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wetted cross-sectional area

part of the diffusion coefficient in the convection—diffusion
equation

subscript denoting a bankfull value

parameters used in the finite difference Muskingum
equation

convection speed

subscript denoting a variable for the channel

average value of ¢ over a range of values for Q

= Q(1,x)

subscript denoting a variable for the flood plain
functions defining the theoretical curves for ¢ and Q
function used to simplify analysis

acceleration due to gravity

space label of downstream boundary

space label of foot of characteristic curve used in the
downstream boundary condition

subscript denoting a finite difference variable evaluated at
the jth space node

storage constant in the Muskingum method

length of reach

number of subreaches in the calculation of «

subscript denoting a variable for the mth subreach
subscript denoting a maximum value for the variable
subscript denoting a minimum value for the variable
half the number of time steps in each finite difference
method

Manning roughness coefficient

superscript denoting a finite difference variable evaluated
at the nth time node

subscript denoting a peak value for the variable
parameter used in the elementary flood wave solution for
the linear convection—diffusion equation

discharge

finite difference average discharge

amplitude of variable part of synthetic hydrograph

base flow for synthetic hydrograph

inflow discharge to reach

outflow discharge from reach

attenuation of peak discharge

cut-off discharge for drainage off the flood plain

lateral inflow per unit length :
lateral inflow per unit length from the flood plain to the
channel

amplitude of lateral inflow function

parameter used in the elementary flood wave solution for
the linear convection—diffusion equation

hydraulic radius

storage in a reach of river

bottom slope of channel

friction slope

time scale

recorded time-of-travel of peak

total time to simulate flood



t time

1, time-to-peak of hydrograph

Uy downstream velocity component of lateral inflow

X length scale

X distance from upstream section of reach

y depth

1.2 subscripts denoting first and second order solutions of the

convection-diffusion equation.
The superposition of a bar denotes either a scale for the variable or the
mean value along the reach.

Greek symbols

o attenuation parameter

B parameter used in the synthetic hydrograph

e parameter used in the elementary flood wave solution for
the linear convection—diffusion equation

At finite difference time increment

Ax finite difference space increment

€ parameter in the Muskingum method

0 a contribution to the convection speed from the flow along
the flood plain

IN parameter used in the calculation of the speed-discharge
curve

A ratio of inundated width of flood plain and channel to
width of channel

i diffusion coefficient

sinuosity of channel with respect to flood plain
characteristic time variable
w - convection speed.

A q



1 Choice of a flood routing method

1.1 Introduction

The prediction of a design flood hydrograph at a particular site on a river
may be based on the derivation of a discharge or stage hydrograph at an
upstream section, together with a method to route this hydrograph along
the rest of the river. In order to limit this investigation to cases where the
assumptions like uniform rainfall may be reasonably valid, the derivation
of unit hydrographs has been limited to catchments with an area less than
500 km?. Consequently, flood routing methods provide a useful tool for
the analysis of flooding in all but the smaliler catchments, particularly
where the shape of the hydrograph as well as the peak value is required.
The volume concentrates on an examination of various flood routing
methods to determine which method or methods is most suitable for use
in British rivers. It is therefore assumed that a discharge hydrograph at an
upstream section of a particular river is available from records at a
gauging station, or has been derived using the hydrological methods
described in Volume I, and that information is required about how the
flood defined by this discharge hydrograph affects discharges at one or’
several sections downstream. As will become apparent, this problem is
basically one of open channel hydraulics.

1.2 Flood routing methods

The importance of being able to route floods accurately is also reflected
in the large number of flood routing methods which have been developed
since the year 1900. These methods can readily be sorted into three groups:
a hydrological or storage methods;

b those methods based on a convection-diffusion equation; and

¢ methods using a numerical solution of the full Saint-Venant equations
for gradually varying flow in open channels.

The methods in group a are the most numerous, and, in general, the
most simple of all flood routing methods. They are termed ‘hydrological
methods’ because they concentrate on the concept of storage for the flood
water and do not directly include the effects of resistance to the flow. So
the routing of a flood by a hydrological method in a given reach of river
is based on the continuity equation which equates the rate of change of the
storage, dS/ds, in the reach to the difference between the inflow, Q, at the
upstream section and the outflow, Q,, at the downstream section:

ds
ar - 01— Qo (1.1)

The method then recommends a second, algebraic relationship between the
storage and both the inflow and the outflow. This enables a solution to be
found for the outflow when the inflow is given. One of the most popular
and satisfactory methods of this type is known as the Muskingum method,
which was originated by McCarthy (1938). The method uses the linear
algebraic relationship:

S = K[eQ,+(1-£)Qo] (1.2)

where K is termed the storage parameter, and ¢ relates the relative impor-
tance of the inflow and the outflow. The actual values for the two para-
meters have to be determined from the channel characteristics under study.
A variety of graphical and step-by-step techniques has been suggested
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Fig 1.1 Loop rating curve.

tHenderson (1966, p. 285) gives a
succinct derivation of Equations 1.3
and 1.4, but note that Henderson
writes the equations in terms of the
stage and velocity rather than the
cross-sectional area and the discharge
as here.

Choice of a flood routing method

for the Muskingum and similar storage routing methods; see Chow (1959,
p- 609).

One of the disadvantages with the hydrological methods is that they
assume a unique relationship between the stage and the discharge along
the reach. This is contrary to observations of natural floods which show
that the discharge for a particular stage when the flood level is increasing
is larger than the discharge for the same stage when the flood level is
decreasing. This phenomenon can be displayed graphically in the well-
known loop rating curve (Figure 1.1). Directly related to this non-unique-
ness in the stage-discharge relationship for the reach is the attenuation of

Uniform flow rating curve

Stage

Discharge

the peak discharge along the reach. Because the Muskingum method
predicts such an attenuation it is not immediately apparent how this can
be reconciled with the assumption of a unique stage-discharge relation-
ship. So, engineers turned to the equation expressing the principle of
conservation of momentum. This equation, often called the dynamic
equation, includes the effect of resistance to the flow and replaces the
algebraic relationships such as Equation 1.2. The continuity and dynamic
equations can be written in the formt

0A 8@

puelag T S, 1.
o tax 1 (-
30 0 (0% _ dy :

E*&(J‘“(““& S5 |40 49

Here, A is the wetted cross-sectional area at a distance x from the upstream
section of the reach, Q is the discharge, g is the lateral inflow per unit
length, g is the acceleration due to gravity, s is the bottom slope of the
channel, dy/dx is the slope of the water surface defined relative to the
bottom of the channel, s, is the friction slope, and v, is the downstream
component of velocity along the channel for the lateral inflow. Equations
1.3 and 1.4 are usually referred to as the Saint-Venant equations for
gradually varying flow in open channels.

As Equation 1.4 stands, it is too complicated to solve analytically for
an arbitrary flood in a natural river. Fortunately however, some of the
terms in the equation are usually sufficiently small that they can be
neglected. Because of this Lighthill & Whitham (1955) were able to show
that flood propagation can be described in terms of kinematic rather than
dynamic waves. Here a kinematic wave is a wave which has a constant
amplitude and which possesses only one velocity at each point of the wave,

2



Flood routing methods 1.2

in contrast to a dynamic wave which has at least two veloctties. By treating
a flood as a kinematic wave to the first approximation. and by including
modifications to this wave due to the diffusion induced by the water
surface slope, dy/dx, Lighthill & Whitham outlined a new flood routing
method which they termed the kinematic wave method. In effect, their
method is based on a convection-diffusion equation. such as

oy y 3%y

(—% w ﬁi\ = n 6_\i (1.5)

which is written in the characteristic form

dy Mty

with the characteristic curve given by

dx_ 1.7
T a.n

For simplicity, w and yu are usually regarded as constant parameters. It is
the diffusion term which introduces an attenuation of the peak stage along
the reach.

Because of its basic equation, the kinematic wave method belongs to
group b above. However, it was Hayami (1951) who first produced a flood
routing method based on a linear convection-diffusion equation. He argued
that floods in natural river channels are affected by the irregularities in
the channel geometry. To include the effect of these irregularities Hayami
proposed the linear convection-diffusion equation with an arbitrary value
for yt. Because he knew of no way to calculate this value of ;¢ directly from
the channel geometry, Hayami suggested that y should be determined by a
trial-and-error comparison of results using his method with records of
previous floods in the river under study. Once the value of the diffusion
coefficient is known, and the parameter w is defined as the speed of a
flood peak, Hayami’s diffusion method gives good agreement with natural
floods which have similar peak discharges. The uncertainty in the value of
u remains however as a major disadvantage with the diffusion method.

As explained by Hayami, the irregularities in the width of the river
define, in effect, a series of reservoirs which increase the storage capacity
of the river. This phenomenon is accentuated when the flood water flows
out over an associated flood plain. Because the diffusion method effectively
routes floods in a river which has a regular cross-section, bottom slope,
and roughness, and which is equivalent to the natural river, the increase in
the storage capacity due to the irregularities in the natural river can be
viewed as a change in the geometry and roughness of the equivalent river
model. It is shown in Chapter 2 that these changes can in fact be quantified,
so that the parameters for the diffusion method, and y in particular, can
be determined without requiring a trial-and-error application of the
method.

Another disadvantage with the kinematic wave and diffusion methods
is their use of fixed values of the parameters w and u. Suppose that w and u
have been found so that the speed of travel and the magnitude of the peak
discharge along the reach are correctly simulated. Then these values for w
and u can be considerably different from the corresponding values deter-
mined for an overbank flood. So, although values of the parameters can
be obtained to route a range of previous floods, the extrapolation of these
values to deal with a possible larger range of floods can lead to significant
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Choice of a flood routing method

errors. Thomas & Wormleaton (1970) have made a numerical study of
floods in an upper reach of the River Dee (Wales) using the diffusion
method with the stage as the dependent variable. Their results indicate how
difficult it is to isolate fixed values for the convection velocity and diffusion
coefficient when applying the method to a wide range of floods in a
particular river. A way of overcoming this difficulty is to define w and p
as functions of the stage or discharge in the river. A new flood routing
method based on the generalised convection-diffusion equation with the
discharge as the dependent variable and w and y as functions of discharge
is presented in Chapter 2.

Despite the fact that the difficulties referred to above can be removed,
there remains one more significant problem in using the diffusion methods,
namely the inclusion of discharges from major tributaries. The difficulty
which arises in this case is how to prevent what is in effect a discrete lateral
inflow upsetting calculations using the governing equation. The simplest
solution to the problem is to route a flood from tributary to tributary,
summing the discharge hydrographs from the main channel and the
tributary at the confluence. But, whereas this procedure is satisfactory for
a well gauged river, there will inevitably be questions of accuracy in
applying the diffusion methods to rivers which are not well monitored.

It has already been mentioned above that it is the water surface slope,
dy/dx, which induces a diffusion of the kinematic wave solution, and that
one of the consequences of this diffusion is an attenuation of the peak
stage or discharge along the reach. A formula for the attenuation of the
peak stage for a flood in a regular channel was discovered by Forch-
heimer (1930), many years before Hayami proposed the diffusion method.
Forchheimer showed that the attenuation is directly related to the curva-
ture of the peak of the upstream stage hydrograph. More recently, Hender-
son (1963) has shown how the acceleration and convection of momentum
terms on the left hand side of Equation 1.4 also contribute to the attenua-
tion of the peak stage. The importance of these latter terms increases as
the Froude number for the flow increases. So, for steep rivers, Henderson
points out that all the terms in the dynamic equation may become impor-
tant. However, the attenuation of the peak stage is approximately in-
versely proportional to the square of the bottom slope, so that the magni-
tude of the attenuation in steep rivers is not as important as that in rivers
with small bottom slopes. A similar attenuation formula and analysis can
be derived for the attenuation of the peak discharge.

The attenuation formula can aiso be regarded as a consequence of the
second order solution for the convection—diffusion equation. For this
reason it is convenient to classify the use of the formula as a flood routing
method in group b. In addition, because it is now possible to quantify and
include the effect of irregularities in the geometry of the natural river in
the convection—-diffusion equation, a similar improvement can be made to
the attenuation formula. This is explained in more detail in Chapter 2.

Although the Muskingum method, already referred to above, ignores
dynamic effects on the flood wave, Cunge (1969) has shown that it is
possible to improve the method so that it gives a good approximation to
the solution of the linear convection-diffusion equation. This improvement
is made on the basis of the finite difference equation for the Muskingum
method. The finite difference scheme introduces an arbitrary diffusion and
Cunge has identified the magnitude of this diffusion with that of the
corresponding term in the diffusion method. In this way he is able to define
the parameters of the Muskingum method in terms of the parameters for
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Flood routing methods 1.2

the diffusion method. As shown in Chapter 3, the Muskingum-Cunge
method can be used to find the attenuation of the peak discharge with a
high degree of precision. In addition, it can be commented here that the
Muskingum method does not have the difficulties with tributaries that the
diffusion methods have. Consequently, there will be advantages in using
the Muskingum—Cunge method for rivers which have major tributaries
and which are not well gauged.

Because of the limitations in the analytical fiood routing methods
which have been proposed and the availability of powerful digital com-
puters, increasing attention has been paid to numerical solutions of the full
Saint-Venant equations. These numerical flood routing methods which
come under group ¢ above, differ from each other primarily in the tech-
nique used to solve the differential equations. With sufficient storage in
the computer, the methods can be extended to include as much detail of
the geometrical characteristics of the channel and flood plain as required.
Problems do arise in isolating friction parameters along the channel and
the flood plain, and in specifying the head losses for the flow to and from
the flood plain and over walls and hedges. And a concern for detail in such
a model can obscure an overall description of the flow. So although one
can anticipate that a flood routing method of group c is likely to be more
accurate than any of the other methods given sufficient data, the simpler
flood routing techniques are usually adequate for many purposes. How-
ever, the numerical methods do become an important tool if both levels
and discharges are required continuously along a reach of river. In this
case the simpler flood routing techniques are cumbersome, and their
poorer accuracy compared with the numerical methods may be significant.

1.3 Choosing a flood routing method

Faced with such a range of flood routing methods, the choice of a suitable
method for routing a flood in a particular British river is at first sight
formidable. Inevitably there are two major factors affecting the choice,
namely the information required from the method, and the data available
about the geometry of the natural river and previous floods.

The results from a flood routing study will of course be dictated by the
nature of the overall project. For example, if a building is being con-
structed on the flood plain such that the building will not significantly
affect the flooding characteristics of the river, but will itself be sensitive to
flooding, the engineer will be concerned with, say, the peak level of a flood
hydrograph at the construction site. He may also be interested in how long
the flood will be above a certain level, in which case he will need to know
the shape of the stage hydrograph. Similar information with respect to
flood discharge hydrographs will be required when designing a spillway for
an onstream reservoir. Here the engineer may be concerned principally
with the rising part of the discharge hydrograph and with its shape near
the peak. If, however, alterations are being proposed, such as a flood
alleviation scheme, which will alter the flooding characteristics of the
river, then a knowledge of peak levels and discharges from certain design
floods, and possibly the associated hydrographs, will be necessary not
only at the sites where the improvements are to be made but also at sections
far downstream. When information is required at discrete sections which
are more than, say, 20 times the width of the flood plain apart, then the
routing of a flood between each section can be regarded as a ‘black box’
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Choice of a flood routing method

problem: the interest is only in the input and output to each reach. In this
case one of the simpler flood routing methods from groups a or b. which
routes a flood along a simplified equivalent river model instead of acomplex
model of the irregular natural river, is usually sufficient. However, when
more detailed information on flooding is required along the river, including
water levels and mean velocities, then one has to resort to one of the much
more complicated numerical methods of group ¢. There does exist the
possibility of using a method from group b with a method from say. group
c. to supply the detailed, local information which the former method is
unable to produce, but it is not usual to combine such methods at present.

Another important aspect of the information obtained from a flood
routing method is the accuracy of the results. This accuracy will of course
be a function of the accuracy of the data and the method itself. If it is
supposed that the accuracy of the input data for the method can be con-
sidered separately, then errors in the results will depend principally on the
suitability of the basic equations to describe the phenomenon of flood
propagation. A brief survey of the various methods has been made in
Section 1.2 above, and the advantages and disadvantages are discussed
more thoroughly in the remaining chapters of this volume. It is sufficient
to note here that in general it is the errors arising from the unsuitability
of terms in the basic equations which are the most difficult to eliminate:
numerical analysis is sufficiently well advanced that errors generated by
the solution techniques—including finite difference schemes for the
equations, boundary conditions and data handling techniques—need not
be too great a problem.

The amount and quality of data from the natural river, both for the
geometry of the channel and flood plain, and for previous flood discharges
and levels is another significant factor in the choice of a flood routing
method. Fortunately, it is usually possible to obtain general geometrical
information about a British river from survey maps. This information will
include, say, the length of a reach, the slope of the channel, and the plan
area of the flood plain. It is still necessary however to know something
about the speed of flood peaks along the reach. and the corresponding
peak discharges, particularly if water inundates the flood plain. If this
information is of poor quality then nothing is gained by using a flood
routing method more complicated than a simple storage method. Fortu-
nately, most British rivers have at least one gauging station which can be
used to produce a typical discharge hydrograph for the river and peak
discharges for previous floods. However, it is common for the error in the
calculated discharges to be more than about 0.2 of the actual discharge,
particularly for high flows when the error can be much greater. This large
error is due to the difficulties in extrapolating the rating curve for flow over
an adjacent flood plain. If there is no gauging station available, either a
gauging station has to be built or discharge hydrographs for previous
floods have to be derived at the upstream section of the reach from some
hydrological catchment model as described in Volume 1 of this report. of
course, if a detailed numerical model is to be developed, the amount of
proving data increases with the amount of detail required. Such data can
be expensive to obtain and depend, in the case of a flood plain study, on
the occurrence of appropriate floods during the course of the investigation.
It should also be remembered that if the parameters for a given method
have been determined for a particular range of floods, then the use of the
method with the same parameters for larger floods can introduce errors.

This brief discussion of the factors affecting the choice of a flood rout-



Choosing a flood routing method 1.3

ing method has so far neglected how the characteristics of British rivers
and flooding in these rivers affect such a choice of method. It is appro-
priate then to conclude this chapter with a description of these character-
istics.

-1.4 Characteristics of British rivers

Table 1.1 contains a summary of data from a number of British rivers and
several foreign rivers. Perhaps the most outstanding characteristics of the
British rivers are the relatively short lengths and large average slopes.
Defining the upstream section of a river as that section which has a
catchment area of 500 km? and the furthest downstream section at the
tidal limit, then there is no river in Britain which has a length greater than
210 km. In fact, besides the rivers Severn, Thames, Wye and Trent, all other
British rivers have lengths less than 110 km. Closely related to the length
of a river is its average slope, defined as the difference between the levels
at the upstream and downstream sections of the river, divided by the
length of the river. As the rivers are relatively short in length, they have
fairly steep average slopes of the order of 107 3. The Great Quse has the
smallest average slope of the larger rivers, namely 2.1 x 1074,

The maximum recorded discharges in British rivers vary considerably
from river to river, and in several rivers the maximum discharge may occur
far upstream and not at the tidal limit. In general, the greatest discharges
have occurred in rivers with steep slopes, namely the rivers Tay, Tyne,
Tweed and Dee (Scotland). The Tay is exceptional in that it has a mean
annual discharge of 154 m* s™', which is far larger than the mean annual
discharge for any other British river, and has had flood flows of up to
1419 m* s~ ', Longer rivers like the Wye and Trent, do not appear to have
exceeded a discharge of about 1000 m® s™! at their downstream sections,
and the maximum recorded discharge in the Severn at Bewdley is only
671 m* s~!. Notice that, in general, the longer rivers have higher peak
discharges at upstream sections. Evidently the peak discharge of a flood
in these rivers attenuates as the flood moves downstream.

Most river systems in Britain are complex, having several tributaries
with significant mean annual discharges. Typical of these river systems are
the Great Ouse and the Yorkshire Ouse. A few river systems like the Wye
are more straightforward, the Wye having only two major tributaries
along most of its length. However, besides the discrete discharges from the
major tributaries to the main river, there is a significant increase in the
discharge of certain rivers due to the lateral runoff from the catchments
along the rivers, including minor tributaries and the local aquifer. For
example, there is no major tributary between Erwood and Belmont on the
Wye, but the difference in the mean annual discharges at these two stations
is 9.76 m*® s~ !, or 279, of the mean annual flow at the upstream station at
Erwood. This gives an average lateral inflow of about 0.4 m® s™! km™!'.
Again, the magnitude of the lateral inflow, being a function of the local
rainfall, varies from river to river. Some rivers in the east of England, such
as the Nene and Trent, usually have a negligible lateral inflow, though
under snowmelt conditions the lateral inflow for such rivers can be large.

The magnitude and variation of the width of the flood plain along a
river is another important factor to be considered in a flood routing study.
A convenient definition of the flood plain width is an area per unit length
of river, as measured from the area inundated by the largest recorded
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thas a large loch in the catchment
Fincludes Loch Tay

§from I inch to | mile map
estimated.

Table 1.1 Data for some British and
foreign rivers.

Characteristics of British rivers 1.4

flood for that river. Notice that this width is not necessarily the same as
the geographical width of the flood plain. For some of the longer British
rivers the flood plain width can reach a local maximum in excess of 2 km,
though the average width along the whole length of these rivers is less than
0.5 km. For many rivers the flood plain is artificially controlled by flood
banks and other flood control features. The embankments for some rivers,
such as the Great Quse in the fenland, produce a normal water level which
can be above the surrounding flood plain. In this latter case the over-
topping of the embankments leads to flooding over a very wide area, with
water which is only returned to the main channel by pumping over a period
of months.

