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Notation   

A   wetted   cross-sectional   area   
part   of   the   diffusion   coefficient   in   the   convection—diffusion   
equation   

b   subscript    denoting   a   bankfull   value   
Ci,C2,C3,C4    parameters    used   in   the   finite    difference    Muskingum    

equation   
c   convection    speed   
c   subscript    denoting   a   variable   for   the   channel   
cave   average   value   of   e   over   a   range   of   values   for   Q   
F(T,x)   Q(t,x)    
f   subscript    denoting   a   variable   for   the   flood   plain   

functions   defining   the   theoretical   curves   for   a   and   Q   
G   function    used   to   simplify   analysis   
g   acceleration    due   to   gravity   
J   space    label   of   downstream   boundary   
J'   space   label   of   foot   of   characteristic    curve   used   in   the   

downstream   boundary   condition   
j   subscript    denoting   a   finite   difference   variable   evaluated   at   

the   jth   space   node   
K   storage    constant   in   the   Muskingum   method   
L   length    of   reach   
M   number    of   subreaches   in   the   calculation   of   a   
m   subscript    denoting   a   variable   for   the   mth   subreach   
max   subscript    denoting   a   maximum   value   for   the   variable   
min   subscript    denoting   a   minimum   value   for   the   variable   
N   half    the   number    of   time   steps   in   each   finite   difference    

method   
n   Manning    roughness   coefficient   
n   superscript    denoting   a   finite   difference   variable   evaluated   

at   the   nth   time   node   
p   subscript    denoting   a   peak   value   for   the   variable   

parameter   used   in   the   elementary   flood   wave   solution   for   
the   linear   convection—diffusion   equation   

Q   discharge    

Q.   finite   difference   average   discharge   
Qamp   amplitude   of   variable   part   of   synthetic   hydrograph   
Qbase   base   flow   for   synthetic   hydrograph   
Q1   inflow   discharge   to   reach   

outflow   discharge   from   reach   
Q*   attenuation   of   peak   discharge   
Q.   cut-off   discharge   for   drainage   off   the   flood   plain   

lateral   inflow   per   unit   length   
q*   lateral   inflow   per   unit   length   from   the   flood   plain   to   the   

channel   
qamp   amplitude    of   lateral   inflow   function   
qr   parameter    used   in   the   elementary   flood   wave   solution   for   

the   linear   convection—diffusion   equation   
R   hydraulic    radius   
S   storage    in   a   reach   of   river   
s   bottom    slope   of   channel   
sir   friction   slope   
T   time    scale   
Tp   recorded    time-of-travel   of   peak   
7;0,   total    time   to   simulate   flood   



time   
time-to-peak   of   hydrograph   

uq   downstream    velocity   component   of   lateral   inflow   
X   length   scale   

x   distance    from   upstream   section   of   reach   
y   depth    
1,2   subscripts    denoting   first   and   second   order   solutions   of   the   

convection—diffusion   equation.   
The   superposition    of   a   bar   denotes   either   a   scale   for   the   variable   or   the   
mean   value   along   the   reach.   

Greek   symbols   

a   attenuation    parameter   
/3   parameter    used   in   the   synthetic   hydrograph   

parameter   used   in   the   elementary   flood   wave   solution   for   
the   linear   convection—diffusion   equation   

At   finite    difference   time   increment   
Ax   finite    difference   space   increment   

parameter   in   the   Muskingum   method   
0   a   contribution   to   the   convection   speed   from   the   flow   along   

the   flood   plain   
parameter   used   in   the   calculation   of   the   speed—discharge    
curve   

A   ratio   of   inundated    width   of   flood   plain   and   channel   to   
width   of   channel   

li   diffusion   coefficient   
Q   sinuosity    of   channel   with   respect   to   flood   plain   

characteristic   time   variable   
w   •   convection   speed.   



1   Choice   of   a   flood   routing   method   

1.1   Introduction   

The   prediction   of   a   design   flood   hydrograph   at   a   particular   site   on   a   river   
may   be   based   on   the   derivation   of   a   discharge   or   stage   hydrograph   at   an   
upstream   section,   together   with   a   method   to   route   this   hydrograph   along   
the   rest   of   the   river.   In   order   to   limit   this   investigation   to   cases   where   the   
assumptions   like   uniform   rainfall   may   be   reasonably   valid,   the   derivation   
of   unit   hydrographs   has   been   limited   to   catchments   with   an   area   less   than   
500   km2.   Consequently,    flood   routing   methods   provide   a   useful   tool   for   
the   analysis   of   flooding   in   all   but   the   smaller   catchments,    particularly    
where   the   shape   of   the   hydrograph   as   well   as   the   peak   value   is   required.   
The   volume   concentrates    on   an   examination    of   various   flood   routing   
methods   to   determine   which   method   or   methods   is   most   suitable   for   use   
in   British   rivers.   It   is   therefore   assumed   that   a   discharge   hydrograph   at   an   
upstream    section   of   a   particular    river   is   available    from   records    at   a   
gauging   station,   or   has   been   derived   using   the   hydrological    methods    
described   in   Volume   I,   and   that   information    is   required   about   how   the   
flood   defined   by   this   discharge   hydrograph   affects   discharges   at   one   or   
several   sections   downstream.    As   will   become   apparent,   this   problem   is   
basically   one   of   open   channel   hydraulics.   

