## Net primary productivity

## Model testing

- The N14CP ecosystem model calculates NPP over space and time for different vegetation types, producing predictions for 5x5 km grid cells (c 10,000 for the UK as a whole).
- We compared the model predictions with 825 estimates of NPP based on peak biomass measurements for grass, peat and shrubs, and from data for tree growth, litterfall etc. Many of the data came from JA Milne et al (Grass and Forest Science, 2002).
- Average values from individual plot measurements agreed reasonably with average modelled values (Table 1), but there were no significant correlations among results for individual sites.
- We standardised\* the NPP values by vegetation type to create a single response variable. This varied significantly (p<0.001) with cumulative N deposition (obtained from the model in Poster 1), in line with model predictions (Figure 1).

\* Each measured NPP value was divided by the average for the vegetation type.

Table 1. Average observed semi-natural NPP (gC m<sup>-2</sup> a<sup>-1</sup>) compared with values estimated with the N14CP ecosystem model.

|           | n   | Obs | N14CP |
|-----------|-----|-----|-------|
| Grassland | 184 | 424 | 311   |
| Shrubs    | 393 | 382 | 422   |
| Peatlands | 98  | 414 | 270   |



Figure 1. Standardised NPP vs. cumulative Ndep. Dotted black line is the regression, full orange line is the model prediction.





Figure 2. Above-ground biomass harvested from 1 m<sup>2</sup> plots in late July / early August



- atmospheric N deposition.

Contact: et@ceh.ac.uk (modelling); ecro@ceh.ac.uk (bracken)

# **ITLS Long-Term Large-Scale Project**

### Ed Tipping<sup>1</sup>, Jess Davies<sup>2</sup>, Pete Henrys<sup>1</sup>, Susan Jarvis<sup>1</sup>, Ed Rowe<sup>3</sup>, Simon Smart<sup>1</sup>, Hannah Toberman<sup>1</sup>, Jess Adams<sup>1</sup>, Alan Lawlor<sup>1</sup>, Sarah Thacker<sup>1</sup>, Manisha Patel<sup>1</sup> 1) CEH Lancaster, 2) Lancaster University, 3) CEH Bangor

## **Bracken phytometry**

- Plant productivity is a key process for C and nutrient fluxes.
- Measuring (NPP) in many semi-natural ecosystems is difficult, but bracken is not affected much by herbivory or repeated cutting, so is suitable for a snapshot NPP survey (Figure 2).
- We hypothesised that N pollution has led to ecosystems being P- rather than N-limited, and thus that NPP would be correlated with soil organic-P but not with soil total N/C.
- The results (Figure 3) were surprising, showing no relationship of NPP with organic P stock, but significant relationships with soil K and Mo stocks.
- Potassium, like N, makes up a substantial proportion of plant tissue and is susceptible to loss. Molybdenum makes the most efficient nitrogenase co-factors, and so may have limited pre-industrial N fixation.

**Essential elements other than N and P may limit productivity.** 



Figure 3. Relationship of above-ground biomass (g m<sup>-2</sup>) with a) soil total N/C, mg g<sup>-1</sup>; b) ln(soil organic P stock), c) soil K stock<sup>0.5</sup>, d) ln(soil Ca stock), e) Mg stock<sup>0.5</sup>, f) ln(Mo stock). Stocks are all expressed in g m<sup>-2</sup>.

N14CP provides reasonable predictions of NPP at large scales and how it depends upon fertilisation by

• Variation in NPP within a single habitat is related to nutrient availability. For bracken, the limiting nutrient seems to be neither nitrogen nor phosphorus, but potassium.

## Peat

Daniel Schillereff<sup>1</sup>, John Boyle<sup>2</sup> & Hannah Toberman<sup>2</sup>, Jessica Adams<sup>3</sup>, Charlotte Bryant<sup>4</sup>, Richard Chiverrell<sup>2</sup>, Rachel Helliwell<sup>5</sup>, Patrick Keenan<sup>6</sup>, Allan Lilly<sup>5</sup>, Edward Tipping<sup>3</sup> 1) King's College London; 2) University of Liverpool; 3) CEH Lancaster; 4) NERC Radiocarbon Facility; 5) James Hutton Institute; 6) Lancaster Environment Centre

Long-term (4000-10000 years) macronutrient concentrations and accumulation rates are reported from 15 ombrotrophic bogs along a **N-S gradient across the UK.** 

Cores from five new sites sub-sampled at 10 cm intervals, measured for C & N (EL analyser) and P (colorimetrically) and dated with <sup>14</sup>C.



## Conclusions

Contact: daniel.schillereff@kcl.ac.uk, John Boyle (jfb@liv.ac.uk)



Schillereff et al. (2016) STOTEN

Surface P enrichment (2.4x) is a consistent feature; N elevated at top of some cores. Plant recycling to minimise nutrient limitation in operation, external supply (biological debris, dust) unquantified Long-term C, N and P accumulation rates are 25.3±2.2, 0.70±0.09 and 0.018±0.004 g m<sup>-2</sup> yr<sup>-1</sup> (mean±SE), similar to global values Nutrient budgets estimate long-term N-fixation rate of 0.8 g m<sup>-2</sup> yr<sup>-1</sup>