One of the major effects of an inundated flood plain is to change con-
siderably the shape of the flood hydrograph at sections along the river.
This is explained in Section 2.6 below. But it can be mentioned here that
the most important change induced by a large flood plain on the shape of a
flood hydrograph is the attenuation of the peak discharge. This attenuation
may not of course be observed if there is a large lateral inflow to the river,
and in general the peak discharges of floods in the smaller British rivers
amplify along the rivers because of the lateral inflow due to direct runoff
from the surrounding catchment and from tributaries.

1.5 Flood routing in a British river

From the discussion above it follows that an appropriate flood routing
method for British rivers should be able to route accurately floods in a
reach which typically has a slope of 1072 and which is up to 100 km long.
In addition, the method should be sufficiently versatile to treat the case of
flooding in a river with extensive flood plains. Not surprisingly the last
restriction is severe, and a new flood routing method has been derived for
this case in the following chapter. However, as will become apparent from
Chapter 3, the simple flood routing methods, and in particular the
Muskingum—-Cunge method, have much to recommend them for general
use in British rivers.

In the following chapter a more comprehensive study is made of the
theoretical basis of flood routing. This study leads to the proposal of a new
formula for the attenuation of the peak discharge for a flood along a reach
with extensive flood plains, together with the development of a new flood
routing method as mentioned above. Chapter 3 then concentrates on a
comparison of three of the most appropriate flood routing methods.
Finally, a strategy for flood routing in British riversis outlined in Chapter 4.
If desired, Chapter 2 may be omitted on a first reading.



2 Theory of flood routing

2.1 Introduction

It is usual in developing a theory of flood routing to begin with the
simplest models, such as hydrological models, and to proceed to more
complicated models once the deficiencies of a particular model have been
understood. This is the approach adopted in the brief survey of flood
routing methods in Chapter 1. However, to emphasise that all flood rout-
ing methods are based on, or can be shown to depend on, hydraulic
principles, the theory of flood routing in this chapter is developed from the
Saint-Venant equations for gradually varying flow in open channels.
Necessarily, some algebra is required in Sections 2.4, 2.7 and 2.12 to ensure
a proper development of the theory. These sections are so arranged that
they may be omitted on a first reading of the chapter. Also, an effort has
been made throughout the chapter to specify the underlying assumptions
in each step of the argument. Many of the assumptions may appear crude
or severe to those who have no experience of flood routing. The accurate
results which can however be obtained by even a very simple flood routing
method indicate that the assumptions are realistic and that simplicity has
much to recommend it.

2.2 Mathematical modelling of flood flows

Each flood routing method is based on some model for the river and its
associated flow. The hydrological methods regard the river as a ‘black box’
with the storage in the box depending on the inflow and outflow. Neces-
sarily the black box has one or more parameters, the values of which are
peculiar to the river being studied. One of the best ways to find the para-
meters is to simulate the model on an analogue computer and to vary the
parameters until the best fit is obtained between the predicted and recorded
hydrographs for a calibration flood in the natural river. The approach
adopted in this type of model is equivalent to saying that the flow in the
river is much too complex to be modelled in detail and that it is sufficient
to assume some arbitrary functional relationship between the outflow and
inflow to the reach, with the one restraint that the total amount of water
stored in the reach is conserved. Although this approach appears crude, it
should be recognised that at some stage a similar approach is inevitable
in the derivation of any mathematical model of flow in a river. As already
indicated, the major difficulty is the complexity of the flow, in view of both
the irregular nature of the boundaries in the river, and the turbulent
motion of the water. So simplifying assumptions have to be made ab initio
to make the problem tractable.

The Saint-Venant equations describe the one-dimensional bulk flow
of water in a river (Brutsaert, 1971). In the derivation of the equations it is
assumed that the variation of the mean velocity across a section in the
river is not important, and the water surface slope varies graduaily along
the river so that the pressure is approximately hydrostatic. The effect of
friction on the flow is generally simulated by an empirical term for the
friction slope. It is usual to adopt the Manning or Chézy form for this
term.

The roughness coefficient in the term for the friction slope can be
regarded as a proving parameter. Just as the boundary roughness in a
physical model of a hydraulic problem has to be adjusted so that water
levels in the model agree with the corresponding levels in the natural river,
so the roughness coefficient in a mathematical model can be varied to the
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Mathematical modelling of flood flows 2.2

same end. An estimate of the roughness coefficient can of course be made
simply from a knowledge of the natural river channel by noting such
points as the boundary texture, the character of the banks, whether there
is weed growth in the channel, the variability in the shape of the cross-
section and the sinuosity of the channel. Inevitably, because of all the
factors affecting the magnitude of a roughness coefficient there is un-
certainty in assigning a value to the coefficient for a particular river
channel. For this reason, it is preferable where possible to use other
methods of estimating the roughness coefficient, or better still to use
another proving parameter. It is shown below that in the case of the
simpler flood routing methods the speed of flood peaks is generally more
convenient than the roughness coefficient. This is because the speeds of
previous flood peaks in a river are often known and because the simpler
methods can all be derived in terms of the speed. Another advantage in
using the speed as a proving parameter is that observations of the speed of
flood peaks include the direct effect of irregularities in the width and
bottom slope of the channel. These irregularities, which have a length
scale along the river of say, many times the width of the channel. can
possibly be included in a detailed numerical model if the roughness
coefficient can be found for each small subreach. But because the simpler
flood routing methods make simplifications to the geometry of the river
channel and in effect use an ‘equivalent’ channel with average values along
the reach for the parameters describing the geometrical characteristics of
the natural channel, these methods can include implicitly the effect of
irregularities. As explained in Chapter 1, it was this sort of consideration
which led Hayami to propose his diffusion method.

The extension of the models to include storage and flow over an associ-
ated flood plain increases the complexity of the problem. For example, if
the river channel in the model is regarded as straight, the plan geometry
of the flood plain will be distorted. This makes the exchange of water and
momentum between the channel and the flood plain difficult to simulate.
One way round this difficulty is to regard the flood plain simply as an
extension of the channel. This, however, is inappropriate because of the
large difference between typical velocities in the channel and over the
flood plain. But once it is accepted that the flow over the flood plain is to
be regarded as separate from the flow in the channel, then the exchange of
water and momentum between the channel and flood plain has to be
considered.

Obviously the effect of channel meanders on the exchange can be
extremely complicated, and there would be little hope, even with present
day computers, of correctly simulating in detail the processes involved over
a long reach of river. A considerable amount of research has been concen-
trated in recent years on these processes, particularly in the ussr. The
two main processes are a direct convection of momentum via the flow to
and from the channel, and a diffusion effect. This latter effect arises from
the difference in the velocity of the flow on the flood plain and the flow in
the channel. Obviously the velocity in the channel will generally be greater
than the velocity of the water over the flood plain immediately adjacent to
the channel. This velocity difference produces vortices which diffuse and
are convected from the channel to the flood plain. In turn this leads to a
small reduction of the velocity in the channel and a larger increase in the
velocity over the flood plain. Zheleznyakov (1971) has made a thorough
study of this phenomenon, which has been termed, somewhat inappro-
priately, the ‘kinematic effect’.

11



Fig 2.1

Definition sketch.

Theory of flood routing

Another important feature of flow over a flood plain is the flow normal
to the general direction of the river channel. In a numerical model this
difficulty can be partly overcome by using a separate equation to describe
flow to and from the channel. This equation might include a term with a
structure similar to the formula for the discharge over a broad crested weir.
In a simple flood routing model. however, it does not seem possible to
include transverse flow over the flood plain as a distinct feature and still
preserve a necessary simplicity in the model. The analytical development
of the flood routing model below assumes that the flows in the channel and
over the flood plain are distinct but related by the condition that the water
level in the channel is the same as that over the flood plain and is uniform
across a section. This is equivalent to saying that the lateral flow over the
flood plain is instantaneous.

2.3 Basic equations

The Saint-Venant equations for gradually varying flow in open channels
are

continuity:

04 ¢Q

o ta T 2.0
momentum:

Q0 o [(Q? cy

L2 (E ) = Agl s——= .
é‘t+0x<A S A (22)

where 4 is the wetted cross-sectional area, Q is the discharge, ¢ is the lateral
inflow/unit length, g is the acceleration due to gravity, s is the bottom slope
of the channel, y is the depth, s, is the friction slope, and v, is the velocity
component of g along the channel in the downstream direction (Figure 2.1).

A good approximation for s is given by the Strickler-Manning
formula:

2.2
Qn (2.3)

Ser = AZRT3

where R is the hydraulic radius and n is the Manning roughness coeffi-
cient.

Equations 2.1 and 2.2 have no exact analytical solution relevant to
flood wave propagation other than the monoclinal wave in a uniform
channel which is infinitely wide (Henderson, 1966, p. 372). This wave
travels with constant speed and tends to a fixed depth downstream and a
larger fixed depth upstream. In the absence of a more general exact solu-
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Basic equations 2.3

tion, it is necessary to resort to approximate analytical solutions of the
basic equations. This is possible because some of the terms in Equation 2.2
are less important than others. Following Henderson (1966, p. 364), the
relative importance of the terms in the basic equations can be deduced
from an order of magnitude analysis.

Because the flow is one-dimensional in space and because the lateral
inflow is often negligible, the terms on the left hand side of Equation 2.1
must have a similar magnitude. Formally, if X and T are the length and
time scales for a flood wave respectively,

> |

(2.4)

~N

where the superposition of a bar above a variable denotes the scale for
that variable. It now follows from Equation 2.2 that

s0|/|o(2*\ _ 2/@
/ (h(_) / iy @.5)

at T| XA
using Equation 2.4. So the local acceleration and convection of momentum
terms in Equation 2.2 are of the same order. To make a further comparison
of the terms in Equation 2.2 it is necessary to have estimates of the values
for the various scales which are typical for British rivers. Set

W =60m g =10ms™!

§ =1073 j =5m

1 =4x10"2 g =107*m?s™! (2.6)
A = 300 m? T =10°s

0 =500m3s™! by =05ms™".

With these data
X = QT/A=~1.7x10° m=~200 km
lgAsi|/|gAs| = §,/5~0.9

o )
(gA /lgAsl ’;/§~2.0x10“2
aa? /IgAsI ?,Q-/g §~1.7x1073 2.7

lqugl/IgAs| = b, /gAs~1.Tx 1073

A
|q|/‘— —-q/—~03xl0 L

These relationships show that:

i the momentum of the flow in the river is governed primarily by the
bottom and friction slopes, and is modified by the water surface slope,
dy/0x, which is defined relative to the bottom slope of the channel;

ii the acceleration and convection of momentum terms can be ignored;

iii  the contribution to the momentum in the main channel from tributaries
and lateral inflow can also be ignored;

iv the lateral inflow from small tributaries and direct runoff can be
significant under snowmelt conditions, but in general its effect is small;
and
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v the length scale of a flood wave is considerably greater than the lengths
of most British rivers.

Conclusion ii would not of course be true for flow in steep rivers, and
the conclusion may also be violated locally for flow through bridges, weirs
and other obstructions in the river. However, in the latter case it can often
be assumed that head losses at such obstructions are included in the
appropriate values for the parameters of a particular flood routing
method.

Using the above conclusions, the following equations can be recom-
mended for the routing of inbank floods in British rivers:

0A 89

o =1 @8
ay Q*n?

0 = S—-a_x——-_AzR“/‘; . (29)

Equation 2.9 can now be solved to give Q explicitly, and Q can then be
substituted directly into Equation 2.8 to give an equation involving A
(or y) alone:

04 0|1 oyt
|- AR s-=2 = .
ot +(7x l:n <g 6x> ] a (2.10)

where y is a prescribed function of x and 4. However, Equation 2.10 is
inappropriate for an analytical study of flood routing because the peak
value of A4 is strongly dependent on the local channel geometry. This
difficulty, which will be explained in more detail below, is avoided if Q is
the dependent variable rather than A.

2.4 Equations for flow in channel-flood plain systems?

Previous steady flow studies of flooding over flood plains have assumed
that the storage and flow over the flood plain can be introduced by
separating the total discharge along the river into a discharge Q. in the
channel and a discharge Q; over the flood plain (Zheleznyakov, 1971). As
commented in Section 2.2, such a distinction is crude from a local view-
point due to such geometrical features as the bifurcation of the flood plain
and the meanders in the channel. However, over a long reach this division
of the total discharge is a good approximation to reality. Next, it is
assumed that the water level across the flood plain normal to the general
direction of the main channel is uniform and the same as that in the
channel. Then, if Equations 2.8 and 2.9 can also be taken to describe the
flow over the flood plain, the equations describing the flow in the whole
system are, for the channel:

oA, 30,

St =4 Q2.11)
oy. Qinl

0 =s— 2.12)

éx  AZR:S

and for the flood plain:

34, 00;

= = g*
~ o q*+q (2.13)

4
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Fig 2.2 Schematic channel-flood
plain model.

Equations for flow in channel-flood plain systems 2.4

a 2,2
0=’ <s Y ) Qini (2.14)

“ox) AR

where g* is the lateral inflow per unit length from the flood plain to the
channel. As subscripts, ¢ and f refer to variables for the channel and the
flood plain respectively. The sinuosity, &, is defined as the ratio of the
length of the channel to the length of the prototype flood plain in the mean
direction of the channel. Note that A, refers to the wetted cross-sectional
area of the flood plain in the model. Because the channel in the model is
regarded as straight and the plan area of the flood plain in the model is
the same as that in the prototype, the width of the flood plain in the
model will be 1/a times the width of the prototype flood plain (Figure 2.2).

Equations 2.11 and 2.13 can be combined to give

0 aQ

a(Ac‘*‘UAr)‘l"aT:q. (215)
The problem now is to replace 4.+ 04, by a function form involving Q.
Because the level of the water surface across a section of the river and
flood plain is taken as uniform, it is possible to express A; as a function of
A.. So, Equation 2.15 can be rewritten as

| q 2 aA°+‘3Q— 2.16
%34 ) e tay =1 (2.16)

where

oAy W 2.17

04, W, (2.17)

Here W, and W; are the inundated widths of the channel and the flood
plain respectively. Next, from Equations 2.12 and 2.14,

AR A RE3 oy \*
Q=0.+0 = [n— +g3/2 f”—::l(s—-a%> (2.18)

or, differentiating this equation with respect to ¢,

o0 R/3 2A4.,0R\ o%* o dy \t o4

. < 1 £ e ¢ A 2/3 e c

ot [nc N 6AC)+ o4, AR )]<S 6x> Y
ay.\"' o[ 1 44,

By eliminating 04./0t between Equations 2.16 and 2.19, and assuming
that the channel has a large width to depth ratio
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oQ 1oy \*'° [0 _
—6‘7+C<I—} g) (a—q) =
.\ "o L [0Q
_%Q<s_5§> E([/:wc (a‘; _‘7>] (2.20)

where
0 [ 24.0R. ]
= |4-22<49 2.21
€= XOmy s WIFSTO T3R 34, (221)
L= l+aW /W, (2.22)
and
0= o ARECTAW (| 2AORN [ 2ACR
ne | A W. 3 R; 0A; 3 R, 04,
A RZ/J 24371
[ R AcR: ] . (2.23)
n. I

If the flood plain is not inundated or, for the purposes of this study, if the
discharge is less than the bankfull discharge Q,, 2 =1 and § = 0. For
simplicity it is assumed that the water surface width of the channel when
the flood plain is inundated is the bankfull width.

Finally, when g is effectively uniform along the river, and |0y /ox]| is
small compared with s, then Equation 2.20 becomes

00 30 3 [ 30\, «Qds 30 3 (3Q

at"{"Ca—— an<ll —a-;) —;—a}'a-i-g “. -5; +cq (2.24)
where

o= (W) (2.25)

2.5 Convection—diffusion equation

The flood routing equation derived in the previous section (Equation 2.24)
is basically a convection-diffusion equation. The second term on the left
hand side of the equation describes a convection with speed ¢ of the
quantity Q. This change in time of the local value of Q is modified by the
terms on the right hand side of Equation 2.24, which can be regarded as
describing a diffusion of Q. Similarly, the convection of {s gdx’ with speed
c also affects the local value of Q.

Equation 2.24, or a similar equation with the stage as the dependent
variable, can be shown to be the basis for most of the simpler flood routing
methods.t These models generally assume that ¢, « and «Q are constant
in space and time, and that the third term on the right hand side of
Equation 2.24 is negligible; for example, see Cunge’s improvement of the
Muskingum method (Cunge, 1969), the kinematic wave method (Lighthill
& Whitham, 1955) and the diffusion method (Hayami, 1951; Thomas &
Wormleaton, 1970; Price, 1973a). These assumptions make the convection-
diffusion equation linear, and it is then comparatively easy to obtain an
exact analytical solution of the equation (Hayami, 1951). However, the
expressions for ¢ and « in the previous section indicate that these para-
meters are properly functions of several variables, including Q and x. In
particular, the magnitude of the parameters will vary considerably when
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Convection-diffusion equations 2.5

there is flooding of an associated flood plain. It follows that in such a case
of flooding it is better where possible to know the functional forms for ¢
and «. Although c is defined by an equation (Equation 2.21) in the previous
section, the structure of the terms in that equation makes the task of find-
ing ¢ as an analytical function of. say, Q and x rather difficult. An alterna-
tive and more convenient approach is to calculate ¢ from records of the
time of peak for several floods at each end of the reach. This procedure
is of course more accurate the fonger the reach. If there is also a gauging
station with a good rating curve at some section of the river then the
values for the speed of each flood peak can be correlated with the corres-
ponding peak discharges. In this way ¢ can be found as an averaged func-
tion, ¢, of Q alone.

It remains now to calculate the appropriate functional form for «~ in
terms of @ alone. Values for «~ for particular floods, with «~ defined in
terms of average values for the bottom slope and the maximum width
of the river (Equation 2.25) could be used, but such values for ~ would
ignore the variations in AW_ and s along the reach. And it is precisely
these variations which Hayami (1951) argued are important and should be
included in «. Inevitably, to obtain this averaged value of ~ some sort of
analytical solution of Equation 2.24 has to be derived for an arbitrary
flood wave in a given river. Fortunately, it is possible to adapt Hayashi’s
(1965) method of solving the Saint-Venant equations to the solution of
Equation 2.24, and by making some appropriate assumptions, to obtain
an explicit expression for «. The solution uses a technique known as
perturbation analysis.

2.6 First order solution

Because the terms on the right hand side of Equation 2.24 can be regarded
as being significantly smaller than the terms on the left hand side, it
follows that to the first order Equation 2.24 can be written as

90, 20,
74-(‘1?— 0 (2.26)

where Q, is the first order term in the expansion for Q, and
¢ = (@, x). (2.27)

Equation 2.26 implies that Q, is a function of a single characteristic
variable 7, defined by

> dx’

o €y

T=1— (2.28)

For clarity, set
0, (x, 1) = Fy(7). (2.29)

F(1) is the function for the discharge hydrograph at the upstream section
of the reach.

Equation 2.26 describes a kinematic wave moving with a velocity ¢,
(Lighthill & Whitham, 1955). The peak discharge for this wave is un-
affected by variations in the channel geometry. However, as the speed of
the wave is a function both of distance along the reach and the discharge,
the variations in ¢, directly affect the shape of the discharge hydrograph
for the kinematic wave at sections along the river. To illustrate what
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Fig 2.3 Deformation of the discharge
hydrograph for a kinematic wave.

+This section may be omitted on a
first reading of this chapter.

Theory of flood routing

happens, consider a given discharge hydrograph at the upstream section
of a reach of a river with extensive flood plains and assume that Equation
2.26 is an adequate description of the motion of the flood wave. The
discharge hydrograph at a downstream section will have three important
features (Figure 2.3).

Discharge Q
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Suppose in the first instance that the kinematic wave is entirely con-
tained within the banks of a rectangular channel. It can be shown from
Equation 2.21 that the speed of the crest of the wave is then greater than
the speed of the foot of the wave. So, the rising part of the discharge
hydrograph at the downstream section will be steeper than the correspond-
ing part of the discharge hydrograph at the upstream section. This is also
true in general for the inbank part of a kinematic wave which inundates
the flood plain (region 1 in Figure 2.3). Observations of floods in proto-
type channels show a similar feature.

Next, consider what happens to the kinematic wave when the flood
plain is inundated. From Equation 2.21, if the flood plain is infinitely rough,
0 = 0 and the speed of the kinematic wave will be considerably reduced for
that part of the wave above bankfull, depending on the magnitude of /.
Even when 0 # 0 it is found that ¢, is smaller than it would be if there was
no flood plain. This reduction in the speed for the overbank part of the
kinematic wave leads to a distinct flattening of the rising part of the
discharge hydrograph at the downstream section in the region of the
bankfull discharge; see region 11. This feature is very pronounced if the
flood plain is flat and can be assumed to be bounded by vertical walls.
Correspondingly, in region 11 where the water is receding from the flood
plain, the discharge hydrograph is markedly steeper than the same part
of the hydrograph at the upstream section. In practice however, region 111
is not as pronounced as in Figure 2.3. This is because the drainage off the
flood plain tends to smooth the curve in this region. As may be expected,
the effect of the drainage off a flat flood plain is more important than the
drainage off a flood plain which slopes towards the river.