1.2   Flood   routing   methods   

The   importance   of   being   able   to   route   floods   accurately   is   also   reflected   
in   the   large   number   of   flood   routing   methods   which   have   been   developed   
since   the   year   1900.   These   methods   can   readily   be   sorted   into   three   groups:   
a   hydrological   or   storage   methods;   
b   those   methods   based   on   a   convection-diffusion    equation;   and   
c   methods   using   a   numerical   solution   of   the   full   Saint—Venant   equations   
for   gradually   varying   flow   in   open   channels.   

The   methods   in   group   a   are   the   most   numerous,   and,   in   general,   the   
most   simple   of   all   flood   routing   methods.   They   are   termed   'hydrological   
methods'   because   they   concentrate   on   the   concept   of   storage   for   the   flood   
water   and   do   not   directly   include   the   effects   of   resistance   to   the   flow.   So   
the   routing   of   a   flood   by   a   hydrological   method   in   a   given   reach   of   river   
is   based   on   the   continuity   equation   which   equates   the   rate   of   change   of   the   
storage,   dS/dt,   in   the   reach   to   the   difference   between   the   inflow,   Q1,   at   the   
upstream   section   and   the   outflow,   Q0,   at   the   downstream   section:   

dS   
=

dt   
Q1-Q0.    ( l.1)   

The   method   then   recommends   a   second,   algebraic   relationship   between   the   
storage   and   both   the   inflow   and   the   outflow.   This   enables   a   solution   to   be   
found   for   the   outflow   when   the   inflow   is   given.   One   of   the   most   popular   
and   satisfactory   methods   of   this   type   is   known   as   the   Muskingum   method,   
which   was   originated   by   McCarthy   (1938).   The   method   uses   the   linear   
algebraic   relationship:   

S   =   K[eQi+   (1   —   e)Q0]   (1.2)    

where   K   is   termed   the   storage   parameter,   and   e   relates   the   relative   impor-
tance   of   the   inflow   and   the   outflow.   The   actual   values   for   the   two   para-
meters   have   to   be   determined   from   the   channel   characteristics   under   study.   
A   variety   of   graphical   and   step-by-step    techniques    has   been   suggested   

1   



Choice    of   a   flood   routing    method    

for   the   Muskingum   and   similar   storage   routing   methods;   see   Chow   (1959,   
p.   609).   

One   of   the   disadvantages    with   the   hydrological    methods   is   that   they   
assume   a   unique   relationship   between   the   stage   and   the   discharge   along   
the   reach.   This   is   contrary   to   observations    of   natural   floods   which   show   
that   the   discharge   for   a   particular   stage   when   the   flood   level   is   increasing   
is   larger   than   the   discharge    for   the   same   stage   when   the   flood   level   is   
decreasing.    This   phenomenon    can   be   displayed    graphically    in   the   well-
known   loop   rating   curve   (Figure   1.1).   Directly   related   to   this   non-unique-
ness   in   the   stage—discharge    relationship   for   the   reach   is   the   attenuation   of   

Uniform   flow   rating   curve   

a)   

U)   

Fig   1.1   Loop   rating   curve.    Discharge   

tHenderson    (1966,   p.   285)   gives   a   
succinct   derivation    of   Equations    1.3   
and   1.4,   but   note   that   Henderson    
writes   the   equations    in   terms   of   the   
stage   and   velocity   rather   than   the   
cross-sectional    area   and   the   discharge   
as   here.   

the   peak   discharge    along   the   reach.   Because    the   Muskingum    method   
predicts   such   an   attenuation    it   is   not   immediately    apparent   how   this   can   
be   reconciled   with   the   assumption    of   a   unique   stage—discharge    relation-
ship.   So,   engineers    turned   to   the   equation    expressing    the   principle    of   
conservation    of   momentum.    This   equation,    often   called   the   dynamic    
equation,    includes    the   effect   of   resistance    to   the   flow   and   replaces    the   
algebraic   relationships    such   as   Equation   1.2.   The   continuity   and   dynamic   
equations    can   be   written   in   the   formt   

dA   ac,   
=   q   

or   ax    

aQ   
+   

a   2   Oy   
Tt   =   

Here,   A   is   the   wetted   cross-sectional   area   at   a   distance   x   from   the   upstream   
section   of   the   reach,   Q   is   the   discharge,   q   is   the   lateral   inflow   per   unit   
length,   g   is   the   acceleration    due   to   gravity,   s   is   the   bottom   slope   of   the   
channel,   ay/ax   is   the   slope   of   the   water   surface    defined   relative   to   the   
bottom   of   the   channel,   s„   is   the   friction   slope,   and   vc,   is   the   downstream    
component    of   velocity   along   the   channel   for   the   lateral   inflow.   Equations    
1.3   and   1.4   are   usually   referred   to   as   the   Saint—Venant    equations    for   
gradually   varying   flow   in   open   channels.   

