

Application of the ¹⁵N-Gas Flux method for measuring in situ N₂ and N₂O fluxes due to denitrification in soils and comparison with the acetylene inhibition method

INTRODUCTION

The ¹⁵N tracer approaches can provide *in situ* measurements of both N₂ and N₂O, but their use has been limited to fertilised arable soils due to the need for large ¹⁵N additions in order to detect ¹⁵N₂ production against the high atmospheric N₂. An 'in house' laboratory designed and manufactured N₂ preparation instrument interfaced to a continuous flow isotope ratio mass spectrometer (CF-IRMS) can allow the analysis of ¹⁵N-N₂ with small injection volumes, improved precision and lower limit of detection. Such an instrumental advance could improve our ability for measuring denitrification in natural and semi-natural land use types. Therefore, we designed a study to:

- 1) Determine the precision and suitability of our preparative-IRMS instrumentation for measuring ¹⁵N-N₂ and ¹⁵N-N₂O at low/trace enrichment levels
- 2) Adapt the ¹⁵N Gas-Flux method for application across natural and semi-natural terrestrial ecosystems
- 3) Directly compare the validity and applicability of the ¹⁵N Gas-Flux method with the acetylene inhibition technique (AIT) for measuring *in situ* denitrification rates.

METHODS

For N₂ gas isotopic analysis an Isoprime IRMS coupled to an 'in house' built N₂ preparative interface was used (Fig 1). Headspace gas (4 µL) was injected and ratios for the m/z 28, m/z 29 and m/z 30 were recorded. For N₂O, headspace gas (*ca*. 4mL) was injected into a TraceGasTM Preconcentrator coupled to an IRMS and ratios for m/z 44, m/z 45 and m/z 46 were measured.

In situ denitrification rates in organic (OS), woodland (WL) and grassland (GL) soils were measured using static chambers (Fig 2A) according to the ¹⁵N Gas-Flux method¹. Labelled K¹⁵NO₃⁻ (98 at. %) was applied in each site (n= 5) via multiple injections into enclosed soils. Gas samples were collected at T = 1h, T = 2h and T \approx 20h for N₂ and N₂O analysis. Minimum detectable concentration (MDC) change for R29 and R30 was defined² using standards to determine if each time step sample was significantly different from ambient (T= 0 hr) and if not they were excluded from the flux calculations. The flux of N₂ and N₂O were determined ^{3, 4}.

At the same time intact soils cores were collected and incubated *in situ* with and without the addition of C_2H_2 according to the AIT approach for the determination of denitrification rates (Fig 2 B)⁵.

Acknowledgements: Feld sites' permissions by Mr R. Rhodes (Wyre), Mr E. Ritchie (Conwy), Mr M. Colledge (Forestry Commission), Abeystead Estate (Ribble) and National Trust (Wales), UK are acknowledged. The UK NERC funded this project under a grant awarded to Keele University, UK (Ref # NE/J011541/1).

Fotis Sgouridis¹, Sami Ullah¹ and Andrew Stott²

1. School of Physical and Geographical Sciences, Keele University, UK. 2. NERC Life Sciences Mass Spectrometry Facility, Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK

Figure 2: ¹⁵N Gas flux chamber (A) and intact soil scores with C_2H_2 amendment (B)

NATURAL ENVIRONMENT RESEARCH COUNCIL

Instrument stability checks showed standard deviation fits better than 0.05 ‰ for both gases. Precision of the instrument was better than 0.08 ‰ and 0.3 ‰ for δ^{15} N-N₂ and δ^{15} N-N₂O gases, respectively.

The minimum detectable flux rates were 4 μ g N m⁻² h⁻¹ and 0.2 ng N m⁻² h⁻¹ for N₂ and N₂O, respectively, which is a significant improvement compared to earlier studies. The improved precision for both allowed us to quantify denitrification with low ¹⁵N enrichment under *in situ* conditions, which was not possible earlier.

The evolved N₂ and N₂O in the chamber headspace increased linearly from 1 to 20 hours (Fig 3). We calculated flux rates by applying linear regression (when $r^2 > 0.95$) between 1 and 20 hours using only those time points that were above the MDC values.

The total denitrification rate measured using the ¹⁵N Gas flux (range: 2.4 - 416.6 µg N m⁻² h⁻¹) and the C₂H₂ methods (range: 0.5 - 325.2 μ g N m⁻² h⁻¹) followed a similar trend across the sites (Pearson; r = 0.581, n = 25, p < 0.01) (Fig 4). However, denitrification rates measured using the ¹⁵N Gas flux method were between 3 and 5 times higher than the denitrification rates with the AIT method.

Bulk N₂O emission rates measured using the headspace samples from the chambers and no-C₂H₂ amended cores exhibited a similar trend across sites; however, the N₂O/N₂+N₂O ratios differed between the two methods (Fig 4). The N₂O/N₂ + N₂O ratio measured using the ¹⁵N Gas flux method was low (range: 0.03 to 13%) compared to the AIT (range: 50 to 60%). The reason for this discrepancy is that the AIT cannot discriminate N₂O sources to constrain the ratio to denitrification only and an incomplete inhibition of N₂O reduction due to diffusion constraints of C_2H_2 in soil cores.

The improved precision for both ¹⁵N-N₂ and ¹⁵N-N₂O analyses allows the quantification of in situ denitrification rates with low ¹⁵N enrichment in natural and semi-natural ecosystems.

Mosier, A. R.; Klemedtsson, L. 1994. In Methods of Soil Analysis, Part ii; Weaver et al. (eds).Soil Sci. Soc. Am: Madison, p 1047 2. Matson et al. 2009. For. Ecol. Mange 257: 1073. 3. Stevens & Laughlin. 2001. Soil Biol. Biochem. 33: 1287. 4. Bergsma et al. 2001. Environ. Sci. & Tech 35, 4307. 5. Ullah et al. 2005. Biogeochemistry 73: 499

RESULTS AND DISCUSSION

CONCLUSION

REFERENCES

using the ¹⁵N Gas flux method.