2.7 Second order solutionf

The terms on the right hand side of Equation 2.24 modify the kinematic
wave solution. To find the additional small term Q, it is necessary to
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Second order solution 2.7

extract the second order equation from Equation 2.24;

6Q2+ ‘7Qz_|_c2 90, — Q||:1<”1 a_Q_l>+11$g ?_Ql]

Tar T ax T ax ox ox ) s dx ox
3 G, 2
+§”'°<6£xl> +c¢, 9 (2.30)
where
vy = //(Ql,,\‘). (23])

Equation 2.30 can be solved as follows.
As Q, is a function both of r and x, expressions can be obtained for
the partial derivatives of Q,:

00, 0F,

22y 2 2.32

At ¢ at ( )
3 -

0Q: _ _90F 0y (2.33)

Ox ¢, 0t Ox

Here. Q, (x, 1) = F, (1, x) and the function ¢ is defined by
{0 (*10c, dF 7!
C) = I —_ _—— _'I —_—
(T, x) | _[0 c? OF, Y }

It can similarly be shown that

I a cQy +lds (7Q,+3 0& 2
) Ox 1 ox )T dy ax s e\ ax

_¢2{ d2F, <dF,>2 20c, 1 day 3y,

(2.34)
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=2 1¢ @ \&)\ear

+3) dr [ ax 4, ax s dx ;
By substituting the expressions above in Equation 2.30 it follows that
& [F, ] , PG
—(2) = - g(r. )+ . 2.36
x < ¢) ¢ 4t )+ 3 LW sc} (2.36)

This equation can be integrated to give

Py l X b s
0, =F, = qsf —qu'+%¢ﬂf Gdx
0P

. 2.37
o AW sc3 (2.3

The expression for @, in Equation 2.37 is an exact solution of Equation
2.30. However, the complexity of the function G(t, x) makes it difficult to
develop the solution for practical purposes. So three additional assump-
tions are made:

i the reach is sufficiently short so that ¢~ 1;

ii the contribution from the terms in Equation 2.35 involving dc,/dx,
0a,/0x and ds/dx to the second integral in Equation 2.37 can be neglected ;
and

iii ¢, is a separable function of x and Q.
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These assumptions may appear at first to be severe and so they require
further comment.

The first assumption can obviously be made applicable by reducing
the length of the reach being considered. The actual length of the reach
will of course depend on the geometrical characteristics of the channel
through the quantity dc,/dF,, and on the maximum slope of the discharge
hydrograph (Equation 2.34). If dc,/dF, is small, as is the case for rivers
with wide and reasonably flat flood plains, the maximum length of the
reach which satisfies the first assumption can be considerable.

The second assumption is more difficult to justify, and it may well be
that the term involving dc,/dx, da,/0x and ds/dx are not always negligible.
However, if the flood plain is not too irregular, the changes of sign in these
functions along the reach will tend to make the contribution from the term
involving these quantities fairly small.

Finally, the third assumption can readily be justified when there is little
or no flow along the flood plain. By introducing an average speed &(Q)
and regarding s 73/ 0~ 113
s 1 [P0, x)

- dx’
N0, x)L fo s (x)
where L is the length of the reach. It is now assumed that the definition of
¢ as a function of Q in Equation 2.38 gives an adequate definition of ¢ for
any reach, even when there is flow along an associated flood plain.

The substitution for ¢ from Equation 2.38 in Equation 2.37, together
with the first two assumptions above, gives

x F, d (o dF,\ 3o, (dF,\?
= | g+ TS (2 2.39
0 L" ra dz<c'% dr) 55$<dr (2.39)
where

, U(e 2 7N\, 540
7(Q1, %) = 335 17 Osﬁdx s dx’. (2.40)

Here the channel width W, is assumed to be approximately uniform
along the channel.

Q. x) = &(Q) (2.38)

2.8 Attenuation of peak discharge

At the peak of the discharge hydrograph for any section dQ/dt = 0. If the
reach is sufficiently short so that dQ/dt~0 at the peak, or alternatively
dF,/dt~0, then the attenuation, Q*, of the peak discharge is given
approximately by

o(F,, L) . |d°F)|
& ! d‘rzl

0 =

(2.41)

where all the functions on the right hand side of Equation 2.41 are evalu-
ated for the peak discharge at the upstream section and it is assumed that
g = 0. Because of the close connection of &’ with the attenuation of the
peak discharge it is convenient to call a = o'(F;, L) the attenuation
parameter for the reach.

The attenuation of a flood wave was first discussed analytically by
Forchheimer (1930), who considered the attenuation of the peak stage
along a prismatic channel. Because Forchheimer’s channel was prismatic,
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Attenuation of peak discharge 2.8

the integral in the expression for « above did not appear in his derivation.
Van der Made (1968) extended Forchheimer’s analysis to include the
effects of overbank flooding, but he too avoided an integral formulation
for the attenuation by using the concept of a ‘stream carrying width’. The
importance of the integrals in Equation 2.40 is that they include a contri-
bution to the attenuation from irregularities in the width of the flood
plain and the channel slope along the natural river. For example, if the
second integral were replaced by the square of the average value of //s
along the reach times the length of the reach, a significant contribution to
the attenuation of a flood wave would be lost. Analytically, as the inte-
grand contains the square of /s, the integral is a minimum when /Z/s is
uniform along the reach. In physical terms this result implies that for a
given reach a short wide flood plain will induce a larger attenuation of an
overbank flood than a flood plain with the same area uniformly distributed
along the reach, provided the values for ¢, are similar in both cases. This
conclusion is reinforced by the fact that where the flood plain is wide, s
is usually smaller than the average value, §, for the whole reach.

It is important to remember that the flood routing solution above has
only been developed to the second order: that is, the application of the
solution should ideally be restricted to reaches along which the predicted
attenuation is less than, say, 109 of the original peak discharge. The need
for such a restriction on the use of the solution is evident from the theoretical
work of Hayami (1951) and the computations of Di Silvio (1969), which
indicate that in prismatic channels the rate of attenuation appears to
decrease exponentially with distance downstream. As may be expected,
when a flood wave attenuates, the curvature at the peak of the hydrograph
is reduced at sections along the river, so reducing the rate at which the
wave attenuates further. Hayami's theoretical solutions show that this
reduction in the rate of attenuation is partly a consequence of the term
in Equation 2.39 involving d?F,/dt?. Following Hayami (1951) and the
theoretical work of Hayashi (1965), the formula for the attenuation of the
peak discharge in Equation 2.40 can be regarded as the first order term
from the alternative formula

oy d2F,
*= F <Il—- —— |7 . 2.42
0 f { exp[éf 32 ( )

However, although this formula may be more accurate than Equation
2.41 for the attenuation of a flood wave in a long reach, it should be
observed that the higher order solutions of Equation 2.24 also play an
important part in determining how the flood wave attenuates. It can be
anticipated that the third order solution for the attenuation will include
third and fourth order derivatives of F; at the peak of the upstream hydro-
graph. So, for a long reach Equation 2.42 will be accurate to the second
order only. In addition, Equation 2.39 shows that over a long reach the
effect of changes in ¢, and a, with F, can be important. In particular, if
dé,/dF, >0 for values of F, in the neighbourhood of the crest of a flood
wave, then the decrease in the rate of attenuation will be less than if
dé,/dF; <0. So, for these reasons, when the predicted attenuation along the
reach is more than, say, 109 of the original peak discharge, it is preferable
to return to the flood routing equation, Equation 2.24, and to solve it
numerically for the propagation of the entire hydrograph along the reach.
In this way a more accurate result will be obtained for the attenuation than
by using the formula in Equation 2.41.
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2.9 Variable parameter diffusion method

If ¢ in Equation 2.24 is defined in terms of the average speed, ¢(Q), along
the reach, then « has to be defined in terms of a similar averaged value for
the attenuation parameter. Consequently, Equation 2.24 becomes

30 00 o [@dQ\ 3 [00V
00 90 _ 0 (22Q) 3a 00V 2.43
o T = 9% <L 6x>+5L <6x o (243)

It is now assumed that ¢, and « defined by Equation 2.40 with x = L,
provide an adequate definition of what can be termed the equivalent river
model, even though the attenuation predicted by Equation 2.41 may be
greater than 109 of the original peak discharge.

The next objective is to solve Equation 2.43 for a particular flood
hydrograph, given prescribed functional forms for ¢ and o. However, it is
apparent from Equation 2.43 that any solution for the routing of a
hydrograph using this equation is liable to be sensitive to the functional
form for da/dQ. In addition, because it happens that the curve for o is
generally much more difficult to calculate for a particular river than the
corresponding curve for ¢, it was decided to confine attention to the
equation

6__Q 00 o«

+ 072, (2.44)
o Cax T LY e ‘

The flood routing method based on Equation 2.44 with ¢ and o as
prescribed functions of Q can be termed the variable parameter diffusion
method.

2.10 Calculation of the attenuation parameter

The most convenient way of evaluating « for a given reach of river is to
divide the reach into a number of sub-reaches, so that the geographical
width of the prototype flood plain in each sub-reach is approximately
uniform. o can then be written as

| M p3 M/ p2
a(Q)=%{ZZT‘7}} Z( "’> (2.45)

2
m=14"m m=1 LmSm

where P, is the plan area of the inundated flood plain and the channel in
the mth sub-reach, and L, and s,, are the corresponding length and bottom
slope of the channel. It has again been assumed that the width of the
channel, W, is approximately uniform along the reach.

a(Q) can readily be found for the largest recorded flood if limits of
flooding on the flood plain are known. In addition, « can be calculated for
a small inbank flood from

11 ML ML
== . S (=2). 2,
> 2 Wc {Lmzl Srlrfs} mi‘l <52 > ( 46)

m

However, intermediate values for «(Q) are much more difficult to
obtain unless there are data available on the extent of flooding by different
overbank floods. If the data are not available, then the curve for o(Q)
between the inbank and extreme flood values has to be estimated. The
present investigation has indicated that irregularities in the channel
width may tend to make « approximately constant for Q< @, where Q,
is the average value for the bankfull discharge along the reach. Obviously
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Fig 2.4 Attenuation parameter for
the Erwood to Belmont reach of the
River Wye.

Calculation of the attenuation parameter 2.10

the shape of the curve for Q> Q, depends to a large extent on the flatness
or otherwise of the flood plan.

a( Q) has been obtained for the reach of the River Wye (Herefordshire)
between Erwood and Belmont. As flooding in this reach forms the major
case study in Chapter 3, it is sufficient at this stage to draw attention to the
relevant curve for «( Q) in Figure 2.4.
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2.11 Calculation of the convection speed

The procedure for calculating the speed ¢ from records of previous floods
is facilitated by having good stage recording stations along the river, and
at least one gauging station with a reasonably accurate rating curve. If
there is no reliable rating equation for any station along the river it may
still be possible to find é(Q). In this case, unit hydrograph or some similar
theory has to be used, both to obtain the peak discharges of previous
floods to correlate with the observed speeds of those floods, and to generate
discharge hydrographs at the upstream section as the input for the flood
routing method. For the River Wye, data were extracted from the gauging
stations at Erwood and Belmont. Both of these stations have rating
equations which are reasonably accurate even for high flows, and so the
flow data from the reach between the stations are of good quality.

It should be emphasised that ¢(Q) is properly defined as the average
speed along a reach of the flood wave with peak discharge Q under the
condition that there is no attenuation. This condition is equivalent to the
requirement that &(Q) is the speed derived from the equations for steady
flow with discharge Q. When there is attenuation of the peak discharge
the observed speed of the flood peak is a function not only of ¢ but also of
the shape of the discharge hydrograph. For example, Hayami (1951) has
shown from a theoretical treatment of the convection-diffusion equation
for the stage, in which w and yu, the convection and diffusion parameters,
are assumed constant, that flood waves of short periods propagate with
speeds greater than . If the observed speed of the flood wave is L/T,
where T, is the travel time of the peak along the reach, then a correction
to L/T, can be derived from Hayami’s analysis to give

L 2a
w = Fp E 0] (2.47)
(see the Appendix at the end of this chapter). In addition, because ¢ is a
function of Q, and because in longer reaches it is not necessarily true that
dF,/dt~0 at the peak of the hydrograph for a downstream section, then
L|T, is a function of d¢/dQ and possibly d&@/d Q.
Experiments (Price, 1973b) with numerical models of flooding in
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Fig 2.5 Speed-discharge curves for
the Erwood to Belmont reach of the

Theory of flood routing

synthetic riversindicate that there is a strong dependence of ¢ on d(L/T,)/dQ
and on the attenuation Q*. For example, it is found that the curves for
L/T, and & Q) intersect where d(L/T,)/dQ~0. Further, the deviation
between the two curves is greatest when the floods are peaky; in other
words, when the attenuation is large. Consequently, it is suggested that ¢
should be defined by

_ d /L
¢ = w+Q*E<']T>

where w is given by Equation 2.47.

Naturally the definition of ¢ by Equation 2.48 is not entirely satisfac-
tory. One of the main objections to Equation 2.48 is that ¢ is now a func-
tion of Q*, which is certainly not unique for a given Q,. However, like the
assumptions of unit hydrograph theory, it can be assumed that in the
mean Q* is proportional to Q_. The success of the flood routing model
below in predicting floods in the River Wye appears to establish that
Equation 2.48 is a reasonable definition of ¢ in Equation 2.44.

Figure 2.5 shows the points for L/T, and & Q,) for the reach of the
River Wye between Erwood and Belmont together with the corresponding

(2.48)

River Wye. estimates of the curves through these points.
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The shape of. say, the ¢ curve in Figure 2.5 is typical of almost any
reach of a natural river. There are a number of points of interest. For
example, ¢ has a maximum value for a discharge which is usually less than
the average bankfull discharge along the reach. This shows that small
inbank floods will travel considerably faster than a flood which is just
bankfull. The main reason for this effect is that the river channel generally
has a more irregular surface width as the depth of water increases, and the
irregularities increase the effective storage of the channel. This storage is
magnified when water begins to pond up on the flood plain. So for some
discharge greater than the bankfull discharge ¢ will be a minimum. Here
the river is most efficient at storing water and attenuating flood peaks. As
the discharge increases there is an effective flow of water along the flood
plain and the speed also increases. For extreme discharges the whole of the
flood plain begins to act like the main channel.
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The estimation of L/T, for floods strongly affected by lateral runoff
along the reach, or by a tributary with a significant discharge, can be
difficult. If the runoff or the discharge from the tributary is reasonably
steady then it is advisable to plot L/T, against the value of Q, equal to the
estimated average peak discharge with no lateral inflow.

Where local records for the times of flood peaks at the upstream and
downstream ends of the reach are not available or only one or two times
are known, the curve defining é(Q) has to be determined using Equations
2.18 and 2.21. However, it has already been commented that the use of the
theoretical Equations 2.18 and 2.21 to define the speed is extremely diffi-
cult due to the need to specify the roughness coefficients. Whereas the
Manning’s # can be estimated with some degree of precision for a natural
river channel, the values of n for the flood plain can have large variations
depending on the texture of the surface and the presence of obstructions
such as trees and hedges. In addition there is some doubt about the value
of Manning’s n for the boundary of the channel flow when there is over-
bank flooding. Zheleznyakov (1971) has indicated that the roughness due
to the shear between the flow in the channel and over the flood plain can
play a significant role in reducing the total discharge in the river. Because
of these difficulties it is emphasised that the following method for produc-
ing a synthetic speed—discharge curve should be used with caution.

In the case of a reasonably flat flood plain and a wide channel, é and Q
are approximately given by

¢ = 2P +rz=1)" = S fi(z.0) (2.49)
and

0 = 0, [ +r(z=1°"] = Qpfolz. v) (2.50)
where

— i = 32 Wf’_'c

T Fe W,ii,

(2.51)
. SRl AT
Cp = 3775 Qy=—.
J n,

Here, ¢,/ and Q, are the bankfull values for ¢ and Q, and y and j, are the
average depth and bankfull depth along the reach. It is suggested that y,
should be defined by A,/ W, where A, is an average bankfull area, prefer-
ably measured off cross-sectional data, and W, is an estimated width for
the channel averaged over depth. This means that 1 is defined by W,/ W.
when 7 = j, (z = 1). Note that W,/ W, is only equal to unity when the
channel has a perfectly rectangular cross-section. The parameters k. ¢,
and Q, can readily be calculated from prototype data with estimates for
i, and ii;. If values for &, and @, are known from the prototype, then 7,
should be calculated directly from the expressions in Equation 2.5].
Similarly, if an isolated record of ¢ and Q exists for a large flood, it is
preferable to use this record to find x and hence to calculate 7. If such a
record is not available, it is suggested that x be chosen between 0.1 and
0.2, depending on whether the flood plain is regular or irregular along the
river and whether the flow is relatively free of obstructions. The curves for
an inbank flood with I = 1 and an overbank flood with 1 given some
predetermined value greater than unity, can then be drawn using the
curves for f; and f, in Figure 2.6.
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Fig 2.6a Design curves to calculate
theoretical speed-discharge curve.

Theory of flood routing
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Figure 2.5 shows the theoretical curves for ¢, derived from data for the
Erwood to Belmont reach. The following data were used:

Assumed Derived
W, = 50m fi, = 0.0374
5 = 0.00088 ¢ =333ms!
Jy = 4.0m 1 =818 (2.52)
0, = 400 m3s™* K = 1.680
g = l.1 ne = 0.184
W, = 359 m
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Fig 2.6b Design curves to calculate
theoretical speed-discharge curve.

Calculation of the convection speed 2.11

10

f, 5

For an overbank flood
¢ =10lms !
Q0 =1090m3s™!

Again there does not appear to be any precise way of finding the shape of
the speed—discharge curve for the intermediate floods and this part of the
curve has to be estimated.
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Fig 2.7 Finite difference net.

Theory of flood routing

2.12 Numerical technique

The equation to be solved numerically is

Q0 _8Q a _3*°Q

Z4i—= = - Q— +éq.

ot +e ox L 0 ox? “ (2.53)
At the upstream boundary, Q is prescribed as a function of ¢, and at the
downstream boundary a ‘free’ condition is used. This free boundary
condition is based on the characteristic form of Equation 2.53

do a 3?0

with the characteristic curve given by

dx

— =7 2.55

A numerical solution of Equation 2.53 for the equivalent river model
can be obtained by writing the equation in finite difference form using the
implicit Crank-Nicholson scheme (Richtmyer & Morton, 1967):

At ) N ,
Q; = Q' = O+ AQIION - O + O — 0]

QI s OO ~ 20} + 01

+ 0 =20+ 0] 11 = 0 (29
for all 1 <j<J—1, where
Q. = 40" '+ 0}]. (2.57)

Q; denotes the finite difference expression in Equation 2.56 and J is the
label for the downstream boundary. The subscript j refers to a variable
evaluated at the point distance jAx downstream of the upstream boundary,
where Ax is the space step. Similarly, the superscript n refers to the variable

evaluated at the time nAr after the beginning of the calculations, where Ar
is the time step; see Figure 2.7.

n+2% a a a a a a a a ::: n+2
| I
! N1 n+1 n41 |
| Q- i Qi+ i/
n+‘]? a a a & 8 s s s 4|> n+1
: Characteristic curve~_ / |
i Q- P Qi |
n —a—— ——p— — ——a————a ————'A————A———--—A—O———?— n
. . ,
0 -1 ] J+1 J o J

The boundary conditions for Equation 2.53 are
initial condition:

Q] = Qi = constant for0<j<J (2.58)
upstream condition:

Q% = Fi(nAt) for0<n (2.59)
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downstream condition:

2 n
Qn+l — n |: én q’ +_ Qn <a Q> ]A[ (260)

¥
from Equation 2.54. F,(¢) above is the recorded discharge hydrograph
which is used as the input for the model at the upstream boundary. J’ in
Equation 2.60 refers to the point at time nAt on the characteristic curve
through the point {JAx, (n+ 1)At}. The distance, Ax’, of the point labelled
J’ from the downstream boundary is given approximately by

Ax' = &) At (2.61)

from Equation 2.55. Q} is then calculated from a quadratic spline through
QOf, 07—, and Q7_, using Ax’. But as Ax’ is itself a function of Q} it is
necessary to iterate to find an accurate value for Q5. Once Q7 is known,
values for ¢, af. and (02Q/0x?)} can be evaluated and substituted in
Equation 2.60 to find Q5 +!.

Given the values for Qg*', 07! and the {Q"} it remains to solve the
set of non-linear simultaneous equatlons in the {Q*'}. The most con-
venient way of solving these equations is to use the generalised Newton
iteration procedure (Amein and Fang, 1970). This procedure involves the
evaluation of Q; for estimated values of the {Q*'}. The {Q"*'} are then
replaced by the set {O7 "' +dQ* "}, where the {dQ""'} are the solution
of the simultaneous linear equations

a; ;1407 +a; ;O +a; 4, dOTH = Q;. (2.62)
The matrix {a; ,} is defined by
a,, =0 k=1,2,...,j-2

At At
G- = [EcHzLAxZ“Q"]

Ar dé _ ot N .

a; = l+8A dQ [Q?flll_ j—}ll+Qj+l_Qj—|]

At dé

- " I _ At n-1_ n+1 n+|
5307 " ilaw [Q“an ][ A A

+Q;‘_||—2Q;‘+ Q,n_li|+m aQu' (263)
Ar At

4. = xS 2raw %9

a, =20 k=j+2,...,]J.

Because of the banded nature of the matrix {a; ,} it is a simple matter to
set up a Gausstan elimination procedure to solve the linear equations. First
define

a» =4a;, ay 3 = a3
a; -, =0
. aj -1 G-y, j+1
a. . =q 3= 77 .i%] (2.64)
i i a )
=1,
Qi j+1 = 4 j+
o —0_ %1 8-154
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forj=3,4,...,J—1. Then

ay—1,3-1
and
40! = (@ —ay ;41 AQHa; (2.66)
forj =1J—2,1-3,...,2. Soitis a matter of sweeping in each direction

along the band of the matrix {a; }. When the values of the {dQ}*'}
have been calculated, the new values for {Q*'} are evaluated and another
set of values for the {Q;} are found. The iteration continues until the
maximum value of |dQ"*!| for a particular iteration is less than a certain
error value. As a rough guide this error value can be taken as 10™* times
the peak discharge of the largest floods in the particular river. For example,
in the River Wye between Erwood and Belmont, large floods have peak
discharges of the order of 10> m® s™'. This gives an error value for the
iteration of 107! m* s~ 1.