As   Equation   1.4   stands,   it   is   too   complicated    to   solve   analytically    for   
an   arbitrary    flood   in   a   natural   river.   Fortunately    however,    some   of   the   
terms   in   the   equation    are   usually    sufficiently    small   that   they   can   be   
neglected.   Because   of   this   Lighthill   &   Whitham   (1955)   were   able   to   show   
that   flood   propagation    can   be   described   in   terms   of   kinematic   rather   than   
dynamic   waves.   Here   a   kinematic    wave   is   a   wave   which   has   a   constant   
amplitude   and   which   possesses   only   one   velocity   at   each   point   of   the   wave,   
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Flood   routing   methods   1.2    

in   contrast   to   a   dynamic   wave   which   has   at   least   two   velocities.   By   treating   
a   flood   as   a   kinematic   wave   to   the   first   approximation,    and   by   including   
modifications    to   this   wave   due   to   the   diffusion    induced   by   the   water   
surface   slope,   ay/ax,   Lighthill   &   Whitham   outlined   a   new   flood   routing   
method   which   they   termed   the   kinematic   wave   method.   In   effect,   their   
method   is   based   on   a   convection-diffusion    equation,   such   as   

ay,   ay    a2),   
+   GO   —   =   /1   —   (1.5)   ()t   ax   2   

which   is   written   in   the   characteristic   form   

di'   2v    

dt =   P   x   

with   the   characteristic   curve   given   by   

dx   —   =   w.   
dt   

For   simplicity,   w   and   p   are   usually   regarded   as   constant   parameters.   It   is   
the   diffusion   term   which   introduces   an   attenuation   of   the   peak   stage   along   
the   reach.   

Because   of   its   basic   equation,   the   kinematic   wave   method   belongs   to   
group   b   above.   However,   it   was   Hayami   (1951)   who   first   produced   a   flood   
routing   method   based   on   a   linear   convection-diffusion   equation.   He   argued   
that   floods   in   natural   river   channels   are   affected   by   the   irregularities    in   
the   channel   geometry.   To   include   the   effect   of   these   irregularities   Hayami   
proposed   the   linear   convection-diffusion    equation   with   an   arbitrary   value   
for   p.   Because   he   knew   of   no   way   to   calculate   this   value   of   ji   directly   from   
the   channel   geometry,   Hayami   suggested   that   p   should   be   determined   by   a   
trial-and-error    comparison    of   results   using   his   method   with   records   of   
previous   floods   in   the   river   under   study.   Once   the   value   of   the   diffusion   
coefficient    is   known,   and   the   parameter    w   is   defined   as   the   speed   of   a   
flood   peak,   Hayami's   diffusion   method   gives   good   agreement   with   natural   
floods   which   have   similar   peak   discharges.   The   uncertainty   in   the   value   of   
p   remains   however   as   a   major   disadvantage   with   the   diffusion   method.   

As   explained   by   Hayami,   the   irregularities    in   the   width   of   the   river   
define,   in   effect,   a   series   of   reservoirs   which   increase   the   storage   capacity   
of   the   river.   This   phenomenon   is   accentuated   when   the   flood   water   flows   
out   over   an   associated   flood   plain.   Because   the   diffusion   method   effectively   
routes   floods   in   a   river   which   has   a   regular   cross-section,    bottom   slope,   
and   roughness,   and   which   is   equivalent   to   the   natural   river,   the   increase   in   
the   storage   capacity   due   to   the   irregularities    in   the   natural   river   can   be   
viewed   as   a   change   in   the   geometry   and   roughness   of   the   equivalent   river   
model.   It   is   shown   in   Chapter   2   that   these   changes   can   in   fact   be   quantified,   
so   that   the   parameters   for   the   diffusion   method,   and   p   in   particular,   can   
be   determined    without    requiring    a   trial-and-error    application    of   the   
method.   

Another   disadvantage   with   the   kinematic   wave   and   diffusion   methods   
is   their   use   of   fixed   values   of   the   parameters   w   and   p.   Suppose   that   w   and   p   
have   been   found   so   that   the   speed   of   travel   and   the   magnitude   of   the   peak   
discharge   along   the   reach   are   correctly   simulated.   Then   these   values   for   w   
and   p   can   be   considerably   different   from   the   corresponding    values   deter-
mined   for   an   overbank   flood.   So,   although   values   of   the   parameters   can   
be   obtained   to   route   a   range   of   previous   floods,   the   extrapolation   of   these   
values   to   deal   with   a   possible   larger   range   of   floods   can   lead   to   significant   
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Choice   of   a   flood   routing   method   

errors.   Thomas   &   Wormleaton   (1970)   have   made   a   numerical   study   of   
floods   in   an   upper   reach   of   the   River   Dee   (Wales)   using   the   diffusion   
method   with   the   stage   as   the   dependent   variable.   Their   results   indicate   how   
difficult   it   is   to   isolate   fixed   values   for   the   convection   velocity   and   diffusion   
coefficient    when   applying   the   method   to   a   wide   range   of   floods   in   a   
particular   river.   A   way   of   overcoming   this   difficulty   is   to   define   w   and   p   

as   functions   of   the   stage   or   discharge   in   the   river.   A   new   flood   routing   
method   based   on   the   generalised   convection-diffusion    equation   with   the   
discharge   as   the   dependent   variable   and   w   and   p   as   functions   of   discharge   
is   presented   in   Chapter   2.   

