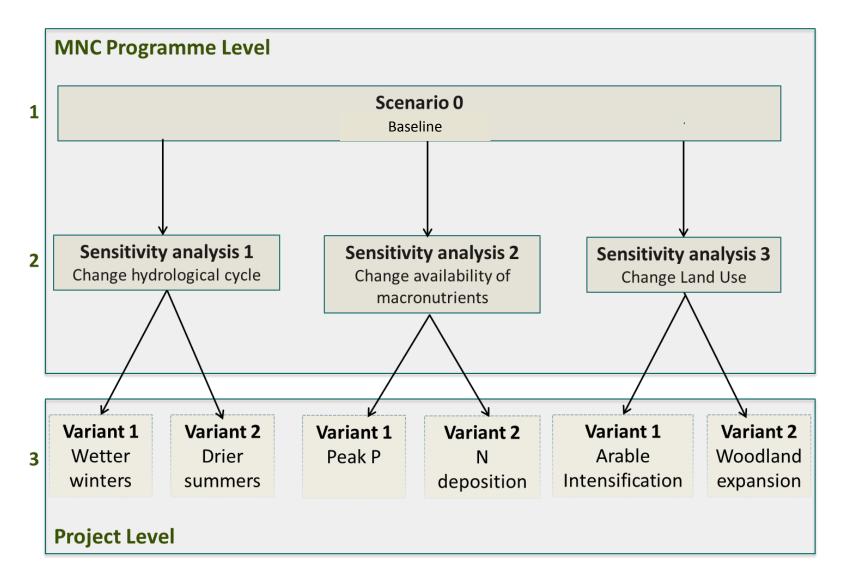
Introduction to the LTLS scenario framework

Rachel Helliwell & the LTLS Team

Stakeholder workshop

CEH Lancaster: 15-16th March 2016

Development of the LTLS scenario approach


- Appraisal of existing frameworks (NEA, IPCC)
- Stakeholder Engagement* (LTLS workshop/questionnaire)
- Go with the flow (UK)NEA
- Areas of interest represented by stakeholders
 - Agriculture
 - Forestry
 - Freshwaters
 - Atmospheric inputs
 - Carbon
 - Dissolved Organic Carbon
 - Woodlands
 - Erosion
- Sensitivity testing approach adopted

Macronutrient Cycling Programme

Framework for testing the sensitivity of models to future environmental perturbations

Future drivers of change

Climate change

A2 emissions scenario (medium/high) Model output from the EU FP6 WATCH project

Sewage effluent

Enhanced P stripping at all waste water treatment works

Atmospheric deposition of N and S

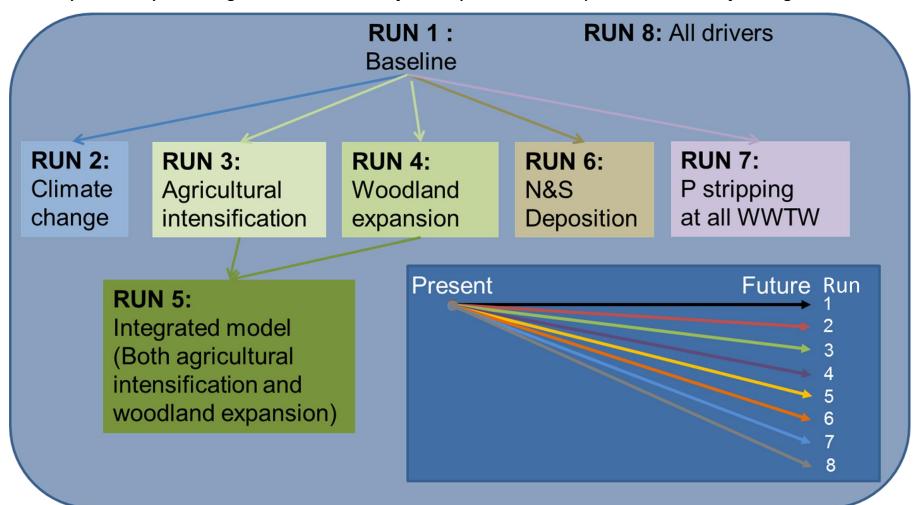
Based on DECC Updated Energy Projections 43 (UEP43) energy forecasts

Land use change

Arable intensification
Higher stocking densities
Woodland expansion

LTLS Integrated Model

Future C, N and P in soils, freshwaters and estuaries



LTLS Scenarios Framework LTLS

- Note: Today presentations will focus on selected examples from this framework.
- Royal Society meeting: Full assessment of how systems will respond to drivers of change

Timescales of interest to the LTLS stakeholders

- the WFD
- usiness Plan
- grated solutions in water security
- 2030 Air qualing policy targets
 2030 Air qualing policy until 2100
 2030 Pass all policy until 2100
 2030 Pass all policy until 2100

 Encompass all policy unti and Expansion Advisory Group (Scotland)
 - Water companies plan in 25 yr cycles (Infrastructures 50-60yrs)

Baseline (Run 1)

- Baseline
 - 1971-2010 WATCH model (ECHAM5)
 CONTROL period

Climate change (Run 2)

- Climate
 - 2001-2010 WATCH model (ECHAM5) A2 (medium/high emission) scenario

In practice these are run as a sequence from 1971-2100

Land use: Arable intensification (Run 3)

Food security

- Arable area remains the same (LCM07) but the land is tightly managed (new technologies, fertilizers input, high yielding crops).
- We run the scenarios of improved varieties adapted to climate change with and without additional nutrient inputs

Land use: Woodland expansion (Run 4)

Low Carbon Economy

Baseline (LCM07 & NFI (FC))

Woodland expansion was based on:

Integrated land use (Run 5)

Integrated land use (Run 5)

Arable intensification/Woodland expansion

Country	Target (% of country)	Target Area	% Broadleaf	% Conifer
Scotland England Wales N Ireland	25% by 2050 ¹ 12% by 2060 ² 20% by 2030 ³	1000ha/yr to be planted until 2050 ⁴	40 50 50 50	60 50 50 50

N & S Deposition (Run 6)

Best representation of future changes in emissions:

- FRAME model
- UEP43 for UK emissions (NH₃, NO_x, SO₂)
- IIASA for European emissions
- VITO for international shipping emissions
- Resolution 5 km x 5 km
- Reductions to 2030 then constant to 2100

There were significant reductions for NO_x (~50%) and SO_2 emissions (~40%) but a small increase in NH_3 emissions (4%) forecast between 2010 and 2030

- Deposition fields (~semi-natural, forest, arable, improved grassland, urban)
- Deposition of SO_x and Total N (NO_v and NH_x)

Waste water treatment (Runs 7)

Baseline:

 The baseline in 2010 was the current proportion of dry weather flow in E,W,S & NI.

Phosphorus stripping:

- P stripping was applied to all WWTW simultaneously in the year 2010.
 - It assumes that the effluent P is 0.16 of the influent P instead of 0.42 for secondary treatment and 0.35 for tertiary treatment.

Finally ...Integrate all drivers for Run 8