It will be observed that the forms of the derivatives for ¢ and a with
respect to Q, in Equation 2.63 have not been specified in detail. One way
of deriving expressions for dé/d 0, and da/dQ, would be to define quadratic
splines through four of the data points adjacent to Q, for each of ¢ and «
to differentiate the resulting quadratic equation and so evaluate dé/dQ
and da/dQ at Q = Q,. However, small errors in the data for ¢ and « can
produce incorrect large values for the gradients of ¢ and «. These large
values inevitably upset the iteration process described above. So to avoid
such errors it is preferable to use smoothed quadratic curves. In other
words, a quadratic curve is fitted through, say, the four adjacent points to
0, for both ¢ and « by the method of least squares. ¢, a, dc/dQ, and da/d @,
are all calculated from the equations for these new quadratic curves. The
details of the procedure for calculating the coefficients of the equations can
be found in Section 5.3 in the computer program, FLOODS2, under the
subroutines DATIN and FIT.

For maximum accuracy of the implicit finite difference scheme above,
Ax and At should be chosen so that

Axse 2.67

—— 2Cave .

A (2.67)
where ¢,,. is an average value for ¢ defined over the anticipated range of

values for Q. However, there are two additional constraints on At which
have to be satisfied. The first constraint is to ensure that enough detail
of the hydrograph at the upstream boundary is fed into the model.
Because the peak of the hydrograph is usually the most important feature,
it is suggested here that At is chosen so that

1 d2Q\*
Ar<2 <Q i > (2.68)
where the right hand side of this inequality is evaluated at the peak of the
upstream hydrograph. The second constraint on Az comes from the down-
stream boundary condition. Basically, it is necessary that the length of the
characteristic used at the downstream boundary between the old and new
time levels is sufficiently small so that the characteristic curve is approxi-
mately a straight line. Such a condition is given analytically by
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Fig 2.8 Inbank flood for the River
Wye, January 1969.

Fig 2.9 Overbank flood for the River

Wye, December 1960.

Numerical technique 2.12

Emin
do| [de

dt max

do

where |dQ/d1|,,, is the maximum gradient of the upstream hydrograph.
Cmin and |d¢/dQ|,.., are the minimum and maximum values of ¢ and
|d¢/d Q| in the range of discharge anticipated at the downstream boundary.
In practice, Ar should be determined first from Equations 2.68 and 2.69,
and Ax should then be calculated from Equation 2.67. Finally, Ax is
adjusted so that L/Ax is an integer.

Ar< (2.69)

max

2.13 Application of the flood routing method

The method described in the previous sections has been applied to floods
in a number of British rivers. These cases are discussed in the following
chapter. It is sufficient here to draw attention to results for two floods
in the Erwood to Belmont reach of the River Wye. Figures 2.8 and 2.9
show the recorded and predicted hydrographs at Belmont for an inbank
flood and a large overbank flood respectively. In both cases the agreement
between the observed and theoretical hydrographs is good on the rising
part of the hydrograph. In addition, the predicted peak discharge and time
of arrival of the peak are in good agreement with the records of both
floods.
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There is, however, some departure in the predicted hydrograph from
the recorded hydrograph for the large flood as the discharge is decreasing.
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Two main reasons can be given for this disagreement. The first reason is
a tendency for the implicit finite difference scheme to become inaccurate.
This inaccuracy occurs when ¢Q/dx is large. For example, it was noted in
the discussion of the kinematic wave as the first order solution of the
convection-diffusion equation that, when the water is receding from the
flood plain, the change in the speed of the kinematic wave produces a
steepening of the curve for the downstream hydrograph. Correspondingly,
if the change in the speed with discharge is large and the reach is suffi-
ciently fong, then ¢Q/dx can be infinite. Analytically, it can be shown that
this situation is equivalent to the condition that ¢, as defined in Equation
2.34, is infinite. Obviously, the implicit finite difference scheme will not be
able to deal with this case.

The second reason for the disagreement between the recorded and
predicted hydrographs is that the inertia terms in the dynamic equation
(Equation 2.2), and the neglected terms in Equation 2.43 may become
important when there is extensive inundation of a flood plain. As yet,
there is no evidence that the inertia terms are important in this particular
case. In addition, a flood routing method based on Equation 2.43 instead
of Equation 2.44, gives only a marginal improvement in accuracy (Price,
1973a). It is possible that a third reason should be adduced for the disagree-
ment between the hydrographs, namely that the drainage off the flood plain
in nature leads to a violation of the condition, assumed above, that the
water surface across the flood plain is uniform and has the same level as
the water surface in the channel. The condition, of course, is not unreason-
able when the water level is rising in the channel, as the flow of water on to
the flood plain is governed primarily by the rate of rise of the water level.
However, when the water level is falling, the drainage off the flood plain
into the channel is controlied morte by the flood plain characteristics, such
as the lateral slope and roughness, than by the rate of fall of the water level
in the channel. It can therefore be argued that the retention of water on the
flood plain when the water level is falling has two effects. The first effect
is that the total discharge along the river (when the water level is above
bankfull) is less than if the water level was uniform across the river at
each section. Similarly, when the water level in the channel is at or below
bankfull, the drainage off the flood plain tends to increase the discharge
along the river. Consequently, the assumption of a uniform water level
across the river is questionable for rivers with large flood plains.

It would appear therefore that a condition limiting the change in the
speed of the flood wave with discharge when the flood level is falling may
help both to avoid the numerical inaccuracy in the finite difference scheme
and to be more realistic physically. Run 2 in Figure 2.9 illustrates the
result of fixing ¢ when the discharge at any point along the equivalent river
model falls below a certain value, Q,, which in this case is 400 m® s7'.
The condition is only applied however when the discharge has previously
exceeded some value greater than the bankfull discharge in the natural
river. It will be seen that there is a significant improvement in the predicted
hydrograph for the inbank part of the flood.

It is evident from the results in this section and in the following chapter
that the variable parameter diffusion method holds considerable promise
for application to floods in rivers with inundation of extensive flood plains.
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2.14 Linear diffusion method

The linear diffusion method as used by Hayami (1951), Thomas &
Wormleaton (1970, 1971) and a number of others with the stage as the
dependent variable, is based on the equation
oY 0%Q
= Eopg =4 2.70
o TP T M T (2.70)
where both w and u are regarded as constant parameters. In this case u
is defined by

2«(0,) ~

=7 pe 2.71)

w is again defined by Equation 2.47. Because Equation 2.71 is strictly
linear, the corresponding finite difference equation can be solved directly,
without using the generalised Newton iteration procedure. Again, a set of
equations similar to Equation 2.62 can be derived with the {Qf*'} in
place of the {dQ}*'}. The same Gaussian elimination procedure gives the
most efficient way of solving the equations.

2.15 Muskingum-Cunge method
The improvement of the Muskingum method is presented in detail by
Cunge (1969). However, a brief description is given here for the sake of
completeness.

Suppose that the inflow at the upstream section of a reach is given by

Q; and the outflow by Q;,,. Then from the Muskingum equations
(Equations 1.1 and 1.2) it follows that

d
KE{EQj'*'(l_g)Qj-Pl} = 0;=0Qj+:1. (2.72)

This equation can be rewritten in the finite difference form:

K
~ e +(1-e) Q1 H —e Q) — (1 — &) OF, 1}

Att
= HOor ' - OrH + 07—~ O 1) (2.73)
Now if K is defined by
A
K= (2.74)
)

where w is the average speed of the flood peak and Ax is the length of the
reach, then it can be seen that Equation 2.73 is a finite difference represen-
tation of the kinematic wave equation

0@ 90

= = =0. .

3 +w 7x (2.75)
So with K defined as in Equation 2.74 it remains to calculate ¢. At first
sight there is no obvious form for ¢, but Cunge observed that by expressing
the {Q} in terms of their Taylor expansions Equation 2.73 is also a finite
difference representation of the equation

0@ 0Q  0°Q

5% e @.76)
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Fig 2.10 Curve for Ax/(wdt) versus ¢
(taken from Cunge (1969)).

Theory of flood routing

when
U= (3—e)wAx. .77
As p = aQ /L from Equation 2.71, it follows that

_ -G 2.7
t T I ToAx (2.78)

where L is now the length of the whole reach which is divided into a
number of sub-reaches, each of length Ax. Again a is the value of the
attenuation parameter corresponding to the discharge Q,, and w is the
speed as defined by Equation 2.47. Cunge originally derived Equation
2.78 in terms of the average slope and width of the channel. «/L in Equation
2.78 replaces Cunge’s factor (2s W)™ .

Once K and ¢ have been determined, the discharge hydrograph at the
downstream end of the reach is determined from the recurrence relation-
ship

19:11 =C 0 +C Q?+1+C3 O+ Cy (2.79)

where

: Ke+1At JAt—Ke
C,=7—""— C, = —F———
K(1—¢)+41At K(1—-g)+1At
(2.80)
_ K(1—¢)—3A1 qAtAx

C, = S ke —
T K(1—e)+1Ar * T K(1—g)+3Ar

The accuracy of the finite difference scheme in Equation 2.79 depends
largely on the magnitude of &. For floods in British rivers Ax can be set
equal to L/10 and ¢ is then calculated from Equation 2.78. Then the
relevant value of Ax/(wAt) is read off the curve in Figure 2.10 for the
particular ¢, and the corresponding value for At is determined. In practice,
of course, the reach length L will be divided into a number of sub-reaches,
each of length Ax, and Az can be chosen as an integral number of hours so
that Ax/(wArt) lies below the curve in Figure 2.10. This is sufficient to
ensure accuracy of the method.

1-2

Q
0

AX/(wAL)
o
o

N

0-2
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Fig 2.11
methods.

Summary of flood routing

Summary of methods 2.16

2.16 Summary of methods

It is valuable to summarise the relationships between all the flood routing
methods derived and referred to in this chapter (Figure 2.11).

Firstly it is anticipated that a method for solving the full Saint-Venant
equations is likely to give the most accurate results for a flood routing
study if features of the flow, such as flow over the flood plain, are correctly
modelled, and there are sufficient data to determine the roughness coeffi-
cients with precision. The next class of flood routing method is obtained
by ignoring the inertia terms in the dynamic equation. Without making
any further approximation Equation 2.10 can be solved using, say, a

Approximation Method of
solution
Full Saint-Venant m A finite difference scheme|
equations L1 oneqs 2.1and 2.2
Neglect inertia terms Implicit finite difference
in dynamic equation scheme on eq 2.10
Regard dy/dx Variable parameter
as small diffusion method
Assume T oQ are Linear diffusion
constant parameters method
Replace dynamic
equation by a linear Muskingum-Cunge
expression for the method
storage

Crank-Nicholson type of implicit finite difference scheme. Such a method
has not been considered here because of the need to know the roughness
coefficient. The diffusion and kinematic wave methods essentially regard
dy/éx as small compared with the bottom slope, and ¢ and «, or 20, as
either functions of Q or constant parameters for a given flood. The final
class of methods assumes that the dynamic equation can be replaced by an
algebraic relationship between the storage and the inflow and outflow to
the reach. This is the basis of the Muskingum and similar storage routing
methods.

2.17 Appendix: derivation of formula for the convection speed, w
(linear theory)

Hayami (1951) based his diffusion method on a linear convection-diffusion
equation for the stage. The corresponding equation for the discharge is

0 80 20

where w and u are constant parameters. Consider the elementary flood
wave solution
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Q=0 eXp{G%—pr>X}sin(v,f—q,X) (2.82)

where O, is the peak discharge at x = 0, y?Q, is the curvature at the peak
of the hydrograph at x = 0, and

AN y (i)j 2 R + w_2 3
() w13

The observed speed of the flood peak is y./g, = L/T,. In particular,

when
w?ldus y, (2.84)
as is the case for floods in British rivers, then
L 21 y?
L (2.85)
q. T, w
Similarly, with the condition in Equation 2.8,
2
W Yy
~— 4 ] 2.86
Pe w W ( )

If i is now defined by

xQ,
= = 2.87
I L ( )
then the attenuation along the reach is given by
, ) il aQ,
2u w w
So from Equations 2.85 and 2.88
L +2o<Q* 5 29
T, YT (259)
or
L 2aQ*
w_T——z—z—. (2.90)

p
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3 Comparison of flood routing methods

3.1 Methods considered

This chapter describes a comparison of several flood routing methods
appropriate for use in British rivers. As explained in Chapter 1, attention
is confined in this study to the simpler types of flood routing methods:
those methods which are based on an accurate solution of the full Saint—
Venant equations are ignored as being too complex for general use and so
requiring the assistance of a research organisation. Three of the simpler
types of flood routing methods are considered:

a Muskingum method, devised by McCarthy (1938) and improved by
Cunge (1969).

b Linear diffusion method, formulated by Hayami (1951) and developed
as a numerical method by Thomas & Wormleaton (1970, 1971).

¢ Variable parameter diffusion method. described in the previous
chapter.

The concepts used in the derivation of the Muskingum method are
basically hydrological, so the inclusion of the method may be disturbing
to those who anticipate that attention should be confined to hydraulic
flood routing methods. It happens, however, that the Muskingum method
and similar storage routing methods have been used for a large number of
years to route floods in rivers, and the method has been successfully
applied in a number of cases; for example see McCarthy (1938) and
Pitman & Midgley (1966). In addition, the improvement of the basic
Muskingum method by Cunge, referred to in Chapter | and described in
Section 2.15, essentially converts the Muskingum method from being
hydrological in theory into a method based on hydraulic principles. This
conversion arises in the numerical application of the original Muskingum
equations. When these equations are written in finite difference form, a
numerical error is introduced which acts as a diffusion on the basic solu-
tion. Cunge identified the magnitude of this error term with that of the
diffusion term in the convection-diffusion equation as used by Hayami in
the diffusion method. So, by a proper choice of the parameters in the
Muskingum method, a good approximation can be obtained for the
solution of the convection-diffusion equation.

There are two well documented methods which have not been included
in the list above. These methods are the kinematic wave method suggested
by Lighthill & Whitham (1955), and the graphical method of characteris-
tics, described in detail by Chow (1959). The reason for not considering
the kinematic wave method below is that this method can be regarded as a
version of the linear diffusion method with the basic equation written in its
characteristic form. Consequently the value of the kinematic wave method
resides primarily in its use as a graphical method. However, the com-
plexity of the method in comparison with, say, the graphical form of the
Muskingum method, and the increasing availability of digital, or even
analogue computers, makes it preferable to use the linear diffusion method.
The method of characteristics is avoided, again because it is complicated
to use, and because it is devised in terms of friction coefficients rather than
the speeds of flood peaks. There is a marginal advantage in using the
method of characteristics because the method includes the inertia terms in
the dynamic equation. But more importantly, the method has the dis-
advantage that it is then tied to the dynamic wave speeds rather than the
kinematic wave speed; see Lighthill & Whitham (1955, p. 291).
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In view of the success of the variable parameter diffusion method
described in the previous chapter, there exists the possibility that a version
of the Muskingum method using similar variable parameters might also
be a viable flood routing method, and an improvement on the original
Muskingum method (Linsley, Kohler & Paulhus, 1958). However, a
preliminary examination of a variable parameter Muskingum method has
shown that the results tend to be somewhat inaccurate. It remains for
future work to clarify the usefulness or otherwise of such a method.

To ensure consistency in the comparison of the three methods listed
above, the same values for the speed and attenuation parameters are used,
where relevant, in the tests below. Because these parameters are derived
so that the methods predict accurately the value and time-of-arrival of
the peak discharge for a flood at the downstream section, the comparison
of the methods is based on the standard deviation of the predicted hydro-
graph from the recorded hydrograph. It should be observed that it is often
the reverse procedure which is employed: namely that the standard devia-
tion is first minimised and then the accuracy of the predicted peak dis-
charge is noted. However, because most flood routing studies are aimed
at an accurate prediction of peak values rather than the shape of a hydro-
graph, the former procedure is adopted in this study.

3.2 Comparison tests

The primary objective of the comparison tests described below is to
determine the accuracy of each flood routing method under prescribed
conditions, typical of those found in British rivers. As mentioned in
Section 1.3, there are two factors which affect the accuracy for each
method. The first factor is the neglect and simplification of terms in the
full Saint-Venant equations by a particular method, and secondly, the
assumptions inherent in the treatment of the storage and flow over the
flood plain. In the first instance, the simulation of floods in uniform chan-
nels will isolate the significance of the neglected terms in the full equations.
The magnitude of the error involved can be found by comparing results
from the flood routing method with an accurate numerical solution of the
full Saint-Venant equations. However, it is also important to determine
how accurately the methods simulate floods in natural rivers. Such a test
should also clarify the importance of the assumptions made about the
interaction of the flow in the channel and over an irregular flood plain.
So, the methods are applied to floods in the Rivers Wye, Nene and Eden.
The Wye and the Nene have important flood plains. In particular a flood
plain on the Wye some 20-30 km above Hereford contributes to an
attenuation of a large flood at Belmont (Hereford) of up to 459 of the
peak discharge for a large flood, measured 70 km upstream at Erwood.
The Nene was chosen primarily because it has a large number of control
structures such as weirs and locks. These structures play a significant part
in controlling the smaller floods in the river. Unfortunately the only large
flood in the Nene with reliable flow data is the snowmelt flood of 1947.
Despite the fact that very little is known about the runoff from the catch-
ment along the river, the flood routing methods are reasonably successful
in simulating this flood. Finally, the Eden is an example of a shorter and
steeper British river.

Throughout the following work four error parameters are used to
compare the predicted with the recorded or ‘exact’ discharge hydrographs.
These parameters are defined as follows:
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Percentage error in the attenuation =

<recorded peak discharge — predicted peak discharge) « 100 G.1)

recorded peak discharge

Percentage error in the speed of the flood peak =

<recorded speed — predicted speed> % 100 (3.2)

recorded speed

Percentage standard deviation =

*
l 2N+1
[2N+1 Y. (recorded discharge — predicted discharge)z]
n=1
100
33
% average recorded discharge (3.3)

Percentage mean deviation =

<average recorded discharge —average predicted discharge) <100 (3.4)

average recorded discharge

where the average discharge is defined by

1 N
average discharge = N nZ] (O +4Q%m 4 Q¥+ 1, (3.5)

Here 2N +1 is the number of points for the downstream hydrograph pro-
duced by 2N time steps in each method, and J is the space label for the
downstream boundary.

3.3 Flood routing in regular channels

The objective of this test is to isolate for each method the magnitude of the
error due to the neglect or approximation of terms in the Saint-Venant
equations. This is achieved by routing a synthetic flood in a uniform
rectangular channel, 100 km long and 50 m wide, with a Manning’s
roughness coefficient of 0.035. Four channels with bottom slopes 2 x 1073,
1072, 0.5% 1073 and 0.25% 1073 are used in the test. The synthetic flood
hydrograph at the upstream section of the reach is defined by

t t\1]°
Q(f) = Qbuse+ QampI:— exp(l _'t—>} (36)

’D P

where f is a parameter, ¢, is the time to peak, Q,,,. is the base flow, and
Quase T Qumyp 15 the peak discharge for the flood. The curvature at the peak
of this hydrograph is fQ,,.,/T?, so B is directly proportional to the curva-
ture at the peak of the upstream hydrograph. A typical extreme flood in
the channel with bottom slope of 10~3 can be estimated to have a peak
discharge of 900 m? s~! with a base flow of 100 m?® s™!. For the sake of
consistency this flood is also used in the channels with the other bottom
slopes. The time-to-peak of the flood is taken as 24 hours, and B is given
the value 16. This gives a curvature at the peak of the hydrograph of
1.58x 107® m?® s™°. Using Equations 2.18 and 2.21, the speed—discharge
curve can be derived from

Q = WyR*3s' 2yt (3.7
and

39



Fig 3.1 Speed-discharge curves for
uniform channels.
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.0 2ydR
=< 1422
¢ Wy{ +3 Rdy} 3.8)
where
R = y(1+2p/W)~ L. (3.9

Figure 3.1 shows the speed-discharge curves calculated from the above
equations for all four channels.
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In a detailed study of the various numerical techniques (including
explicit, implicit and characteristic finite difference schemes) for solving
the full Saint-Venant equations (Price, 1974), it was found that the
explicit leapfrog method is the most accurate method of second order
accuracy if a ‘free’ boundary condition is required at the downstream
boundary and if the method is only applied to regular floods in uniform
channels. For irregular channels the leapfrog method tends to become
unstable and a characteristic method is more suitable. If a rating equation
is available at the downstream boundary then the more versatile implicit
method of Amein & Fang (1970) is to be preferred. Other results and
conclusions from this secondary study also have an important bearing on
the application of numerical methods to the solution of the full Saint-
Venant equations for flood routing.

The results from the three simplified methods for routing the discharge
hydrograph given by Equation 3.6 along the channel with bottom slope
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Table 3.1 Errors in predicted
hydrographs for channel with slope
1.0x 1073,

Recorded peak discharge = 878.7 m?
s7!, 0, = 894 m® s~'; recorded speed
of flood peak = 4.07ms™ !, w = 4.06 m
s™'; average recorded discharge = 261
m?® s7i o = [,00x 108,

Flood routing in regular channels 33

1073 were first used to determine which values of Ax and Az should be
adopted by each method to obtain the optimum accuracy for the hydro-
graph at the downstream section. In each case the predicted hydrographs
were compared with the hydrograph produced by the explicit leapfrog
method using Ax = 5 km and Ar = 360 s. Table 3.1 gives the values for

Errorin  Errorin

Method Adx 4t peak speed Standard Mean
(km) (s) discharge of flood deviation deviation
(%) peak (%) () (%)

Muskingum-Cunge 10 720 —0.11 —0.80 27.1 —0.08

10 1500 —0.08 —0.96 27.1 —0.08

10 3600 —0.03 —1.57 27.0 —0.13

10 18000 —2.87 —19.50 24.2 1.08

100 720 —1.36 19.44 35.9 —0.08

100 1800 —1.36 19.35 36.3 —0.08

100 3600 —1.37 18.77 36.2 —0.13

100 18000 0.27 4.22 29.4 1.24

Linear diffusion 5 720 —0.08 —1.07 27.0 —-0.08

5 1800 —0.06 —1.17 27.0 —0.08
5 3600 Unstable

10 720 —0.06 —1.49 26.9 -—-0.08

10 1800 —0.19 4.23 26.9 —0.08

10 3600 26.9 —0.13

Variable parameter 5 720 —0.02 0.02 3.1 0.80

diffusion 5 1800 —0.02 —0.68 3.2 0.80
S 3600 Unstable

10 720 0.02 —0.83 4.5 0.80

10 1800 0.02 —0.92 4.7 0.78

10 3600 —0.08 —1.03 5.0 0.71

the accuracy parameters together with the values of Ax and Ar used in
each run for the methods. These parameters were calculated for the
duration of the computer runs. The following conclusions can be made
from Table 3.1.