Despite   the   fact   that   the   difficulties   referred   to   above   can   be   removed,   
there   remains   one   more   significant   problem   in   using   the   diffusion   methods,   
namely   the   inclusion   of   discharges   from   major   tributaries.   The   difficulty   
which   arises   in   this   case   is   how   to   prevent   what   is   in   effect   a   discrete   lateral   
inflow   upsetting   calculations   using   the   governing   equation.   The   simplest   
solution   to   the   problem   is   to   route   a   flood   from   tributary   to   tributary,   
summing    the   discharge    hydrographs    from   the   main   channel   and   the   
tributary   at   the   confluence.   But,   whereas   this   procedure   is   satisfactory   for   
a   well   gauged   river,   there   will   inevitably    be   questions   of   accuracy   in   
applying   the   diffusion   methods   to   rivers   which   are   not   well   monitored.   

It   has   already   been   mentioned   above   that   it   is   the   water   surface   slope,   
ay/ax,   which   induces   a   diffusion   of   the   kinematic   wave   solution,   and   that   
one   of   the   consequences    of   this   diffusion   is   an   attenuation   of   the   peak   
stage   or   discharge   along   the   reach.   A   formula   for   the   attenuation   of   the   
peak   stage   for   a   flood   in   a   regular   channel   was   discovered    by   Forch-
heimer   (1930),   many   years   before   Hayami   proposed   the   diffusion   method.   
Forchheimer   showed   that   the   attenuation   is   directly   related   to   the   curva-
ture   of   the   peak   of   the   upstream   stage   hydrograph.   More   recently,   Hender-
son   (1963)   has   shown   how   the   acceleration   and   convection   of   momentum   
terms   on   the   left   hand   side   of   Equation   1.4   also   contribute   to   the   attenua-
tion   of   the   peak   stage.   The   importance   of   these   latter   terms   increases   as   
the   Froude   number   for   the   flow   increases.   So,   for   steep   rivers,   Henderson   
points   out   that   all   the   terms   in   the   dynamic   equation   may   become   impor-
tant.   However,    the   attenuation    of   the   peak   stage   is   approximately    in-
versely   proportional   to   the   square   of   the   bottom   slope,   so   that   the   magni-
tude   of   the   attenuation   in   steep   rivers   is   not   as   important   as   that   in   rivers   
with   small   bottom   slopes.   A   similar   attenuation   formula   and   analysis   can   
be   derived   for   the   attenuation   of   the   peak   discharge.   

The   attenuation   formula   can   also   be   regarded   as   a   consequence   of   the   
second   order   solution   for   the   convection—diffusion    equation.   For   this   
reason   it   is   convenient   to   classify   the   use   of   the   formula   as   a   flood   routing   
method   in   group   b.   In   addition,   because   it   is   now   possible   to   quantify   and   
include   the   effect   of   irregularities   in   the   geometry   of   the   natural   river   in   
the   convection—diffusion   equation,   a   similar   improvement   can   be   made   to   
the   attenuation   formula.   This   is   explained   in   more   detail   in   Chapter   2.   

Although   the   Muskingum   method,   already   referred   to   above,   ignores   
dynamic   effects   on   the   flood   wave,   Cunge   (1969)   has   shown   that   it   is   
possible   to   improve   the   method   so   that   it   gives   a   good   approximation   to   
the   solution   of   the   linear   convection—diffusion   equation.   This   improvement   
is   made   on   the   basis   of   the   finite   difference   equation   for   the   Muskingum   
method.   The   finite   difference   scheme   introduces   an   arbitrary   diffusion   and   
Cunge   has   identified    the   magnitude    of   this   diffusion    with   that   of   the   
corresponding   term   in   the   diffusion   method.   In   this   way   he   is   able   to   define   
the   parameters   of   the   Muskingum   method   in   terms   of   the   parameters   for   
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Flood   routing   methods   1.2   

the   diffusion   method.   As   shown   in   Chapter   3,   the   Muskingum—Cunge    
method   can   be   used   to   find   the   attenuation   of   the   peak   discharge   with   a   
high   degree   of   precision.   In   addition,   it   can   be   commented    here   that   the   
Muskingum   method   does   not   have   the   difficulties   with   tributaries   that   the   
diffusion   methods   have.   Consequently,    there   will   be   advantages   in   using   
the   Muskingum—Cunge    method   for   rivers   which   have   major   tributaries   
and   which   are   not   well   gauged.   

