LTLS – Atmosphere Reconstructing past N (and S) deposition in the UK & future projections

Tomlinson S.J.¹, Carnell E.J.¹, Dore A.J.¹, Misselbrook T.H.^{2*}, Sutton M.A.¹ and Dragosits U.¹

¹ NERC Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB ² Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB (*in-kind contribution)

ud@ceh.ac.uk

Introduction – Atmospheric component

200+ years of history – emission sources

Research historical source activity:

- Books
- Reports
- Gov't records
- Papers
- Statistics

Estimate emissions
based on:

- NAEI emissions
- Source populations (human & livestock)
- Fuel inputs
- Known/estimated emission factors

Spatial distribution of emissions: • Records

- Proxy data
- Scaling
- Weighting

Pig density (county level)

Historic emission trends 1800-2010

European background & deposition modelling

Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model 1800

Creating boundary conditions for a 5km FRAME-UK simulation

1900

1970

· 8.24

7.32

4.58 3.66 2.75 1.83 0.92

Sulphur deposition 1800-2030

Total nitrogen deposition 1800-2030

Oxidised N deposition 1800-2030

Main sources:

- Combustion
- Motorised transport
- Industry

Reduced N deposition 1800-2030

Main source: Agriculture (livestock & fertilisers)

Temporal trends in N deposition 1800-2030

Comparison with measurement-based data

CBED model, R. Smith et al., CEH Edinburgh

Conclusions

- N & S deposition increased hugely during 19/20th centuries
- **S deposition** emission reductions a big policy success!
- Recent considerable decreases (since ~1990) in total N deposition mainly due to NO_x emission reductions following international legislation (e.g. combustion plants, catalytic converters). Partial success story, in progress.
- Reduced N (ammonia) now largest source of N deposition, largely unchanged & predicted to remain stable
- Changing spatial patterns and composition of N deposition

Acknowledgements

Online datasets:

Vision of Britain, Edina Agricultural Census, Defra UK National Atmospheric Emissions Inventory

Contributions:

David Simpson (Norwegian Meteorological Institute & Chalmers University of Technology)

Maciej Kryza (University of Wroclaw)

Agricultural ammonia emissions

LIVESTOCK POPULATIONS

Analysis of N deposition components

Oxidised/reduced N deposition 1800-2030

Components of N Deposition (1970)