Muskingum—Cunge method

The mean deviation is small, showing that the average predicted discharge
compares well with the average recorded discharge for all values of Ax
and Ar. Alternatively, the total volume is accurately predicted in each run.
A close examination of the error in the speed of the flood peak shows that
the error is zero when Ax/At is approximately equal to the speed of the
peak. This conclusion was also deduced theoretically by Cunge (1969).
For a more precise definition of Ax/At for optimum accuracy see Section
2.15. In addition, Table 3.1 shows that there is a greater latitude in the
choice of Atz to preserve the accuracy of the peak discharge when Ax is
smaller. The standard deviation is large for all the values of Ax and At
tested, though a reduction in Ax generally leads to a reduction in the
standard deviation.

Linear diffusion method

Again the mean deviation is small and about the same magnitude as for
the Muskingum—-Cunge method. Variations in Ax and Az do not signifi-
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Mc Muskingum-Cunge,

LD linear diffusion,

vPD variable parameter diffusion.

Table 3.2 Errors in predicted
hydrographs for regular channels.

Comparison of flood routing methods

cantly affect the magnitude of the standard deviation, though the finite
difference scheme is unstable if At is too large. It is preferable to keep

~ Ax/At greater than the wave speed (Equation 2.67). The predicted speed

and peak discharge are reasonably accurate in each case.

Variable parameter diffusion method

Here the errors in the predicted speed, peak discharge and standard
deviation are all significantly smaller than the other methods, though the
error in the mean discharge is larger. Again the method is unstable if As
is too large. A reduction in both Ax and Az generally leads to an improve-
ment in the accuracy of the method.

So, within the range of values tested the Muskingum—-Cunge method is
more accurate when Ax/At is approximately equal to the wave speed. The
linear diffusion method shows little variation in accuracy for different
values of Ax and At, and the variable parameter diffusion method is more
accurate when both Ax and At are small. In the remaining runs described
in this section Ax = 100 km and A7 = 3600 s for the Muskingum-Cunge
method, and Ax = 5 km and Ar = 720 s for the linear diffusion and
variable parameter diffusion methods.

A comparison of the results from the three methods for the same flood
in channels with bottom slopes 2x 1073, 0.5x 107 % and 0.25x 107 are
given in Table 3.2. In addition, Figure 3.2 shows the recorded and the
predicted hydrographs for each method in the channel with bottom
slope 1072,

Error in Error in
. peak speed of Standard Mean
Method Ax at discharge flood peak deviation deviation
(%) (%) (%) (%)
s=2x10"8
Recorded peak discharge = 8922 m¥s~? O, = 896 m® 7!
Recorded speed of flood peak = 5.25 ms™! w =525ms?
Average recorded discharge =272 m®s~? o = 0.50x 108
MC 10 3600 0.79 —0.97 23.5 —0.25
LD 5 720 0.30 —0.47 23.6 —0.23
VPD 5 720 0.32 -0.30 1.1 —0.50
s =1.0x10"2
Recorded peak discharge = 878.7 m3s~! O, = 894 m3s~!?
Recorded speed of flood peak = 4.07 ms™! w =406 ms~?
Average recorded discharge = 261 m®s~!? o« = 1.00x108
MC 10 3600 -0.03 —1.57 27.0 —0.13
LD 5 720 —0.08 —1.07 27.0 —0.08
VPD 5 720 —0.02 0.02 3.1 0.80
s =0.5x10"3
Recorded peak discharge = 8222 més™? Op = 861l m®s™?!
Recorded speed of flood peak = 3.11 ms™! w =3.09ms™?!
Average recorded discharge = 251 m®s~?! o« = 2.00x10°
MC 10 3600 —0.92 —2.41 27.5 —0.13
LD 5 720 —0.73 —0.90 27.8 —0.00
VPD 5 720 —1.63 —5.70 1.4 1.61
s =0.25x10"3
Recorded peak discharge = 700.0 m®s~! O, = 800 m®s~!
Recorded speed of flood peak = 2.50 ms~? w =248 ms™?
Average recorded discharge = 251 m®s™! o = 4.00x10°
MC 10 3600 —2.06 1.85 304 —0.01
LD S 720 —0.91 7.45 31.8 —0.01
vPD 5 720 —-9.17 —11.09 3.7 —0.06
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Table 3.3 Predicted attenuation in
regular channels.

Fig 3.2 Recorded and predicted
hydrographs for regular channel

slopc

1072,

Flood routing in regular channels 33

Predicted Predicted
attenuation attenuation

Curvature Equation Equation Recorded
« w at peak 2.41 2.42 attenuation
(x10% (mM®s~ 1) (ms™?Y) (m®s~1) (m3s~1) (m3s~Y) (m®s~?)
0.5 900 5.25 1.58x 10-8 4.90 4.89 8
1.0 900 4.07 1.58x10-¢ 21.09 20.85 11
2.0 900 3.09 1.58x10-¢ 96.39 91.41 68
4.0 900 2.48 1.58x10-¢ 37291 305.30 200
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Key
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It can therefore be concluded that the Muskingum—-Cunge and linear
diffusion methods are of similar accuracy, and that the variable parameter
diffusion method generally predicts the shape of the hydrograph much
more accurately than the other methods. From Figure 3.2 it is evident
that the error in the shape of the predicted hydrograph for the first two
methods is greatest near the foot of the wave in each case. So it can be
anticipated that a benefit in using the variable parameter diffusion method
instead of the Muskingum-Cunge and linear diffusion methods arises
from a more accurate prediction of the shape of the hydrograph for the low
flows occurring during a large flood. Notice that the prediction of the
peak discharge by the variable parameter diffusion method is worse for
the smaller siopes. This is possibly due to the neglect of terms in Equation
2.43.

The use of the formulae in Equations 2.41 and 2.42 to predict the
attenuation of the peak discharge along the regular channels above pro-
duces the results shown in Table 3.3. Notice that the improved formula of
Equation 2.42 is more accurate than the linearised formula of Equation
2.41 though both formulae are markedly inaccurate as the slope of the
channel decreases. This highlights the need to route hydrographs using a
numerical method when the attenuation is large. It is suggested that a
numerical flood routing method should be used when Q*/Q, is greater
than 0.1. For large slopes of the order of 2 x 1072 it can be observed that
the attenuation formula predicts an attenuation which is too large. This is
because the convection terms, ignored in the derivation of the convection-
diffusion equation, become important in this case; see Henderson (1963). -
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Fig 3.3 River Wye: Erwood to
Belmont.

Comparison of flood routing methods

3.4 Flooding in the River Wye: Erwood to Belmont

Bridge

Sollers

This reach of the River Wye is perhaps the most suitable of all reaches of
British rivers in which to test the flood routing methods. As explained in
Section 2.11 the recording stations at Erwood and Belmont have good
quality rating curves, even for high flows, and there are more than 30 years
of records at both stations. In addition, the reach, which is 69.75 km long,
has no important tributary and the mean annual lateral inflow along the
reach is about 14 m® s~'. This value for the lateral inflow is small com-
pared with the mean annual flood discharge at Belmont of 560 m> s™"'.
Another important feature of the reach is the large flood plain between
Bredwardine and Witney, some 20-30 km above Belmont; see Figure 3.3.
This flood plain plays a crucial part in reducing peak discharges at Erwood
by up to 45% at Belmont, and so gives important protection to the city
of Hereford. The largest recorded flood in recent years occurred in
December 1960 with a peak discharge of about 1200 m® s™! at Erwood.
This value was reduced to 980 m* s~! at Belmont. A later flood, in
December 1965, had a peak discharge at Erwood of 1080 m® s~'. The
corresponding value at Belmont was 620 m3 s ™",

Because of the quality and length of data at both gauging stations, it is
an easy matter to extract the curve for L/T, and ¢. These curves, which are
also presented in the previous chapter, are shown in Figure 3.4. The times
of travel of the peak levels were extracted from stage data at Erwood and
Belmont, and the curves for L/T, and ¢ were drawn using information
about the peak discharges at the two stations. The attenuation parameter
for the largest recorded flood (December, 1960) was calculated from
Equation 2.45 using the area inundated by the flood along the reach.
The data for this calculation were supplied by the Wye River Authority.
See Table 3.4 for the numerical values for the parameters used in the
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Fig 3.4 River Wye: speed and
attenuation parameter for Erwood
to Belmont.

Table 3.4 Data used to calculate «
for Erwood to Belmont, River Wye.

Flooding in the River Wye : Erwood to Belmont 34
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calculation, and Figure 3.3 for the corresponding subdivisions of the
reach. Similarly, Equation 2.46 was used to find the attenuation parameter
for an inbank flood. The two values of « are 0.20 x 10 for the large over-
bank flood and 1.10 x 10° for the inbank flood. Observations of the river
channel, particularly along much of the upper parts of the reach, show that

Length (i)(t;:)ubreach F]ood( é)rl:;;l area Bottom slope

4.5 1.23 2.0x10"3

8.3 292 20x10-8

3.0 1.74 0.8x10-2

2.9 1.38 0.8x10°3

4.5 252 0.8x10-3

4.6 0.55 0.8x10-3

35 1.28 0.8x10-3

13.6 11.83 0.5x10"3

24.9 5.12 0.6x10-3
Total 69.8 Total 28.57 Average 0.88x 10-3

there is a considerable increase in the effective storage in the channel as
the depth increases. Even though the average width of the channel appears
to increase as the discharge increases, it was anticipated that the increase
in the storage due to the irregularities in the channel width would probably
lead to o being approximately constant for values of discharge less than
the average bankfull discharge along the reach. A close examination of the
discharge hydrographs at Belmont indicates that this discharge is about
400 m3 s™*; see, in particular, Figure 3.6 below. This discharge can be
compared with the bankfull discharge of 590 m® s~ ! at Belmont. The curve
for o was therefore drawn from a = 1.10x 10° at Q = 0 to a value of
1.0x 10% at Q = 400 m3 s~ (Figure 3.4). Because o tends to zero, or a
small finite value, as the discharge becomes very large, the curve for o was
drawn from Q = 400 m® s™! through the point for « = 0.2x10° at
O = 1080 m® s™!, so that this limiting condition on « was satisfied. In
addition, because the flood plain is so irregular, the curve for « greater
than 400 m* s~ ! was drawn so that it varies slowly with discharge. If the
flood plain had been relatively flat and not so irregular, the curve would
have to be drawn so that o decreases more rapidly as the discharge in-
creases.

The formulae for the attenuation of the peak discharge (Equations
2.41 and 2.42) were applied to a number of floods between Erwood and
Belmont. Table 3.5 gives the corresponding predicted and recorded attenu-
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Predicted Predicted
o Op w Curvatukre attenuation attenuation Recordgd
Flooddate  ( 106y (m3s-Y) (ms~Y) (‘;‘] L Equation 2.41 Equation 2.42 a‘(‘;’;”j_“f)’“
(mds-1) (m?s~1)
Jan. 1969 1.00 378 1.74 —0.747x10°¢ 54 50 50
Dec. 1965 0.38 1077 0.80 —2.18x107¢ 1743 864 460
Dec. 1960 0.20 1210 0.98 —1.48x10°¢ 381 327 235
Feb. 1950 0.93 626 0.95 —1.03x10-°¢ 699 421 194
Jan. 1948 0.33 815 0.93 —1.55x10"¢ 518 383 260
Nov. 1939 0.80 710 0.92 —1.33x10"°8 966 528 260
Aug. 1939 1.00 536 1.38 —2.08x10°° 424 293 173

Table 3.5 Predicted attenuation for
floods in the River Wye between
Erwood and Belmont.

Fig 3.5 River Wye: flood of January
1969.

ations. Generally the predicted attenuations are too large. The notable
exception is the January 1969 flood, which has a predicted attenuation
(Equation 2.41) of 14.89; of the peak discharge at Erwood. As has already
been commented in Section 3.3, when Q*/Q, is of the order of 0.1 it can
be anticipated that the predicted attenuation will be reasonably accurate.
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The flood routing methods were applied to four floods in the reach.
The hydrographs predicted by the Muskingum-Cunge and variable
parameter diffusion methods are shown in Figures 3.5-3.8, and the
corresponding error parameters for all the methods are given in Table 3.6.
The time interval during which the error parameters were calculated is
indicated by a thick line along the time axis in the figures. Ax was taken
as 6975 m in each method, whereas in the Muskingum-Cunge method
At was 7200 s for all except the 1969 flood for which Ar was 3600 s, and in
the remaining methods As was 1800 s. The cutoff discharge in the variable
parameter diffusion method was 400 m* s™'.

Both of the 1939 floods were affected by rain on the catchment along
the reach; consequently the predicted hydrographs at Belmont show a
marked deviation from the recorded hydrographs prior to the main part
of the floods. However, it can readily be seen from the figures that the
hydrographs predicted by the Muskingum—Cunge and variable parameter
diffusion methods agree well with the recorded hydrographs. An examina-
tion of the standard deviations in Table 3.6 indicates that the variable para-
meter diffusion method is more accurate than the other methods, though
all the methods predict the peak discharge, speed-of-flood peak, and the
mean discharge to a similar degree of accuracy.
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Fig 3.6 River Wye: flood of
December 1960.
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hydrographs at Belmont, River Wye. = ~f.d ]
mc Muskingum-Cunge, 0
LD linear diffusion, 23 24 25 26 27
DATE

vpD variable parameter diffusion.

Recorded Percentage Percentage Average

Recorded Percentage Percentage

Os w peak error in error in  recorded
Flood Method (m3s~!) (ms™?) % discharge predicted (:fi‘id,) predicted discharge ;g?i?;g del\rlli:i?on
(m3s-1') discharge speed (m®s~1)
Jan. 1969 MC 350 .74  1.00x10¢ 328 3.96 1.76 —2.948 164 10.4 3.09
LD 350 1.74  1.00x10° 328 3.35 1.76 —3.547 164 10.8 3.62
VPD —_ — — 328 —0.61 1.76 —11.094 164 11.2 3.70
Dec. 1960 MC 1090 098 0.20x 108 975 3.69 1.01 1.950 294 18.12 —0.39
LD 1090 098 0.20x108 975 6.67 1.01 7.229 295 19.71 2.05
VPD _— — — 975 3.21 1.01 —1.035 295 16.10 —5.67
Jan. 1948 MC 710 093 0.33x108 555 12.43 0.95 1.013 373 21.23 6.01
LD 710 093 0.33x10° 555 11.35 0.95 3.334 373 20.90 6.14
VPD — — _ 555 —6.25 0.95 3.027 373 8.64 1.68
Nov. 1939 MC 600 092 0.80x10° 450 3.78 0.95 3.005 328 31.20 8.32
LD 600 092 0.80x108 450 5.55 0.95 4.591 339 24.21 6.28
VPD —_ — — 450 4.44 0.95 6.084 339 13.62 —6.42
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Fig 3.9 River Wye: Belmont to
Redbrook.

Flooding in the River Wye : Belmont to Redbrook 3.5

3.5 Flooding in the River Wye: Belmont to Redbrook

Hereford

The second reach of the River Wye follows on directly from Belmont down
to Redbrook which is about 5 kmm downstream of Monmouth (Figure
3.9). The gauging station at Redbrook, like that at Belmont, has a good
quality rating curve and the station has more than 30 years of records.
Unlike the Erwood to Belmont reach however, this reach of the River
Wye has two important tributaries: the River Lugg just downstream of
Hereford and the River Monnow which joins the Wye at Monmouth.
Unfortunately, the gauging station on the River Lugg upstream of the
confluence is inaccurate for high flows, particularly as there can be a signi-
ficant backwater effect from the Wye. Because of this difficulty it was
decided to ignore the discrete lateral inflow due to the River Lugg and to
suppose that the discharge from the tributary can be included as part of
the lateral inflow uniformly distributed along the channel. Though this is
a fairly crude assumption it does not appear to affect seriously the routing
of a flood from Belmont down to Redbrook. This is primarily because the
maximum discharge from the Lugg appears to be less than 109 of the peak
discharge in the Wye for the floods considered below.

The influence of the River Monnow on flooding can be serious in the
Monmouth area. However, because the confluence of the two rivers is
near to Redbrook, the simplest procedure is to assume that the contribu-
tion to the discharge at Redbrook from the Monnow can be added to the
discharge predicted by the flood routing method. Note, however, that in
the diffusion methods this additional discharge should not be included in
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Fig 3.10 River Wye: speed and
attenuation parameter for Belmont
to Redbrook.

Comparison of flood routing methods

the calculations of the finite difference scheme itself but simply added to
the predicted downstream value.

The River Monnow is gauged at Kentchurch, 40 km upstream of the
confluence with the Wye. The hydrographs at Kentchurch were lagged by
3 hours to produce the relevant hydrographs at Monmouth.

The flood plain between Belmont and Redbrook is widest at the con-
fluence with the River Lugg. Downstream of Ross-on-Wye, the river
passes through hills and there is consequently very little flood plain. So,
although the river channel is up to 90 m wide in places, most of the
contribution to the attenuation parameter for an overbank discharge
arises from the upper part of the reach.
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As for the Erwood to Belmont reach, the curves for L/T, and ¢ can
readily be extracted from the records at Belmont and Redbrook (Figure
3.10). Because the peak of the flood in the Monnow generally reaches
Monmouth before the flood peak in the Wye, no correction need be made
to the peak discharge at Redbrook when calculating the average peak
discharge along the reach to correlate with the values for L/7, and ¢.
The attenuation parameter for the largest recorded flood (December 1960)
was again calculated from data supplied by the Wye River Authority.
An average channel width of 62 m was assumed when calculating the
attenuation parameter for an inbank flood; see Figure 3.9 for the sub-
divisions of the reach used in the calculation of «. Table 3.7 gives the
numerical values for quantities used in the calculations. For the flood of
December 1960, o = 0.40 x 10°. This corresponds to an average peak
discharge along the reach of 910 m?® s™!. For an inbank flood, a =
1.66 x 10°. Again the curve for « was drawn as a slowly varying function
of discharge, passing through the point for a = 0.40x 10® at Q = 910
m? s~ !, and tending to zero as the discharge became infinite (Figure 3.10).

Again, the formula for the attenuation of the peak discharge (Equation
2.41) was applied to the large overbank flood of Ducember 1960. Here

_ 0.40x 10 x 980 x 1.51 x 10~¢
B (1.17)3

o* =370m3s~! (3.10)

or 389, of the upstream peak discharge. This compares with the recorded
attenuation of about 260 m® s~?, where allowance has been made for the
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Flooding in the River Wye : Belmont to Redbrook 3.5

lateral inflow. It follows that it is necessary to use the flood routing
methods to route the complete discharge hydrograph so that the attenua-
tion may be predicted more accurately.
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Fig 3.11 River Wye: flood of 8 9 10 " 12
December 1965. Date
1000
KEY
—_— Recorded
_— Predicted
800 N
BELMONT

600

400

DISCHARGE (m¥s)

200 E

Fig 3.12 River Wye: flood of

December 1960.

2

DATE

51



Table 3.7 Data used to calculate o
for Belmont to Redbrook, River Wye.

Comparison of flood routing methods

Length of subreach Flood plain area

(km) (km?) Bottom slope
1.5 0.34 0.4x10"3
3.3 0.92 0.4x10-3
3.5 1.04 0.5%x10°3
5.0 2.57 0.5x10°3
6.6 3.14 0.4x10°3
9.7 1.56 0.4x10-3
4.1 2.23 04x10-3
3.6 1.46 0.4x10-3

12.5 3.89 0.4x10-3
33 0.93 0.6x10°3
94 1.09 0.4x10-3
3.8 1.40 0.5%x10"3
8.0 0.77 0.5x10"3
30 1.12 0.5x10°8
33 0.31 0.5x10°8
Total 80.5 Total 22.77 Average 0.46 x 10-3

Recorded Percentage Percentage Average

0 o peak error in Recorded error in recorded Percentage Percentage
14
Flood Method (m®s~ 1) (ms~1) *» discharge predicted spee_c! predicted discharge standard mean
3 o1 . (ms™1) a.-1x deviation deviation
(m®s~1') discharge speed (m3s~1)
Dec. 1965 MC 595 0.92 0.87x10°8 585 7.51 0.94 8.64 354 19.08 —2.78
LD 595 092 0.87x10° 585 8.40 0.94 11.91 354 19.62 0.51
VPD — — — 585 —1.00 0.94 9.83 354 9.46 —3.51
Dec. 1960 MC 910 096 0.5x10¢ 840 —0.60 1.00 2.46 416 15.07 5.94
LD 910 096 0.5%x10° 840 0.10 1.00 5.53 416 13.60 8.00
VPD — — — 840 —0.10 1.00 8.71 416 10.84 7.52

Mc Muskingum—-Cunge, LD linear diffusion, vpD variable parameter diffusion.

Table 3.8 Errors in predicted
hydrographs at Redbrook, River Wye.

The results of routing two floods along this reach of the Wye are shown
in Figures 3.11 and 3.12 and Table 3.8. Again the peak discharges and times-
of-arrival at Redbrook are accurately predicted, though there is some
disagreement by all the methods at the front of the hydrographs. This is
primarily due to an underestimate of the discharge hydrograph from the
River Monnow. Despite the disagreement however, the error for the
standard deviation is small for all the methods.