Because   of   the   limitations    in   the   analytical    flood   routing   methods   
which   have   been   proposed   and   the   availability   of   powerful   digital   com-
puters,   increasing   attention   has   been   paid   to   numerical   solutions   of   the   full   
Saint—Venant    equations.   These   numerical   flood   routing   methods   which   
come   under   group   c   above,   differ   from   each   other   primarily   in   the   tech-
nique   used   to   solve   the   differential   equations.   With   sufficient   storage   in   
the   computer,   the   methods   can   be   extended   to   include   as   much   detail   of   
the   geometrical   characteristics   of   the   channel   and   flood   plain   as   required.   
Problems   do   arise   in   isolating   friction   parameters   along   the   channel   and   
the   flood   plain,   and   in   specifying   the   head   losses   for   the   flow   to   and   from   
the   flood   plain   and   over   walls   and   hedges.   And   a   concern   for   detail   in   such   
a   model   can   obscure   an   overall   description   of   the   flow.   So   although   one   
can   anticipate   that   a   flood   routing   method   of   group   c   is   likely   to   be   more   
accurate   than   any   of   the   other   methods   given   sufficient   data,   the   simpler   
flood   routing   techniques   are   usually   adequate   for   many   purposes.   How-
ever,   the   numerical   methods   do   become   an   important   tool   if   both   levels   
and   discharges   are   required   continuously    along   a   reach   of   river.   In   this   
case   the   simpler   flood   routing   techniques    are   cumbersome,    and   their   
poorer   accuracy   compared   with   the   numerical   methods   may   be   significant.   

1.3   Choosing   a   flood   routing   method   

Faced   with   such   a   range   of   flood   routing   methods,   the   choice   of   a   suitable   
method   for   routing   a   flood   in   a   particular    British   river   is   at   first   sight   
formidable.    Inevitably   there   are   two   major   factors   affecting   the   choice,   
namely   the   information   required   from   the   method,   and   the   data   available   
about   the   geometry   of   the   natural   river   and   previous   floods.   

The   results   from   a   flood   routing   study   will   of   course   be   dictated   by   the   
nature   of   the   overall   project.   For   example,    if   a   building   is   being   con-
structed   on   the   flood   plain   such   that   the   building   will   not   significantly    
affect   the   flooding   characteristics   of   the   river,   but   will   itself   be   sensitive   to   
flooding,   the   engineer   will   be   concerned   with,   say,   the   peak   level   of   a   flood   
hydrograph   at   the   construction   site.   He   may   also   be   interested   in   how   long   
the   flood   will   be   above   a   certain   level,   in   which   case   he   will   need   to   know   
the   shape   of   the   stage   hydrograph.    Similar   information    with   respect   to   
flood   discharge   hydrographs   will   be   required   when   designing   a   spillway   for   
an   onstream   reservoir.   Here   the   engineer   may   be   concerned   principally    
with   the   rising   part   of   the   discharge   hydrograph   and   with   its   shape   near   
the   peak.   If,   however,    alterations    are   being   proposed,    such   as   a   flood   
alleviation    scheme,   which   will   alter   the   flooding   characteristics    of   the   
river,   then   a   knowledge   of   peak   levels   and   discharges   from   certain   design   
floods,   and   possibly   the   associated    hydrographs,    will   be   necessary   not   
only   at   the   sites   where   the   improvements   are   to   be   made   but   also   at   sections   
far   downstream.   When   information   is   required   at   discrete   sections   which   
are   more   than,   say,   20   times   the   width   of   the   flood   plain   apart,   then   the   
routing   of   a   flood   between   each   section   can   be   regarded   as   a   'black   box'   
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Choice    of   a   flood    routing    method    

problem:    the   interest    is   only   in   the   input   and   output    to   each   reach.    In   this   

case   one   of   the   simpler    flood   routing    methods    from   groups    a   or   b,   which   

routes   a   flood   along   a   simplified    equivalent    river   model   instead   of   a   complex    

model    of   the   irregular    natural    river,   is   usually    sufficient.    However,    when   
more   detailed    information    on   flooding    is   required    along   the   river,   including    

water   levels   and   mean   velocities,    then   one   has   to   resort   to   one   of   the   much   

more   complicated    numerical    methods    of   group    c.   There   does   exist   the   

possibility    of   using   a   method    from   group   b   with   a   method    from   say,   group   

c,   to   supply    the   detailed,    local    information    which    the   former    method    is   
unable   to   produce,    but   it   is   not   usual   to   combine    such   methods    at   present.    

Another    important    aspect    of   the   information    obtained    from   a   flood    

routing    method    is   the   accuracy    of   the   results.    This   accuracy    will   of   course   

be   a   function    of   the   accuracy    of   the   data   and   the   method    itself.    If   it   is   

supposed    that   the   accuracy    of   the   input   data   for   the   method    can   be   con-

sidered    separately,    then   errors   in   the   results   will   depend    principally    on   the   

suitability    of   the   basic    equations    to   describe    the   phenomenon    of   flood    

propagation.    A   brief   survey    of   the   various    methods    has   been    made    in   

Section    1.2   above,    and   the   advantages    and   disadvantages    are   discussed    

more   thoroughly    in   the   remaining    chapters    of   this   volume.    It   is   sufficient    
to   note   here   that   in   general    it   is   the   errors    arising    from   the   unsuitability    

of   terms    in   the   basic   equations    which    are   the   most   difficult    to   eliminate:    

numerical    analysis    is   sufficiently    well   advanced    that   errors   generated    by   

the   solution    techniques—including    finite    difference    schemes    for   the   
equations,    boundary    conditions    and   data   handling    techniques—need    not   

be   too   great   a   problem.    

