + heterotrophic $NPP = GPP - R_{autotrophic}$

Carbon fluxes in the suburban environment 1

• EC measures everything!

• Many processes with various controls (biogenic and anthropogenic) such as traffic emissions, heating, respiration, photosynthesis...

• Natural ecosystems can be simpler... but still human intervention adds complexity and sudden change, such as agricultural practices and land management.

Carbon fluxes in the suburban environment 2

Interpretation of results

- (Simple) models or assumptions are often required to aid data interpretation.
- Of particular importance:
- land cover
- surface conditions
- meteorology
- Footprint modelling relates the measurement to the land surface.

Wind Sector [°]

Footprint modelling

- Footprint (source area) depends on
 - wind direction
 - atmospheric stability
 - wind speed
 - measurement height
 - roughness of the surface
- Heterogeneous sites can suffer sampling bias due to prevailing weather conditions.

Distance [m]

Selected results: The Fens

• Wicken Sedge Fen, E. Anglia (March 2009)

- Bakers Fen, E. Anglia (October 2009)
- Rosedene Farm, E. Anglia (June 2012)
- Redmere Farm, E. Anglia (October 2012)

Carbon dioxide fluxes at managed lowland peatlands Ross Morrison

The East Anglian Fenland (The Fens)

Wicken Sedge Fen

- Largest area of relatively seminatural fen peatland in E. Anglia
- Hydrologically isolated from surrounding arable catchment
- Peat depth: 1 m (east) to 4 m (west)
- Phragmites australis & Cladium mariscus: three year rotational cutting
- Flux tower maintained by Dr Jon Kelvin, Dr Helen Ward, Dr Jonathan Evans between 2009 and 2011

Wicken Fen National Nature Reserve

Image source: Google Earth

Water levels 2009-2012

Water level data supplied by the Environment Agency, Dr Francine Hughes, Dr Peter Stroh Ecosystem respiration data are for 2009 and 2010 only

Rosedene, Southery, Norfolk, UK

Redmere, Littleport, Ely, Cambridgeshire CB7, UK

Rosedene & Redmere Farms

Photographs: Dr Helen Ward, Dr Jon Evans, Dr Ross Morrison

Bakers Fen: Fenland restoration site

- Former arable land acquired by the National Trust in 1994
- Peat depth: ~0.6 m surface
 1.5 to 2 m lower than adjacent
 semi-natural Wicken Fen
- Water abstraction between
 November and March (but not in 2010!)
- Extensive grassland with conservation grazing

Bioenergy & arable crops (mineral soils)

Image source: Google Earth