3.6 Flooding in the River Nene: Northampton to Wansford

The River Nene is one of the flatter British rivers and flows down through
Northampton and Peterborough to the Wash. The river is navigable up to
Northampton so there are a large number of locks and weirs along the
river. These structures dominate all the low flows so that the hydrograph
of a small flood at Northampton is completely distorted by the time the
flood reaches Wansford (Figure 3.13). Inevitably such control structures
make flood routing an extremely difficult problem. In addition, as the high
flows, which are more amenable to a simple flood routing approach, are
not particularly well gauged, the problem is made even more complex.
The flood chosen for the routing exercise was the 1947 fiood, which was
largely generated by direct lateral runoff from melting snow. In this case
it was recognised that as the snow was fairly uniformly distributed over
the whole of the catchment above Wansford (Jamieson & Wilkinson, 1972)
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Fig 3.13 River Nene: Northampton
to Wansford.

Flooding in the River Nene : Northampton to Wansford 3.6
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Thrapston

Northampton

Scale

4 km

the lateral inflow along the reach during the main period of the flood could
be regarded as approximately proportional to the instantaneous discharge
at Northampton. This assumption gives a very simple measure of the
variation in the lateral inflow with the meteorological conditions. A check
on the total volume past the two gauging stations during the flood using
discharge hydrographs supplied by the Welland and Nene River Authority
showed that at any instant the lateral inflow (in m® s~ km™") could be
taken as 2.74 x 107 times the corresponding discharge at Northampton.
If this constant is taken as the ratio of the catchment area between
Northampton and Wansford and the catchment area above Northampton,
the corresponding value would be 2.22 x 10~ 3. Although this value is less
than the former value, the similarity of the values indicates the approxi-
mately uniform nature of the runoff over the whole catchment above
Wansford under snowmelt conditions.

The attenuation parameter was calculated from data again supplied
by the Welland and Nene River Authority (Table 3.9 and Figure 3.14).
Some problems were raised in the calculation of the speed-discharge
relationship, due to the shortage of data for large floods and the difficulty
of correlating flood peaks at Northampton and Wansford for the smaller
floods.

Because of the shortage of data it is evident that the more complicated
variable parameter diffusion method has little advantage over the other
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Northampton to Wansford. Discharge (m¥s)
Length of subreach Flood plain area
(km) (km?) Bottom slope
1.9 0.60 0.89x10°3
3.8 3.88 0.89x 10-3
1.4 0.71 0.89x10°3
3.9 3.23 0.89x10°2
2.1 2.94 0.64x 103
16.8 6.11 0.64x10-3
20 0.88 0.61x10-3
7.0 3.20 0.61x10°3
8.0 3.26 0.38x10°?
4.9 1.50 0.38x 1073
3.1 1.36 0.38x 1073
3.7 0.73 0.38x10°3
2.0 0.77 0.38x 10-3
1.8 0.39 0.38x 1073
5.1 3.01 0.38x10-3
7.2 3.50 0.38x 103
1. 0.4 0.38x 1073
Table 3.9 Data used Lo calculate « ° 0 8
I:Sr Northampton to Wansford, River Total 76.6 Total 36.07 Average 0.59 x 103
Nene,
Recorded Percentage Percentage Average
~ . Recorded . Percentage Percentage
Flood Method SQ"_1 “. o peak error in speed error in  recorded standard mean
(ms~) (ms™?) P discharge predicted (ms-1) recorded discharge deviation  deviation
(m®s~') discharge speed (m2s—1)
Mar. 1947 MC 250 0.52 0.15x 108 356 —12.82 0.52 —10.00 160 16.04 —0.65
LD 250 0.52 0.15x10° 356 —14.59 0.52 —18.18 159 15.80 -0.48
VPD — — — 356 —21.10 0.52 —18.18 159 21.71 —4.02

mc Muskingum-Cunge, LD linear diffusion, vpD variable parameter diffusion.

Table 3.10 Errors in predicted
hydrographs at Wansford, River Nene.
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Fig 3.16 River Eden: Temple
Sowerby to Warwick Bridge.
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methods. This is reflected in the results of simulating the 1947 flood
(Figure 3.15 and Table 3.10). However, despite the shortage of data there
is a reasonable agreement between the predicted and recorded hydro-
graphs at Wansford, particularly for the Muskingum-Cunge method.

3.7 Flooding in the River Eden: Temple Sowerby to Warwick Bridge

Kirkoswald

Wetheral
2\
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Table 3.11 Data used to calculate «
for Temple Sowerby to Warwick
Bridge, River Eden.

Fig 3.17 River Eden: speed and
attenuation parameter for Temple
Sowerby to Warwick Bridge.

Comparison of flood routing methods

The River Eden has its source in the Pennines and flows down through a
very picturesque valley, which in parts is fairly narrow, to Carlisle, and so
into the Solway Firth (Figure 3.16). The river is fairly steep, and from
Temple Sowerby to Warwick Bridge most of the flooding occurs just
below the confluence with the River Eamont which is a tributary with a
discharge of the same order as the Eden. The gauging stations at Temple
Sowerby and Udford on the Eamont have rating equations of reasonable
quality, though the river does overflow locally at both stations. Similarly,
the station at Warwick Bridge is reliable until there is overbank flooding
at about 560 m> s™!. It is assumed by all the flood routing methods that
the discharge from the Eamont can be added to that at Temple Sowerby
to produce the relevant discharge hydrograph for the input to the reach.

Length of subreach Flood plain area Bottom slope
(km) (km?)

1.3 0.33 1.6x10°3

0.8 0.09 1.6x10°3

2.1 0.63 1.6x10-2

1.2 0.69 1.5%x10~3

49 2.03 1.5x1073

1.1 0.15 1.3x10°3

3.4 1.04 1.3x10°3

8.0 0.65 2.6x10°2

1.3 0.17 1.5x10°2

0.9 0.07 1.5x10-3

1.2 0.24 1.5x10-3

8.8 0.85 2.0x10-3

20 0.41 2.0x10°3

Total 37.0 Total 7.35 Average 1.65x 102
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The data used to calculate the attenuation parameter is given in Table
3.11, and Figure 3.16 shows the division of the river into the sub-reaches
for the calculation. « and ¢ are shown in Figure 3.17.

The results for the February 1967 flood in the River Eden are shown in
Figure 3.18 and Table 3.12. Because the River Eden is one of the steeper
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Fig 3.18 River Eden: flood of
February 1967.

Recorded Percentage

C. w peak error in
Flood Method (m3s-Y) (ms-Y) o

Recorded Percentgge Average

speed error in  recorded
discharge predicted (n?s‘ 1) predicted discharge
(m®s~*) discharge speed (m3s-1)

Percentage Percentage
standard mean
deviation  deviation

Feb. 1967 MC 540 190 0.35x10° 543 0.93 1.93 9.88 153 15.17 —4.62
LD 540 190 0.35x10°8 543 0.73 1.93 9.25 151 15.09 —4.61
VPD —_— — — 543 0.78 1.93 10.52 151 10.53 —4.95

MC Muskingum-Cunge, LD linear diffusion, vpD variable parameter diffusion.

Table 3.12 Errors in predicted
hydrographs at Warwick Bridge,
River Eden.
British rivers, there is little evidence of attenuation in this reach. So, again,

the methods all predict the floods accurately, and there is little to dis-
tinguish the methods.
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4 Strategy for flood routing

4.1 Final comparison of methods

Three major conclusions can be drawn from the results of the preceding
chapter.

i Given sufficient data each of the methods predicts the total volume past
the downstream section, the attenuation of the peak discharge, and the
time of arrival of the flood peak within 10%,.

ii Again, if the data for the river geometry and previous floods are
sufficiently accurate, the standard deviation of results for a particular
river and flood using the variable parameter diffusion method can be
smaller by a factor of 0.25 or more than the standard deviation of results
from the other three methods tested. Where there is difficulty in defining
the data curves for ¢ and « then the variable parameter diffusion method is
no more accurate than the other methods.

iii There is little difference between the Muskingum—-Cunge method and
the linear diffusion method whether or not the data from the river are
accurate.

It follows from the third conclusion that the Muskingum-Cunge
method is preferable to the linear and non-linear diffusion methods. This is
because the Muskingum—Cunge method has the advantages that it is very
simple conceptually, it can be readily applied by desk calculation, and is
much cheaper than the other methods when applied by computer. In
addition, this method can include a tributary as a discrete lateral inflow,
which the other methods cannot do in a simple way. A disadvantage
with the Muskingum-Cunge method, and indeed with all the other
simplified flood routing methods described in this volume, arises when
there is a disturbance such as a tide affecting the flow in the river up-
stream of the downstream boundary.

A second disadvantage with the Muskingum-Cunge method is that it
does not accurately predict the shape of the discharge hydrograph at the
downstream boundary when there are large variations in the kinematic
wave speed, such as due to the inundation of a large flood plain. If the
convection speed and attenuation parameter can be accurately defined for
the river then there is an advantage in using the variable parameter
diffusion method which will give a better prediction of the shape of the
hydrograph. If not, the Muskingum-Cunge method produces results as
accurate as those produced by the other methods, and is preferable for the
reasons of simplicity and ease of application as stated above.

With these conclusions it is now possible to outline how a flood routing
problem should be approached.

4.2 Strategy for a flood routing problem

As in any engineering study, it is important to be clear in the first instance
what the objective of the study is, including the type of information (atten-
uation of peak discharges, shape of hydrographs) and the accuracy re-
quired. Secondly, the type and quality of all the available data on previous
floods in the river should be scrutinised. Where there are no data on the
speed of flood peaks along the river there is little opportunity of being able
to do an accurate flood routing exercise at all. However, other data, such
as design hydrographs and peak discharges, can be refined using unit
hydrograph theory or data from a neighbouring catchment. Where
possible, the curves for the convection speeds, L/T,, and ¢, and the attenua;
tion parameter, «, versus discharge should be drawn (Section 5.1). o
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Strategy for a flood routing problem 4.2

Decide on results required
from flood routing study

Draw curves for «
and UTp as accurately
as possible

Calculate the attenuation
of the peak discharge
for the design flood
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Is shape
of hydrograph

Is shape
of hydrograph
required

Yes

equivalent river
model accurate

required discharge

Y

Muskingum-Cunge Variable parameter
method diffusion method |
Fig 4.1 Strategy for flood routing. Given the objective of the study and the curves, or at least some values

for L/T, and «, the formula for the attenuation of the peak discharge
(Equation 2.41 or 5.5) should be used to calculate the magnitude of the
attenuation along the river of a typical flood in the range being considered
(Figure 4.1). This attenuation, as a ratio of the peak discharge at the
upstream section of the reach, can be regarded as a parameter which indi-
cates the magnitude of the flood routing problems. 1t is recommended that
if the ratio is greater than 0.1, the Muskingum-Cunge method should be
used to find the attenuation more accurately (Section 5.2). When the shape
of the downstream hydrograph is important, it is sufficient to use the
Muskingum-Cunge method to route the hydrograph, unless the equivalent
river model is accurately defined and there is extensive inundation of an
associated flood plain. In the latter case there are advantages in using the
variable parameter diffusion method (Section 5.3).

4.3 Other applications for methods

The strategy in Section 4.2 has been outlined for a straightforward study
of routing floods in a river. Obviously if the curves for ¢ and « are accurate,
they can be safely extrapolated to deal with larger floods than have previ-
ously been recorded. But the methods considered in this volume can also
be used for other problems, such as the calibration of rating curves for
downstream gauging stations, the improvement of flood warning systems,
the operational management of upstream reservoirs, and the design of
flood alleviation schemes.

Generally, low flows in smaller rivers can be accurately gauged using
a control structure such as a weir. Alternatively, in the larger rivers, in-
bank flows can be gauged by current metering at a stable cross-section.
However, difficulties usually arise when gauging the higher flows if there is
bypassing of the main channel with flow over the local flood plain or
through a relief channel. In most cases the discharges for these high flows
have to be obtained by extrapolating the rating curve calibrated from the
low flows. It is suggested here that the flood routing methods presented in
this volume can be used to check the rating curves for downstream gauging
stations, and, if the upstream hydrographs for particular large floods are
known to be accurate, the methods should provide an improvement to the
curves for high discharges.
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Strategy for flood routing

The benefit of using flood routing methods to improve a flood warning
system arises from the increase in the accuracy of predicted flood levels at
certain sites along the river, resulting in better use of resources and man-
power when the flood arrives. For example, many fiood warning systems
in Britain are based on the correlation of levels recorded for previous
floods at different stations along the river. Inevitably there is a certain
range of error involved in the use of the correlations due to the different
characteristics of each flood: a peaky flood at some upstream station will
experience a larger attenuation along the reach to a particular site than a
flood with a similar peak discharge and a smaller curvature at the peak.
Similarly, flood levels in rivers with a complex network of tributaries,
such as the Yorkshire Ouse or the Severn, can be difficult to predict
using correlation curves. In these cases a flood routing method can provide
a more accurate prediction of peak discharges and levels. There also exists
the possibility of using the methods for detailed predictions during a flood,
rather than just in the design of a particular flood warning scheme.

Although the flood routing methods have been discussed in the report
primarily in relation to high flows off a given catchment, the methods can
also be used to determine a strategy for operating upstream reservoirs.
For example, several of the larger British rivers, such as the Dee and the
Severn, have reservoirs designed to ensure proper control of flows at
certain extraction points downstream. In particular, the reservoirs can be
operated on a long-term basis to maintain flows above a certain minimum
level, or to alleviate flooding (Jamieson & Wilkinson, 1972). Obviously
the operating schedule for the reservoirs depends on a knowledge of the
propagation and attenuation of flood waves in the river downstream of the
Teservoirs.

The value of using the flood routing methods to assist in the design of
a flood alleviation scheme arises primarily from the definition of the
equivalent river model. Suppose that there is some concern about the
increase in peak discharge or levels downstream which a particular scheme
may produce. Then the equivalent river model, on which all the methods
described in this report are based, can be reconstructed for the river as it
will be after the improvements have been made. This enables the results of
routing floods in both equivalent river models to be compared, to find, in
particular, the change in the attenuation along the reach of the peak
discharge for a certain design flood. The techniques for constructing the
new from the old equivalent model can be derived from the equations
defining the speed and the discharge in terms of the water depth (Equations
2.49 and 2.50) and from the expression for the attenuation parameter
(Equation 2.40).

Consider a simple example where the river channel is to be deepened
to convey a larger discharge. Suppose that the curves for the speed and
attenuation parameters are available for the river before improvements.
Then Equations 2.49 and 2.50 are used first to specify a water depth over
the flood plain for a particular discharge in the old model and secondly to
find the new speed and discharge for the same depth over the flood plain
with the new value for the bankfull depth, which has to be worked out
beforehand from the flow which the new channel is to convey. In this way
the new speed-discharge curve can be plotted, as can the attenuation
parameter. The attenuation formula or the Muskingum-Cunge method is
then used to compare the attenuation of a particular flood in both equiva-
lent models.

If alterations are made to the flood plain by reducing the amount of
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area available for flooding, the attenuation parameter has to be recalcu-
lated using Equation 2.45. The discharge and speed for a given depth of
flooding over the flood plain are again calculated from Equations 2.49 and
2.50, using adjusted values for W; and 7, if necessary.

4.4 Further research

There still remains a considerable amount of basic research to be done on
simplified flood routing methods. In particular, two lines of research
should be pursued. The first is a closer study of the functional forms for ¢
and a. There is a need to investigate the definition of ¢ in Equation 2.48
more rigorously, and also to examine values of o for bankfull flows. In
addition, there exists the possibility of using the ¢ and « curves for a given
reach to calculate a typical cross-section and roughness values (Kawecki,
1973). The second line of research is the development of a variable para-
meter Muskingum method, similar to the method proposed by Linsley,
Kohler & Paulhus (1958). This latter method, if developed, may well be
preferable to the variable parameter diffusion method in predicting the
shape of a hydrograph.

In conclusion, mention should again be made of the considerable amount
of world-wide research on the application to flood routing of numerical
methods based on solutions of the full Saint-Venant equations. As yet,
the use of such methods to simulate flooding in a river with extensive flood
plains is at an early stage, but current developments both in this country
and on the Continent hold considerable promise for the future.
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5 Appendices

5.1 Attenuation of the peak discharge

Four quantities are required to be known before the attenuation of the
peak discharge for a particular flood can be calculated. These quantities
are the peak value and curvature at the peak of the upstream discharge
hydrograph, together with the attenuation and speed parameters corres-
ponding to an average value for the peak discharge along the reach. If the
attenuation is being found for either the largest recorded overbank flood
or a typical inbank flood, data are usually available to calculate the corres-
ponding values for the attenuation and speed parameters. So, assuming
that the first two quantities above are given or have been derived from the
methods in Volume I it is a straightforward matter to calculate the
attenuation for either of the floods. However, if the flood being studied is,
say, a small overbank flood for which only the speed parameter can be
directly calculated from records, or if a synthetic design flood is to be
routed along the reach, then it is necessary to know the curves defining the
attenuation and speed parameters as functions of discharge. In this latter
case the problem resolves into one of defining the parametric curves.

So, two cases need to be considered, namely the calculation of the
attenuation for the largest recorded flood or a typical inbank flood, and for
a recorded intermediate flood or synthetic design flood.

Case | Attenuation of the peak discharges for the largest recorded
flood and a typical inbank flood

A Calculate the attenuation parameter

i Define the flood plain as the known area inundated by the largest
recorded flood, or as estimated from a survey map.

ii Divide the reach into a number of subreaches so that the geographical
width of the flood plain in each subreach is approximately uniform. Where
the flood is not, or is unlikely to be overbank, define the subreaches such
that the slope of the channel is approximately uniform in each subreach.

iii For each subreach measure the length, L, of the channel, the average
slope, s, of the channel, the plan area, P, of the flood plain, (including the
plan area of the channel).

It is sufficient for most purposes to calculate s from the distance along
the channel between the sections where the 25 ft contours cross the channel
on an Ordnance Survey map.

iv  For the whole reach calculate the length, L, of the channel, and an
average width, W,, of the channel.

v Calculate the attenuation parameter, o, for the largest recorded flood
from

m=1

1M PP M P
i 2 Loy D
and for a typical inbank flood from

(1ML ML
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B Calculate the convection speed

Extract the times of travel, T,, of the peak of the largest recorded flood and
the inbank flood from records. Define the speed by L/T,.

C Calculate the curvature at the peak of the upstream discharge
hydrograph

i Find the time-to-peak, 1,, of the flood hydrograph and locate the time-
of-occurrence of the peak. Mark off two points on the hydrograph at a
time interval. &1, either side of the peak, where §t is defined to the nearest
hour by

= 1,/5. (5.3)

ot need not however be greater than 3 hours.

ii Calculate the curvature at the peak from

2 p—
d sz _9i+0-,-29, (5.4)
dt (81)?
where Q, is the discharge at the peak and Q, and Q_, are the two dis-
charges either side of the peak.

D Calculate the attenuation of the peak discharge
i Use the formula

. o, dZQp
A T AR (5.5)
i If 9*/Q,>0.1, redefine Q* by
Q:cw = Qp [l “eXP<— g_:)] (56)
and define w, by
L 2
@y = 32 =7 Qhew (5.7)

Recalculate the attenuation using Equation 5.5, with L/T, replaced by w,,
and Equation 5.6 if necessary.

Case 2 Attenuation of the peak discharge for an intermediate or a
synthetic flood

A Define the curves for the attenuation and speed parameters as
functions of discharge

i Calculate o, for the largest recorded flood and for a typical inbank flood
from Equatlons 5.1 and 5.2 above. In addition, calculate o, for any other
flood with the relevant data.

ii Calculate the attenuation of the peak discharge and the speed, Wp,
for the largest recorded flood and the inbank flood, as explained in Case 1
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i Define the average peak discharge, @, for each flood by

0, = Q,—10" (5.8

iv Correlate the values of «, and w, with the values of Q,. Plot the
points on a graph.

v Estimate the curve for «. If the flood plain is fairly uniform along the
river, it is probable that the curve for a will drop sharply as the discharge
increases above an average bankfull value. Ensure that the curve tends
asymptotically to zero as the discharge becomes infinite.

vi Extract the times of travel, T, for as many recorded floods as possible.
Calculate values for w, using Equation 5.7 and the calculated values for
the attenuation in each case. Use values for a, read off the curve for the
attenuation parameter.

vii Estimate the curve for w(Q).

B Calculate the attenuation of the peak discharge

i Calculate the curvature at the peak of the upstream hydrograph as in
Case 1.

it Use the formula

szp
ds?

o

0" =0, (59
w

where « and w are initially read off the corresponding curves at Q = Q.

jiii Refine the estimate of Q* as in Case 1, but this time adjusting the
values of a and ® according to the value of the average peak discharge,
0, (Equation 5.8).

5.2 Muskingum-Cunge method

This method can either be applied by desk calculation or by using a digital
computer.

1 Desk version
A Calculate parameters
i Derive curves for the speed and attenuation parameters as described in

Section 5.1, Case 2.

i Record the upstream peak discharge, Q,, of the flood to be routed,
together with the corresponding value of the curvature at the peak of the
discharge hydrograph.

jii Calculate the attenuation, Q*, of the peak discharge along the reach,
length L, for values of L/T, and « corresponding to Q. If 0*/Q,>0.1,
correct Q* using the equation

Qrew = Op {1 —exp<—%:-’)}. (5.10)

iv Calculate a provisional value for the average peak discharge, 0,
along the reach from

Qp = Qp_%Q:eW' (511)

(If the downstream peak discharge is known then define Q, as the average
of the peak discharges at each end of the reach.)
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v Record the values of w and « corresponding to Q, and recalculate Q*
and a new value for Q.

vi Calculate K and ¢ from

k==t (5.12)
w
e = J"_z%‘ (5.13)

vii Read the value of L/(wAt?) corresponding to this particular value of ¢
off the graph in Figure 2.11. Calculate At and round up to the nearest
integral number of hours.

viii Calculate the four Muskingum parameters

¢ = 7({% (5.14)
C, = %% (5.15)
¢, - Ki=o-its 61
C, = ﬁz—t (5.17)

where ¢ is the lateral inflow/unit length.