The   amount    and   quality    of   data   from   the   natural    river,    both   for   the   

geometry    of   the   channel    and   flood   plain,   and   for   previous    flood   discharges    

and   levels    is   another    significant    factor    in   the   choice    of   a   flood    routing    

method.    Fortunately,    it   is   usually    possible    to   obtain    general    geometrical    

information    about    a   British    river   from   survey    maps.    This   information    will   

include,    say,   the   length   of   a   reach,   the   slope   of   the   channel,    and   the   plan   

area   of   the   flood   plain.    It   is   still   necessary    however    to   know    something    

about   the   speed    of   flood   peaks    along    the   reach,    and   the   corresponding    

peak    discharges,    particularly    if   water    inundates    the   flood    plain.    If   this   

information    is   of   poor    quality    then    nothing    is   gained    by   using    a   flood    

routing    method    more   complicated    than   a   simple    storage    method.    Fortu-

nately,    most   British   rivers   have   at   least   one   gauging    station    which   can   be   

used   to   produce    a   typical    discharge    hydrograph    for   the   river   and   peak   

discharges    for   previous    floods.    However,    it   is   common    for   the   error   in   the   

calculated    discharges    to   be   more   than   about   0.2   of   the   actual   discharge,    

particularly    for   high   flows   when   the   error   can   be   much   greater.    This   large   

error   is   due   to   the   difficulties    in   extrapolating    the   rating   curve   for   flow   over   

an   adjacent    flood   plain.   If   there   is   no   gauging    station    available,    either    a   

gauging    station    has   to   be   built   or   discharge    hydrographs    for   previous    

floods   have   to   be   derived    at   the   upstream    section    of   the   reach   from   some   

hydrological    catchment    model    as   described    in   Volume    I   of   this   report.    Of   

course,    if   a   detailed    numerical    model    is   to   be   developed,    the   amount    of   

proving    data   increases    with   the   amount    of   detail   required.    Such   data   can   

be   expensive    to   obtain    and   depend,    in   the   case   of   a   flood   plain   study,   on   

the   occurrence    of   appropriate    floods   during   the   course   of   the   investigation.    

It   should    also   be   remembered    that   if   the   parameters    for   a   given   method    

have   been   determined    for   a   particular    range   of   floods,    then   the   use   of   the   

method    with   the   same   parameters    for   larger   floods   can   introduce    errors.   

This   brief   discussion    of   the   factors    affecting    the   choice    of   a   flood   rout-   
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ing   method   has   so   far   neglected   how   the   characteristics    of   British   rivers   
and   flooding   in   these   rivers   affect   such   a   choice   of   method.   It   is   appro-
priate   then   to   conclude   this   chapter   with   a   description   of   these   character-
istics.   

1.4   Characteristics    of   British   rivers   

Table   1.1   contains   a   summary   of   data   from   a   number   of   British   rivers   and   
several   foreign   rivers.   Perhaps   the   most   outstanding   characteristics   of   the   
British   rivers   are   the   relatively   short   lengths   and   large   average   slopes.   
Defining    the   upstream    section   of   a   river   as   that   section   which   has   a   
catchment   area   of   500   km2    and   the   furthest   downstream    section   at   the   
tidal   limit,   then   there   is   no   river   in   Britain   which   has   a   length   greater   than   
210   km.   In   fact,   besides   the   rivers   Severn,   Thames,   Wye   and   Trent,   all   other   
British   rivers   have   lengths   less   than   110   km.   Closely   related   to   the   length   
of   a   river   is   its   average   slope,   defined   as   the   difference   between   the   levels   
at   the   upstream    and   downstream    sections   of   the   river,   divided   by   the   
length   of   the   river.   As   the   rivers   are   relatively   short   in   length,   they   have   
fairly   steep   average   slopes   of   the   order   of   10-3.   The   Great   Ouse   has   the   
smallest   average   slope   of   the   larger   rivers,   namely   2.1   x   10-4.   

The   maximum   recorded   discharges   in   British   rivers   vary   considerably   
from   river   to   river,   and   in   several   rivers   the   maximum   discharge   may   occur   
far   upstream   and   not   at   the   tidal   limit.   In   general,   the   greatest   discharges   
have   occurred   in   rivers   with   steep   slopes,   namely   the   rivers   Tay,   Tyne,   
Tweed   and   Dee   (Scotland).   The   Tay   is   exceptional   in   that   it   has   a   mean   
annual   discharge   of   154   m3    s-    which   is   far   larger   than   the   mean   annual   
discharge   for   any   other   British   river,   and   has   had   flood   flows   of   up   to   
1419   m3    s-'.   Longer   rivers   like   the   Wye   and   Trent,   do   not   appear   to   have   
exceeded   a   discharge   of   about   1000   m3    s'   at   their   downstream    sections,    
and   the   maximum   recorded   discharge   in   the   Severn   at   Bewdley   is   only   
671   m3    s-1.   Notice   that,   in   general,   the   longer   rivers   have   higher   peak   
discharges   at   upstream   sections.   Evidently   the   peak   discharge   of   a   flood   
in   these   rivers   attenuates   as   the   flood   moves   downstream.   