B Calculate the outfiow hydrograph

i Read off, or calculate from a stage discharge relationship, the values of
the input discharge, Qf, at intervals of At.

ii Assume an initial value, Q2, for the outflow discharge equal to the
value of the input discharge, Q?, at the same time, and generate the rest
of the outflow hydrograph, Qg, using the recurrence formula

6! = C,01+C,0M '+ C, 08+ C,. (5.18)

Note The lateral inflow can be regarded as a function of ¢, in which case
the lateral inflow hydrograph has to be specified at intervals of As.

2 Digital computer version

A Calculate parameters

i Derive @, and w as in the desk version above.
ii Fix Ax = L/10 and determine K and ¢ from

K=— (5.19)

aQ,

£ =3— (5.20)

iii Read the value of Ax/(wAt) corresponding to this particular value of
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¢ off the graph in Figure 2.11. Calculate Af and round up to the nearest
integral number of hours.

B Prepare card data

The program listed below reads the data in the following order. Eight cards
containing the heading for the output from the program. Cards containing
11 integers (free 1-format):

IX the number of space nodes

LEND the number of time steps

IQH the number of data points for the upstream hydrograph

IQDNS the number of data points for the downstream hydrograph

ITRL the number of data points for the hydrograph from the first
tributary

1TR2 the number of data points for the hydrograph from the
second tributary

1Tl the space node for the confluence of the first tributary with
the main channel

T2 the space node for the confluence of the second tributary with
the main channel

3 the discharges along the reach are written at J1 intervals
apart

LI the discharges along the reach are written when the number
of times steps is equal to a multiple of L1

L2 only the downstream discharge is written when the number

of time steps is equal to a multiple of L2.

Cards containing 12 real numbers (free E-format):

DXLR length of reach

DT time step

DTQHYDRO time interval between successive data points for each specified
hydrograph

QINIT initial discharge along the reach

QINB base flow for the lateral inflow

QINA amplitude of the variable part of the lateral inflow

TQIN time when the peak lateral inflow occurs

TSQIN timescale for the variable part of the lateral inflow

WSP value of LT,

AP value of «

QCON value of Q,

TDEVN time after which the error parameters are calculated.

Notes

i If there is no downstream hydrograph 1QDNs = O and TDEVN is set to a
value greater than the real time for routing the flood. Similarly, 1TRI,
ITR2, JT1 and JT2 should be set equal to zero if there are no tributaries.

ii The computer version above of the Muskingum-Cunge method can
also be used in a desk calculation if 1x is not too large.

The computer program below is written in FORTRAN 1v. The program
can be extended to deal with any number of different reaches in the same
river.
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[4 w1y - ARPAY FOR Tuy DISCHARGE ALONG THE REACH AT THE MeW TIME LEVEL.

4 @ = ARRAY FOR TH:Z DISCMARGE ALONG THE REACH AT THE NOLp TIME LEVEL

[4 ox - SPACE INCREMANT,

c DXLR = LENGIW OF THZ HFACH,

[4 X = NUMBER OF SPACE GRID POINTS,

4 X - ARRAY FOR YTHE ODISTANCES 0OF YHE GRID pOINTS ALONG THE CHANNEL,

[ 0T - TIME (NCREMFNT,

[4 T - TIME Th SECOXDS,

< ™ = TIME 1IN HOWURS,

[4 LEHD - NUMBEZR OF TIYE STFPS,

< TITLE - ARRAY WHICH STURES DATA FOR THE HEADING AF THE ouTPUT,

4 Jio L1 AND L2 REFER T) WHEN AND HOW THE RESULTS ARE WRITTEN,

4 Wwsp - WAVE SPEE£D.

4 Ap - ATTEHUATION PARAMETER,

[ ucon - DISCHARGFE COMSTANT

[ €1, €2, €3 AND C4 ARFE PARAMETERS IN THE MUSKINGUM METHOD,

[ OTAWYDRO TIME INTERVAL IN HOURS BETWEEN THE nATA POINTS fOR TWE INPUT AND
[ OTHER DISCAARGE HYDROGRAPHS,

4 QUYDRJ -~ ARRAY WHICK 3TORES THE DATA FOR THE RECORDED DISCHARGE HYDROGRAPM
[ AT THF UPSTOEAM SECTINN,

4 taH = NUMRER OF DATA POINTS FOR THE UPSTREAM MYDRNGRAPYN,

c QTRIBY = ARRAY WHICH STORES THE DATA FOR THE RECORDEOD NISCHARGE HYDROGRAPK
[ AT THE FIRST TRIBUTARY.

4 ITRY = NUMBER OF DATA POINTS FOR THE HYDROGRAPH AT THE FIRST TRIBUTARY.
[4 It - POSITION OF THE [NPUT DISCHARGE FROM THE FIRST TolBUTARY.

4 QTRIA2 - ARRAY WHICH STORES THE DATA FOR THE RECORDED NISCHARGE HYDROGRAPH
c AT THE SECOND TRIAUTARY,

c ITR2 - NUMRER OF DATA POINTS FOR THE RYDROGRAPH AT THE SECOND TRIBUTARY,
[4 JT2 - POSITION OF THE INPUT UISCHARGE FROM THE SECOND TRIBUTARY,

< QINITY = INITIAL DISCHARGE FOR THE FLOW THROUGHOUT THE REACH,

[ QINB ~ BASE VALUE FOR THE LATERAL INFLOW,

4 UINA - AMPLITUDE OF THE FUNCTION FOR THE LATERAL INFLOW,

[+ TQIN - TIME WHEN THE LATERAL INFLOW TAKES 1T7S MAXIMUM vaLUE,

[ TSCAIN - TIME SCALE FOR THE LATERAL INFLOW FUNCTION.

4 anws = ARRAY MHICH STORES THE DATA FOR THE RECORDED DISCHARGE MHYDROGRAPN
C AT THFE ODNWNSTREAM END OF THE REACH,

4 IQDNS - NUMBER OF DATA POINTS FOR THE DOWNSTREAM HYDROGRAPH,

[ TPEVA = TIME 1N HOURS WHEN THE CALCULATIONS OF THE ERROR PARAMETERS ARE

[4 BEGUY,

[ TNTOUS - AVERAGE RECORDED DISCHARGE AFTER THE TIME TDEVN,

4 TNTD ~ AVERAGE PREDICTED DISCHARGE AFTER THE TINE THEVN,

c DISOIE - DIFFERENCE BFTWEEN THE AVERAGE RECORDED ANO PREDICTED DISCHARGES
[4 AS A PERCENTAGE OF THE RECORDED DISCHARGES.

C DEVN = ULTIMATELY RECORDS THE STANDARD DEVIATION OF THE PREDICTED

4 DISCHARGE AS A PERCENTAGE OF THE AVERAGE RECOROEN DISCHARGE,
c'tct'to'a'-Q..'.0.0'0.00'.boq'otott..‘"Otttcgottgtt..t.."'....t..'..a.

MASTER FLOODSA

REAL @1(50),02(50),x(Sn)

4

c
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COMMON DX, 0T, JX, DXLR,LEND/TH,J1, L1, L2, TITLE(40),
1471, 472,QTRIRI(200),ATRIB2¢(200),QHYDRO(C200),0TQHYORA,
2QINIT.QINB,QINA, TQIN,TSCQIN,AP,WSP,QCON,

4 QONS(2n0U),TDEVN

FIRST READ IN THE APPROPRIATE DATA AND WRITE IT OUT FOR EASY REFERENCE

CALL DATIN
NEXT CALCULATE VARIOUS CONSTANTS AND PARAMETERS FOR USE BELOW,

OX=DXLR/FLOAT(JIX-1)

DK=DX/WSP

EPSILONZD, 59 (1,0-0CONSAP*2.0/(DX#WSP«DXLR))
CC=DKe (1,0-EPSILON)enT#D, S
Clo(DK*EPSILON+DT0 S5y /C
C2=2(DT«0,5~DKeEPSTLANY/CC

C3a(DK+ (1, 0-EPSILON)-DT*3.5)/CC

Cé4=pTeDX/CC

JXMIsIX-1

720,0

THE FOLLOWING VARIABLES A®E ONLY USEBD WUHEN A RECORDED DOWNSTREAM
HYDROGRAPH [S AVAILABLE FOR COMPARISON, ALL SHCCEEDING
STATEMENTS BEGINNING IN COLUMN 13 REFER TO THIS CASE ONLY, AND
SHOULD NOT BE INCLUDED NTHERWISE,

DEVN=(D, 0
Yorpls =0,0
TOYD=) 0
QPY2QINIT
Qp2aQINIT
QDNP2=QINTT
QONP1=QINTT
JCOUNT=U
1COUNT=

OCEFINE X AND THE INITIAL VALUES OF Q@1 anp Q2
PO 2 ymi,Jx
X{J)=pX+fF OAY(4=1)
Qi¢y), @2¢d)=atNgT
CONTINVE

BEGIN THE MAIN TIME LOOP
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NG 14 L=t,LEND
TaTeD?
THaT/3600,0

Qp2s=ap1

QP1=Qi¢JX)

QDONP2=QDNP Y

QDNP1=QUN
QDNEFF(QONS+TH/DYQHYDRO)

¢ UPDATE THE VALUES FOR THE DISCHARGE

DO 4 Jsmi,yx
Q2¢Jrymai¢)

4 CONTINUE
C FIND THE VALUE NF Q1(1) FROM THE INPUT HYDROGRAPH AND ADD THE
< CONTRIBUTION FROM THE TRIBUTARY, IF ANY

Q1071=0,0
1FUJT1,EQ.1) QTOT=FF(QTRIBI,TH,DTANYDRD)
Q1C1)=FF(ONYDRO, TH,DTQHYDRO)+UTOTY

C THE MAIN CALCULATIONS ¢0R 04 ARF PERFORMED IN THE FOLLOWING LOOP

DO 6 J=2,4X
GTOT REFERS TO TME INFLOW DISCHARGE FRON TRIBUTARIES AND LATERAL
RUNOFF, UNDER SNOW-MELT CONDITIONS IT MAY BE PREFERABLE 7O TAKE
THE LATERAL INFLOW AS PROPORTIONAL TO THE DISCHARGE AT THE
UPSTREAM BOUNDARY
TX=(TH=TQIN)/TSCQIN
QTQTEQINACEXP(=TX#TX)+QINB
4 QT0T=01 (1) *CONST/DXLR
1F(J,EQ,JT1) QTOT=QTOT«FF(QTRIBY,TH,DTQRYDRO)/ DX
TF(J,EQ,JT2) QTOTRQTNT+FF(QTRIBZ,TH,DTQRHYDRO)/ DX
Q1¢J)IEC1+Q2(U=1)+C2eQ1(J-1)4(32Q2¢J)+CLeQT0T
6 CONTINUE

XX X1 Y

C PERFORM VARIOUS SUMS ON THE ERROR pARAMETERS

IFC(TH.LT,TDEVN) 6O TO A
DEVN=DEVN4(Q1(JX)=QDN) +(Q1(JX)=QON)
TCOUNTuICOUNT 1

JCOUNTRJCOUNTSY

TFCJCOUNT NE, 2) 60 TO 8
TOTD=TOTD+2,0+DTe (a1 ¢yX)9qPt+Qp2)/5.0
TOTDIS=TOTNIS+2.0»0T»(QDN+QDNP14QDNP2) /3,0
JCOUNT=O

C NOW WRITE QUT THE RESULTS = IF 1T IS TIME

8 TFCL,NE, L1oCL/LY)) GO TO 12
WRITEC3,301) (THXC(),Q1¢J) 081, JXMY 01D

301 FORMAT((20X,F6,2,9X,F8.1,8X,67.2))

10 WRITE(3,302) TH,X(JIX),@1(IX),QDN

362 FORMAT((20X,F6,2,9X,F8.1,2(8%,F?7,2)))
WRITE(3,303)

303 FORMAT(IH , /)
GO YO 146

12 TFCL,EQ.L2¢(L/L2)) GO TO 10

16 CONTINUE

€ FINALLY, WORK OUT THE ERROR PARAMETERS

TOTDISRTOTOIS/ ((TH=-TDEVN)#3600,0)
TOTO=TNTD/((TH=TDEVN)+3600.0)
BISDIFm(Y,0-TOTL/TOTDIS)*100,0
DEVNaSQRT(DEVN/FLOAT(I1COUNT))I»100,0/TOTDLS
WRITE(3:304) TOTOIS,DISDLIF,DEVN

304 FORMAT (34H AVERAGE RECORDEN DISCHARGE = ,¢?7.2,
1 oM CUMECS/
2 S6H DIFFERENCE BETWEEN RECORDED AND PREDICTED AVERAGE D.
3 11HISCHARGE » ,F6,2,%HX/
4 26M STANDARD DEVIATION & ,£6.2,VHX//)
STOP
END

c R R PR R R R R N Ry R e e e T R R R P R R PR R A SRS R LA R A A A A
SUBROUTINE DATIN

C TH1IS SURROUTINE READS IN THE RELEVANT DATA, WRITES IT QUT fOR EASY
[ REFERENCE, AND PROVIODES A HEADING POR THE RESULTS

COMMON DXsDT JX OXLR,LEND THeJY LY L2/ TITLE(ED),
1JT1,JT2,QTRIRTI(200),4TRIB2(200),QHYDROC200),0TQHYDRA,
20INIT,QINB,QINA, TQIN,TSCQIN,AP,WUSP,QCON,

4 QDNS(200),TOEVN

READ(1,100) (TITLECI),151,60)
100 FORMAT(10A8/6A8)
READ(41,101) JXsLEND,IOQH, TQONS/ITRY,TTR2,JT1,JT2,00,L4-L2
101 FORMATC(Y41IM)
READ(1,102) DXLR,DT,DTQHYDRO,4INIT,QINB,QINA,TQIN,TSCQIN,WSP, AP,
1QCON
2 +TDEVN
102 FORMAT(13E0N,0)

WRITE(3,300) (TITLE(L),1=1,40)
300 FORMAT(IM ,(15A8))
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[ WRITE(3,301) JX,LEND,IQH, TQNNS, ITRY, ITR2,JT4,JT2,J1,L1,1L2

€300 FORMAT - FOR WRITE STATEMENY

4 WRITE(3,302) DXLR.DT,DTANYDRO,QINIT, QINB,QINA,TAINR,TSCQRIN,WSP,AP,
[ 1QCON

[4 2 s TDEVH
€302 FORMAT = FOR WRITE STATEMENT

C READ IN THE DISCHARGE WYDROGRAPKS

READ(2,200) (QHYDPRO(I) ,1el,10H)
IFCITRYLNE, u) READ(2,200) C(QTRIBACI),1=24,1TRY)
TFCITR2,NE, OY READ(2,200) (QTRIB2(I),1e1,1TR2)
READ(2,200) (QDHS(1),1=1, {QDNS)
204 FORMAT(41X,FQ.2)
WRITE(3,306)
306 FORMAT(IN 29X, 4HTIME, 10X, BHNISTANCE.6X,1UNCALCULATED, 6%, 9HPROTATY
1PE/1H ,20%,5HCHRS) , 13X, 3H(M) ,9X,9HDISCHARGE ,6X,QHDISCHARGE/)
RETURK
END

c AR AR R A A R R NN R R Y EE R A L TR X F R A R R R R N R R R g o e e s L A ]
FUNCYION FE(Q.T,NT)
€ THIS FUNCTION [HTERPOLATES USING A CUBIC POLYNOMIAL
REAL Q(200)
LEINT(T/DT)+1
TECL,LE 1) Le2
FRIET/DT=-fLOAT(L-1)
As(Q(L*2)=3,%«(qQ(L*1)=Q(Y)=QCL=1))/6,¢
Ba(Q(L=1)=¢,0%2()+a(L+1))*0,5
Ca(=Q(L+2)1%6 D*0(L+1)<3,9+0(L)=2,02Q(L=1))/6.0
DeQ (L)
FF2((A®FR|+B)*FRI+C)wFOioeD
RETURN
Ent
FINISH

L R R R R R R T LR R R L Y T2 P RN Y 24

5.3 Variable parameter diffusion method

A Calculate parameters

i Derive curves for the speed, L/T,, and attenuation parameters as
described in Section 5.1.

ii  Construct the function é(Q) from the equation

) d (L :
= w+Q* IQ(F) (5.17)

where d(L/T,)/dQ is measured graphically from the curve for L/T, and ¢
is defined for each recorded flood using known values for Q*.

iii Digitalise the functions for ¢ and « at 10 m3 s~ ! or 20 m? s ! intervals.
iv. Set Ax = L/10, where L is the length of the reach, and define A¢ by

At = Ax/c,,, (5.18)

where ¢,,. is an average value for ¢ over the range of discharge anticipated
for the flood. Choose A7 as a convenient fraction of an hour.

B Prepare card data

The program listed below reads the data in the following order. Eight

cards containing the heading for the output from the program. Cards

containing 14 integers (free 1-format):

JX, LEND, KEND, IWSP, IQH, IQDNS, ITRI, ITR2, JT1, JT2, J1, L1, L2, NPAR.

These integers are all explained in Part B of 5.2, except for

KEND maximum number of iterations allowed in the solution of the non-
linear equations

1wsP  number of data points defining each of the functions of ¢ and «
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NPAR = 1 if the coefficients of the smoothed cubics through the data
points for ¢ and « are to be calculated
= 0 if the coefficients are to be read.

Cards containing 12 real numbers (free e-format)

DXLR, DT, EQ, DTQHYDRO, QERROR, QINIT, QINB, QINA, TQIN, TSCQIN, QCF,
TDEVN.

Again, these numbers are all explained in Part B of 5.2, except for

EQ interval between successive data points for ¢ and «
QERROR maximum error allowed in the iteration procedure
QCF cut-off discharge to simulate drainage off the flood plain and to

stabilise the finite difference solution technique.

Cards containing the data defining ¢ in free F-format and « in free e-format.

Again, the computer program below for the variable parameter diffusion
method is written in FORTRAN IV.

4 Qs - ARRAY FOR THE DISCHARGE ALONG THE REACH AT TME NEW TIME LEVEL,
4 a2 - ARRAY FOR THE DISCHARGE ALONG THE REACH AT THE OLD TIME LEVEL,
[ 134 ~ SPACE INCREMENT,

[4 DXLR - LENGTH OF THE REACH.

[4 X - NUMBER OF SPACE GRID PUINTS,

[4 x - ARRAY FOR THE DISTANCFS OF THE GRID POINTS ALONG THE CHANNEL,
4 nY - TIME INCREHENT,

4 LEND - NUMBER OF TINE STEPS.

c T - TIME TN SECONDS

4 TH ~ TIME 1N HNURS,

4 KEND = MAXIMNUM NUMRER 0F ITERATIONS ALLOWED

4 QFERROR - MAXTMUM ERRO4 ALLOWED IN THE NEWTON ITERATION PRNCESS,

c X - INCREMENT IN THE DISCHARGE BETWEEN SUCCESSIVE VALUES OF THE DATA
c FOR THE WAVE SPFED AND THE ATTENUATION PARAMETER,

4 TITLE - ARRAY WHICH STORES DATA FOR THE HEADING 0F THE ONTPUT,

¢ J1, LY AND L2 REFER T UWHEN AND HOW THE RESULTS ARE WRITTEN,

NTUHYURO  TIME INTERVAL IN HOURS GETWEEN THE DATA POINYS rOR THE INPUT AND
OTHER DISCHARGE HYDPROGRAPHS,

UHYDRO - ARRAY WHICH STORES THE DATA FOR THE RECORDED NISCHARGE HYDROGRAPH
AT THF UPSTRTAM SECTION,

10K - NUMBER OF DATA POINTS FOR THE UPSTREAM HYOROGRAPW,

UTRIBT - ARRAY WHICH STORES THE DATA FOR THE RECORDED 0ISCHARGE HYDROGRAPH
AT THE FIRST TRIRBUTARY,

1TRY ~ NUMBER OF DATA PNINTS FOR THE HYDROGRAPH AT THE FIRST TRIBUTARY.

JT1 - POSITIUN OF THE INPUT DISCHARGE FROM THE FIRST TRIBUTARY (0 OR 1)

QTRIB2 - ARRAY WHICH STORES THE DATA FOR THE RECORDED NISCHARGE HYDROGRAPH
AT THF SECUND TRIBUTARY,

1TR2 ~ NUMBER OF DATA POINTS FOR THE NYDROGRAPH AT THE SECOND TRIBUTARY,
Jy2 - POSITION OF THE INPUT DISCHARGE FROM THE SECOND TRIBUTARY (0 OR JX)
OINIT = INITLAL DISCHARGE FOR VHE FLOW THROUGHOUT THE REACNM,

HiNg - RBASE VALUE FOR THE LATERAL INFLOW,

QINA - AMPLITUDE UF THE FUNCTION FOR THE LATERAL INFLOUV,

TQIN - TIME WHEN THE LATERAL INFLOW TAKES ITS MAXIMUM VALUE,

TSCAIN = TIME SCALE FOR THE LATERAL INFLOU FUNCTION,

Qe « CUT-NEF DISCHARGE FOR DRAINAGE OFF THE FLOOD PLAIN TO RE INCLUDED.
INDIC - AN INDICATU®R WHICH IS O WMEN THE OISCHARGE AT A SECTION 1S BELOW

BANK-FULL AND INCREASING, AND 1 WHEN THE DISCHARGE HAS PREVIOUSLY
EXCEEDED BRANK=FULL AMD YET 1§ BELOW BANK-FULL AND DECREASING,

QNS -~ ARRAY WHICH STORES THE DATA FOR THE RECORDED NDISAHARGE HYDROGRAPH
AT THE DOWNSTREAM END 0F THE REACH.