Most   river   systems   in   Britain   are   complex,   having   several   tributaries   
with   significant   mean   annual   discharges.   Typical   of   these   river   systems   are   
the   Great   Ouse   and   the   Yorkshire   Ouse.   A   few   river   systems   like   the   Wye   
are   more   straightforward,    the   Wye   having   only   two   major   tributaries    
along   most   of   its   length.   However,   besides   the   discrete   discharges   from   the   
major   tributaries   to   the   main   river,   there   is   a   significant   increase   in   the   
discharge   of   certain   rivers   due   to   the   lateral   runoff   from   the   catchments   
along   the   rivers,   including    minor   tributaries    and   the   local   aquifer.   For   
example,   there   is   no   major   tributary   between   Erwood   and   Belmont   on   the   
Wye,   but   the   difference   in   the   mean   annual   discharges   at   these   two   stations   
is   9.76   m3    s-',   or   27   %   of   the   mean   annual   flow   at   the   upstream   station   at   
Erwood.   This   gives   an   average   lateral   inflow   of   about   0.4   m3    s'   km".    
Again,   the   magnitude   of   the   lateral   inflow,   being   a   function   of   the   local   
rainfall,   varies   from   river   to   river.   Some   rivers   in   the   east   of   England,   such   
as   the   Nene   and   Trent,   usually   have   a   negligible   lateral   inflow,   though   
under   snowmelt   conditions   the   lateral   inflow   for   such   rivers   can   be   large.   

The   magnitude   and   variation   of   the   width   of   the   flood   plain   along   a   
river   is   another   important   factor   to   be   considered   in   a   flood   routing   study.   
A   convenient   definition   of   the   flood   plain   width   is   an   area   per   unit   length   
of   river,   as   measured    from   the   area   inundated    by   the   largest   recorded   
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Characteristics   of   British   rivers   1.4    

flood   for   that   river.   Notice   that   this   width   is   not   necessarily    the   same   as   
the   geographical    width   of   the   flood   plain.   For   some   of   the   longer   British   
rivers   the   flood   plain   width   can   reach   a   local   maximum    in   excess   of   2   km,   
though   the   average   width   along   the   whole   length   of   these   rivers   is   less   than   
0.5   km.   For   many   rivers   the   flood   plain   is   artificially    controlled    by   flood   
banks   and   other   flood   control   features.   The   embankments    for   some   rivers,   
such   as   the   Great   Ouse   in   the   fenland,   produce   a   normal   water   level   which   
can   be   above    the   surrounding    flood   plain.    In   this   latter   case   the   over-
topping   of   the   embankments    leads   to   flooding   over   a   very   wide   area,   with   
water   which   is   only   returned   to   the   main   channel   by   pumping   over   a   period   
of   months.   

One   of   the   major   effects   of   an   inundated    flood   plain   is   to   change   con-
siderably    the   shape   of   the   flood   hydrograph    at   sections    along   the   river.   
This   is   explained    in   Section   2.6   below.   But   it   can   be   mentioned    here   that   
the   most   important   change   induced   by   a   large   flood   plain   on   the   shape   of   a   
flood   hydrograph    is   the   attenuation    of   the   peak   discharge.    This   attenuation    
may   not   of   course   be   observed   if   there   is   a   large   lateral   inflow   to   the   river,   
and   in   general    the   peak   discharges    of   floods   in   the   smaller   British   rivers   
amplify   along   the   rivers   because   of   the   lateral   inflow   due   to   direct   runoff   
from   the   surrounding    catchment    and   from   tributaries.    

1.5   Flood   routing   in   a   British   river   

From   the   discussion    above   it   follows    that   an   appropriate    flood   routing    
method    for   British    rivers   should    be   able   to   route   accurately    floods   in   a   
reach   which   typically    has   a   slope   of   10'   and   which   is   up   to   100   km   long.   
In   addition,   the   method   should   be   sufficiently    versatile   to   treat   the   case   of   
flooding    in   a   river   with   extensive    flood   plains.   Not   surprisingly    the   last   
restriction    is   severe,   and   a   new   flood   routing   method   has   been   derived   for   
this   case   in   the   following   chapter.   However,    as   will   become   apparent   from   
Chapter    3,   the   simple    flood    routing    methods,    and   in   particular    the   
Muskingum—Cunge    method,   have   much   to   recommend    them   for   general   
use   in   British   rivers.   

In   the   following    chapter    a   more   comprehensive    study   is   made   of   the   
theoretical    basis   of   flood   routing.   This   study   leads   to   the   proposal   of   a   new   
formula   for   the   attenuation    of   the   peak   discharge    for   a   flood   along   a   reach   
with   extensive    flood   plains,   together   with   the   development    of   a   new   flood   
routing    method    as   mentioned    above.    Chapter    3   then   concentrates    on   a   
comparison    of   three    of   the   most   appropriate    flood    routing    methods.    
Finally,   a   strategy   for   flood   routing   in   British   rivers   is   outlined   in   Chapter   4.   
If   desired.   Chapter   2   may   be   omitted   on   a   first   reading.   

thas   a   large   loch   in   the   catchment   
:',:includes   Loch   Tay   
§from   I   inch   to   I   mile   map   
EIest   i   mated.   