[QDONS ~ NUMA:ER OF DATA POINTS FOR THE DOWNSTREAM HYDROGRAPM,

TPDEVN = TIME TN HOURS WHMEN THE CALCULATIONS OF THE ERROR PARAMETERS ARE
BEGUN,

TATNIS - AVERAGE RECORDEN OISCHARGE AFTER THE TIME TDPEVN,

T0T0 - AVERAGE PREDICTYED DISCHARGE AFTER THE TIME TBEVN,

DISNIF - DIFFERENCE AFTUEEN THE AVERAGE RECORDED AND PREDICTED DISCHARGES
AS A DERCENTAGE OF THE RECORDED DISCHARGES.

DEVN - ULTIMATELY HECURDS THE STANDARD DEVIATION OF THE PREpICTED
DISCHARGE AS A PERCENTAGE OF THE AVERAGE RECARDED DISCHARGE,
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C THIS PRCGRAM SOLVES A GENERALISED CONVECTION=DIFFUSION EQUATION FOR
[4 FLOOD ROUTING (VARIABLE PARAMETER DIFFUSION METKOD)

REAL p1(50),p2(50),81(50),82¢50),83(50),R(50),8B(50),RR(50)
COMMCN DX DT,JX,LEND,DXLR,KEND, THsdq,L1,L2,QERROR, TITLE(60)
1,EQ.JTY,JT2,0TRIBY(200),0TRIR2(200),aHYDROC200),DTQHYDRO,
2QINIT,QINB,QINA,TSCOIN,TOIN,RCF,CCP,ACF,INDIC(50),Q1(50),Q2¢(50),
3APCICH) ,WSP(100) ,COEFAP(3.,30),COEFWS(3,30).,x(50)

4 +TDEVN,QDNS(200)

€ FIRST READ IN THE RELEVANT DATA AND PRINT 1T OUY FOR EASY REFERENCE

CALL DATIN
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Variable parameter diffusion method 5.3

€ LFFINE VARIOUS (ONSTANTS HSED DURING THE CALCULATINNS

JxMieg =i

JAMZ=Yx=2

DXEOXLR/ CIX=1)

dTX=9,25+nT/nX

DXSQ=0.5"nT/ (0X*nX)

QIXZQINTT

uB=QLF

12Q8/(ER+3) +4
CCF3(CUEFWS(3,1)¢QBaCNEFUS(2,1))eQB+COEFNS(1,1)
ACFaDXSQs((CNEFAR(3,1)+QR+COEFAP(2,1))+QB+COEFAP(Y,]))

C STATEMENTS BEGINNING IN COLUMN 13 ARE CONCERNED WITH THE CALCULATION
c OF THE ERROR PARAMETERG DEVN, TOTOIg AND OlgDIF

70701520,0
DEVNED, O
10t0=5,0
QP1=QINITY
QP2=QINIT
QONPI=0RINTY
QDNP2=QINTY
JCOUNT=U
1CounTed

C MNeXT, GENERATE THE INITIAL VALUFS OF Q1, Q2, X AND INDIC,

PO 2 ysi,4x
X(J)=snxe(J="
INDICKCYYaO
Q1¢d),; Q2¢I)=QINIT

2 CONTINUE

C BEGIN THE MAIN TIME LOOP

70,0

PO 32 L=1,LEND
TaT+pT
TRaT/360) 0

€ EVALUATE THE PROTOTYPE DISCNARGE AT THE DOWNSTREAM BOUNDARY

Qp2=ap1

Qpt=0Jx

QDNP2=0DONPY

QONPiIzQDN
QONZFF(QDNS/TH,DTQHYDRO)

€ LPDATE €1, Q2 AND INDIC

DO 4 y=1,4X
Qe=Q2¢4)
TFEQ1(J),6T.aCF) INDPIC(JY=1
Q2¢areQ1 ()
Q1 ¢y)=2,deQ1(y)-00
4 CORTINUE

C FEFINE THE ARRAYS P1 AND P2 T0 STORE FUNCTIONS FOR USE IN LOOP 14

PO 6 Js2,JxXM1
P1(J)ImQ2(J*1)=Q2(J=1)
P2(U)I=Q2(4*1)=2,00Q2(J)*+02(J=1)

TF(PI(II, LE. Q) INDIC(J)=0

é CONTINUE

CALCULATE THE UPSTREAM VALUE FOR Q1, INCLUDE THE DISCHARGE FROM THE
TRIBLTARY, |F THERE 1S ONE

o0

Q1071=0.0
1FCJT1,EC.1) QTOTAFF(QTRIBI,TH,DTAKYDRO)
Q1) EFF(QNYNRO, TH, DTAHYDROY+QTOT

C CALCULATE TWE NFW VALUE FOR THE DISCHARGE AT THE DOWNSTREAM BOUNDARY
c 1IN THE MODEL

CALL QDOWN

KOW FIND THE VALUES FOR TWE REST OF THE ARRAY Q%

LSE THE NEWTON ITERATION PROCESS TO SOLVE THE NON=LINEAR SIMULTANEQOUS
EQUATEIONS

ocoon

00 22 K=1,KEND
00 14 J=2,4xM1
0QP=QT (J+1)=01(J~1)epi(J)
QQ=0,5%(Q1¢J)eQ2¢J))
TFCINDICCJ)Y, Q,1) GO TO 40
4 eB=qq
1208/ (EQeR) 1
Ca(COEFWS(3,1)%QReCOEFWS(2,1))QB4COEFWS(1 )
0Ce2, 0eCOEFWS(3,1)%aBeCOEFWS(2, 1)
ACXSQaDXSA®((CUEFAP(3,1)+QBeCOEFAP(2,1))+QB+COEFAP(Y, 1))
DADXSQaDXSQA*(2,0+COFFAP(3,1)+QBoCOEFAP(2,1))
GO T6 12
10 1F(Q2¢(J),GT,0CF) GO 10 8
CsCCF
ADXSQeACF
PC,DADXSQmY, 0
12 ONAPEQI(J+1)=2,0%Q1(J)+Q1(J=1)ap2(J)
C PUT IN AN ARTIFICIAL FUNCTION FOR THE LATERAL INFLNW,
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1P A SNOW=MELT FLOOD 18 REING SIMULATED IT MaY BE PREFERABLE
TO DEFINE QTNT AS SOHE CONSTANT TIMES Q1(1)
TXR{THe»TQIN) /TESCQIN
QYOTHQINACEXP(®TX*TX)eQINB
D1wDQPeOTXQTOTHDY
RCJI=QICIIPQ2(J) oDV aCnOQeADXSQ*NDQP
81(J)esmDTXeC-ADXSC*0C
B82(¢J)®1,0eDCu0,5¢D1~DADXSQ®0.5%Q04N0OQPADXEQe (0,5¢0DQP~AR2,0)
BI(J)mDYXeC=ADXSQ GO
CONTINUVE
81¢2), B3¢JXi1) = 0.0

AUSSIAN BLIMINATION PROCEDURE AVOIDS THE USE OF EXCESSIVE STORAGE
IN THE COMPUTER

88(2)002(2)
RR(2)=R(2)

DO 16 Jm3,J XM
BR(J)RB2(JImRS(J=1)eR1(J)/BB(Y=1)
RR(IIRRCIInRR(J=1)eB1(J)/BB(J1)

CONTINVE

DAsRR(JIXM1)/RBCIXMYY
QIEIXMI) »QI (Y XM1) =D
DaMRABS (DQ)
JamJyxMl
00 20 Jy=3,Jxmi
JalXadJiet
DAR(RR(J)~B3(J)eDQ)/BR(J)
TF(ADS(DQ) . LE.DQM) GO T0 18
DaMRARS (DQ)
Jamy
Q1(J)=Q1¢y)=nQ
CONTINUE

TINUE THE ITERATION UNLESS THE ACCURACY CONDITION IS SATISFIED,
OR THERE HKAVE BEEN TOO ttaNY ITERATIONS

1R(DOM,LE,QERROR) GO TO 24

CONTINUVE

WRITE(S,300) J@Q,0QM

FORMAT(20M TOO MANY TTERATIONS,SX 1SHVALUE OF J = ,13/
44H MAXIMUM VALUE OfF THE DISCHARGE INCREMENY & ,§7.4/)

CONTINUE

INE QJX AS THE TOTAL DISCHARGE AT TME DOWNSTYREAM BOUNDARY,
INCLUDING A TRIAUTARY I1F THERE IS ONE

QYQTn0.0
TFCIT2,BQ,.JX) QTOTmFF(QTRIB2.TH,NTAKHYDRO)
QIXRQI (JX)*QTOT

CULAYE VARIOUS gRROR PARAMETERS

JFCTH, LT, TDEVN) GO TO 26
DEVNEDEVN(QJIX=QDN) ®(QJX»QDN)
T1COUNTRICOUNT S

JCOUNTaJCOUNT 1

TFCJCOUNT NE.2) GO TO 26
T0TDISTOTDIS+2,000T*(QDN«QDNP10QDNP2) /3,0
TOTDETOTD+2.0¢DTe(QIXeQPT4QP2) /3,0
JCOUNT=O

TE OUT THE RESULTS = If IT 18 TIME

IPCLNE, L1e(L/LY)) GO 10 30

WATTE(S,301) (TH,X(J)eQ1CJ),IR1,0X,01)

FORMAT((20X,56,2,9X,88,1,8X,87.2))

WRITA(3,302) TH,X(JX),0JX:QON

FORMAT( (20X, F6,2,9X,F8.1,2(8X1F7.2)))

WRITE(3,303)

FORMAT (1M /)

G0 10 32

TFCL,BQ, L20(L/L2)) Q0 YO 28

CORTINUVE
TOTDISeTOTDIS/ ((TYKaTDEVN)*3600,0)
TOTDmTOTD/ ((THaTDEVN)«3600.0)
DPISDIFm(1, 0°TOTD/TOYD18)«100.0
DEVNeSQRY(DEVH/FLOAT(ICOUNY))«100,0/7070IS
WRITE(3,304) TOTDIS,DISDIF,DEVN

FORMAT (34K AVERAGE RECORDED DISCHARGE e ,F7.2,
oH CUMECS/
S6n DIFFERENCE BETWEEN RECORDED AND PREDICTED AVERAGE Dy
T1MISCHARGE = ,F6,2,1HX/
26K STANDARD DEVIATION = ,f6,2,1HX//)
sYOP
END

L L T T T R PR L R R S A L
SUBROUTINE DATIN

9 BUBROUYINE READS IN THE RELEVANT DATA, WRITES 1T OUT SOR EASY
REFERENCE, AND CALCULATES THE COEFFICIENTS, COEFAP AND COEPUS,

DEFINING THE CURVES FOR THE ATTENUATION PARAMETERs AP, AND THE

WAVE SPERD, W8P,

REAL QX(10) ,WX(10) ,APX(40),COBF(S)
COMMON DX DY, JX,LEND,OXLR,KENO, TH,J1,L1,L2,QERROR,TITLE (40)
(RQ,4TY,JT2,0TR]IBI(200),0TRIB2(200),QHYDRAC200),0TAHYDRO,



Variable parameter diffusion method

2QiNIT,QINB,QINA,TSCQIN,TQIN,QCP,CC
3AP(100) ,WSP(100) (COEFAP(3.,30) COEF
4 +TDEVN,QDNS(200)

F,ACF, INDICCS0),Q1¢50),Q2¢%0),
WS(3,30).,X¢(50

READ(1,100) (TITLE(CI) /1=1,60)
100 FORMAT(10AR/SA8)
READC1,101) JX/LEND,KEND, IWSP,JQH TTRI TTR2,0T4,4T2,J7.L1.L2,NPAR
1 ,1QDNS
101 FORMAT(1410)
READ(1,102) BXLR,DT,EQ,NYOHYNRO,OERROR . QINIT,QINB,QINA, TQIN, ySCQIN
1,0CF
2 JTDEVN
102 FORMAT(12E0.0)

€ WRITE OUT THE DATA USED IN RUNNING THE PROGRAM

WRITE(3,300) (TITLE(D),I=1,60)
300 FORMAT(IN ,(15A8))

4 WRITEC(3,301) JX,LEND,KEND,IWSP, TQN, ITRY, 1TR2,JT1.,472,J4,L1/L2,NPAR
[4 1 +1QDNS
€ INSERT AN APPRUPRIATE FORMAT STATEMENT 301
4 WRITE(3,302) PXLR,DT,EQ,DTQHYDRO,QERROR,QINIT,QINB,QINA,TQIN,
[ 1TSCQIN,QCF
4 2 1 TDEVN
C INSERY AN APPROIPRIATE FORMAY STATEMENY 302
C NEXT, EITHER READ IN THE DATA FOR THE WAVE SPEED AND ATTENUATION
4 PARAMETERS TO CALCULATE THE COEFFICIENTS FOR THE SMOOTHgD
4 QUADRATIC CURVES OR READ IN THE COEFFICIENTS,
IWSPDIDIYSP/3

LF(NPAR,EQ, D) Gn TO 10
READ(1,103) (MSp(I1).,1=q,1WSP)
103 FORMAT(14F5.3)
READ(1,104) (AP(I).Im1,1UsSP)
104  FORMAT(8E0,0)
WRITE(3,303) EQ,(WSP(l),1e1,1Wsp)
303 FORMAT(YH 25X, 27HMDATA FOR THE WAVE SPEED AY »F3.0,16H CUMEC INTER
TVALS/(IH ,10(¢1PEB,2,3X)))
WRITE(3,304)
304 FORMATCAH ,//)
WRITE(3,305) EQ,(AP(I) . 1w, 1WSP)
305 FORMAT({H ,20X,38HDATA FOR THE ATTENUATION PARAMETER AT .F3.0,%4M
1CUMEC INTERVALS/CIH ,10(4PEBS.2,3X)))

C THE FOLLOWING PROCEDURE SMOOTHS THE DATA FOR THE SPEED AND ATTENUATION
[ PARAVETERS, THIS IS DONE BY FITTING A QUADRATIC CURVE THROUGH &
< NEIGHBOURING PUINTS,

D0 8 1s1,1WspD3
PO 2 m=i,4
13=3e(|=1)eM
AX(M)mEQe(13-1)
WXCM)BUSP(I3)
APX(MY=AP (13) /DX LR
2 CONTINUE
CALL FIT(QX,uX,COEF)
60 4 Jui,3
COEFWS(J, [)=COEF (J)
4 CONTINVE
CALL FIT(QX,aPX,COEF)
80 6 Jys=9,3
COEFAP(J, 1)®COEF(J)
CONTINVE
CONTINVE

oo

C WRITE OQUT THE CNEFFICIENTS T0 A CARD PILE OR TO THE LINE PPINTER
4 (CHANQE THE CHANNEL NUMBER IN THE LATTER CASE)

WRITE(L,400) C(COEFUSCJ,1),COEPAP(J,1),Jul1,3)s1a1,1USPDY)
GO To 12

in PAUSE (RP)
READ(1,400) ((COEFWS(J,1),COEFAP(J,1),Jut,3),1w1,1uspD3)
400 FORMAT(6E12,6)

C READ IN THE DISCHARGE UYDROGRAPHS AT THE UPSTREAM AND DOWNSTREAM ENDS
4 OF THE REACH: TOGETHER WITH THE HYDROGRAPKS FOR THE TWn
4 TRIBUTARIES

12 READ(2,200) (QHYDRO(I),1s1,1Q4)
IFCITRI, NE,0) READ(2,200) (QTRIBY(IY,lwq,ITRY)
TeCITR2Z,NE,O) READ(2,200) (QTR3A2(1Y,131,1TR2)
READ(2,200) (QDNS(1),1w1,1QDNS)
200 FORMAT(41X,F9,2)

¢ WRITE THME HEADINGS FOR THE OUTPUT DATA PROM THE CALCULATIONS

WRITE(3,306)
306 FORMAT(4N 29X, 4HTIME 10X, BHDISTANCE ,6X, TUNCALCULATED . 6X.ONPROTATY
1PE/ AN 120X, SHCHRS) (13X, 3H(M),9X,0HDISCHARGE, 6X,OHDISCHARGE)
RETURN
END
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SUBROUTINE QDOWN

€ THMIS SUBROUTINE CALCULATES THE DISCHARGE AT THE OOUNSTREAM BOUNODARY
4 IN THE MODEL
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DIMENSION XX(10),ax(10),CO0EFQ(5)

COMMCN OX,DT,JX,LENND,DXLR/KEND,TH J1,L1,L2,QERROR/TITLE(60)
1,EQ,JT1,JT2,0TRIB1(200),QTRIR2(200),QHYDRO(200),dTQHYDRN,
2QINIT,QINB,2INA, TSCQIN, TQIN,QCF,CCF,ACF,INDIC(S0),Q1¢50),Q2(50),
3APC100),WSP(100) ,COEFAP(3,30)COEPWS(3,30),X(50)

4 +TDEVN,QONS(230)

C FIRST FIT A QUANRRATIC THRQOUGH THE LAST FOUR POINTS AT THE OLD TIME
¢ LEVEL

JAMYI=yX-1

JXM2=)Xa2

COEFQ(1)=Q2(JX)
CCEFQU2)20.5+(4,0°Q2(¢JIXM1I=Q2(JIXMI=3,0"Q2¢(JX)?
COEFQ(3)=0.5+(RQ2(JXM2)=2,0%Q2(JXM1)+Q2(JIX))

C NOW ITERATE 710 fIND THE CORRECT VALUE 0f Q2 AT THE FOOT OF THE
4 CHARACTERISTIC, THE WEGSTEIN ITERATION PROCEDURE IS USED HERE

DELTX20,0
QpsQ2(JXx)
QBM2=2Qp
Qe=Gp

00 12 K=1,KEND
DOPma(COEFQ(2)+2 . 0*DELTX+CORFQ(3))
TFCDQP,LY,0.0) INDIC(IX)=0
TFCINDICCIX) EQ. 1) GO YO 4
2 acC=ag
13QB/ (EQ*3)+1
CCu(COEFNS(3,1)«QC+COEFWS(2/1))¢QC*COEFWS(T, 1)

GO T¢ 6
4 1F(QB,GT,QCF)Y GO To 2
QC=QCF
CC=CCF
é DELTX=CC+DT/DX

QeCOEFQ(1I*DELTX«(CNEFQ(2)*DELTXCOEFQ(3))
1F(ABS(Q=QP) LE,LQERROR) GO TO 14
TF(K,EQ,1) Go To 8
IFC(K, LT, KEND) GO TO 10
WRITE(3,300)

300 FORMAT(4SH ERROR IN QDOWN)
$TOP
8 QB=Q

aBMI=Q

QP=Q
60 16 12

10 QB=Q~-(Q-QP)+(Q-Q8M1)/(0-qP-QBMI+QBM2)

QBM2=2Q8M1Y

QeM1=Q8

Qp=Q

12 CONTINUE

C FINALLY, CALCULATE THE NEW NOWNSTREAM VALUE FOR Q@ (@)

14 TXT(TH=TQIN)/TSCCQIN
QQ=QINA*EXP(=TX*TX)«QINR

TFCINDICCUX)Y VU,0.16
AOX®((COEFAP(3,1)9QC+COEFAP(2,1))eQC+COEFAPC1,1))/(DX+DX)

GO T¢ 18

ADXEACF*2/0T

A=2,0+COEFQ(3)

Q1(JX)BQe(LCeQQeQeADXOA) DT

RETURN

END

-
>
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FUNCTION FF(Q/T7,0T)

C THIS FUNCTYION FUTS A CUBIC SPLINE THROUGH THE FOUR DATA POINTS IN THE
¢ NEIGHBOURHNGND OF THE POINT AT WHICH THE DEPENDENT VARIAALE 1Is
[4 REQUIRED

REAL Q(200)
LRINTCT/DT) Y

TF(L,LE, 1) Lm2
FRIZT/DT=FLOAT(L=-1)
AR(Q(L+2)=3.0w(Q(L*1)=Q(L))=a(Ll=1))/6,0
Be(Q(L=1)=2,0eQ()eq(L+1))%0 5
Ca(=QL+2)46.0*Q(L+1)=3,0¢u()~2,0¢Q(L"1))/6.0
D2Q (L)

FFRC(A®FRI*BI*FRI*C)¢FRID

RETURN

END

C ttc et vttt totes st ?battiintanetrattdtatoaartandnattasotstatsostdostRanveethosde
SUGRCUTINE FIT(X.Y,E)

THIS SUBROUTINE FITS A QUAOBRATIC CURVE THROUGH FOUR POINTS USING THE
LEAST SQUARES PROCEDURE.

[ Xal

(L)Y (6) ,E(4LY
(4)sBCAY,CC4),DCA)

C118(X(2)=X(6)) e (X(2)aX(1))
C21m(X(3)=X{4)) e (X(3)aX(1))
C1=1,

€2=C11+¢214
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{3=1,
B1=X(4)
B2=X(2)«C11+X(3)+C21
B3=X(1)
A1=X(4)*X (&)
A28X(2)*X(2)*C11eX(3)eX(3)%C24
AZeX(1)ex(1)
D1=Y(4)
D2oY(2)+C11+Y(3)eC21
93=Y(1)
32282=81+42/ A1
C2=2C02-C1+22/A14
02=02-01+42/ A0
83=83%81vA58/A1
C3=C3=C1+43/a1~C2+83/82
03=2D3=p1+A3/A1~p2¢B3/82
EC1)=03/(C3
E(2)=(p2-Cc24E(1)) /B2
EC3)2(D1=-R1%E(2)=CleE(1)) /AN

RETURN

END

FINIGH
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