Table   1.1   Data   for   some   British   and   
foreign   rivers.   



2   Theory   of   flood   routing   

2.1   Introduction    

It   is   usual   in   developing    a   theory   of   flood   routing    to   begin   with   the   
simplest   models,   such   as   hydrological    models,   and   to   proceed   to   more   
complicated   models   once   the   deficiencies   of   a   particular   model   have   been   
understood.    This   is   the   approach    adopted    in   the   brief   survey   of   flood   
routing   methods   in   Chapter   1.   However,   to   emphasise   that   all   flood   rout-
ing   methods    are   based   on,   or   can   be   shown   to   depend    on,   hydraulic    
principles,   the   theory   of   flood   routing   in   this   chapter   is   developed   from   the   
Saint—Venant    equations    for   gradually    varying   flow   in   open   channels.    
Necessarily,   some   algebra   is   required   in   Sections   2.4.   2.7   and   2.12   to   ensure   
a   proper   development    of   the   theory.   These   sections   are   so   arranged   that   
they   may   be   omitted   on   a   first   reading   of   the   chapter.   Also,   an   effort   has   
been   made   throughout   the   chapter   to   specify   the   underlying   assumptions    
in   each   step   of   the   argument.   Many   of   the   assumptions   may   appear   crude   
or   severe   to   those   who   have   no   experience   of   flood   routing.   The   accurate   
results   which   can   however   be   obtained   by   even   a   very   simple   flood   routing   
method   indicate   that   the   assumptions    are   realistic   and   that   simplicity   has   
much   to   recommend   it.   

2.2   Mathematical    modelling    of   flood   flows   

Each   flood   routing   method   is   based   on   some   model   for   the   river   and   its   
associated   flow.   The   hydrological   methods   regard   the   river   as   a   'black   box'   
with   the   storage   in   the   box   depending   on   the   inflow   and   outflow.   Neces-
sarily   the   black   box   has   one   or   more   parameters,    the   values   of   which   are   
peculiar   to   the   river   being   studied.   One   of   the   best   ways   to   find   the   para-
meters   is   to   simulate   the   model   on   an   analogue   computer   and   to   vary   the   
parameters   until   the   best   fit   is   obtained   between   the   predicted   and   recorded   
hydrographs    for   a   calibration    flood   in   the   natural   river.   The   approach    
adopted   in   this   type   of   model   is   equivalent   to   saying   that   the   flow   in   the   
river   is   much   too   complex   to   be   modelled   in   detail   and   that   it   is   sufficient   
to   assume   some   arbitrary   functional   relationship   between   the   outflow   and   
inflow   to   the   reach,   with   the   one   restraint   that   the   total   amount   of   water   
stored   in   the   reach   is   conserved.   Although   this   approach   appears   crude,   it   
should   be   recognised    that   at   some   stage   a   similar   approach   is   inevitable   
in   the   derivation   of   any   mathematical   model   of   flow   in   a   river.   As   already   
indicated,   the   major   difficulty   is   the   complexity   of   the   flow,   in   view   of   both   
the   irregular    nature    of   the   boundaries    in   the   river,   and   the   turbulent    
motion   of   the   water.   So   simplifying   assumptions   have   to   be   made   ab   inilio   
to   make   the   problem   tractable.   

The   Saint—Venant    equations   describe   the   one-dimensional    bulk   flow   
of   water   in   a   river   (Brutsaert,   1971).   In   the   derivation   of   the   equations   it   is   
assumed   that   the   variation    of   the   mean   velocity   across   a   section   in   the   
river   is   not   important,   and   the   water   surface   slope   varies   gradually   along   
the   river   so   that   the   pressure   is   approximately    hydrostatic.    The   effect   of   
friction   on   the   flow   is   generally   simulated    by   an   empirical    term   for   the   
friction   slope.   It   is   usual   to   adopt   the   Manning    or   Chezy   form   for   this   
term   

The   roughness    coefficient    in   the   term   for   the   friction   slope   can   be   
regarded    as   a   proving    parameter.    Just   as   the   boundary    roughness    in   a   
physical   model   of   a   hydraulic    problem   has   to   be   adjusted   so   that   water   
levels   in   the   model   agree   with   the   corresponding   levels   in   the   natural   river,   
so   the   roughness   coefficient   in   a   mathematical    model   can   be   varied   to   the   

10   



Mathematical   modelling   of   flood   flows   2.2   

same   end.   An   estimate   of   the   roughness   coefficient   can   of   course   be   made   
simply   from   a   knowledge    of   the   natural   river   channel    by   noting   such   
points   as   the   boundary   texture,   the   character   of   the   banks,   whether   there   
is   weed   growth   in   the   channel,   the   variability    in   the   shape   of   the   cross-
section   and   the   sinuosity    of   the   channel.    Inevitably,    because    of   all   the   
factors   affecting    the   magnitude    of   a   roughness    coefficient    there   is   un-
certainty    in   assigning    a   value   to   the   coefficient    for   a   particular    river   
channel.    For   this   reason,    it   is   preferable    where    possible    to   use   other   
methods    of   estimating    the   roughness    coefficient,    or   better   still   to   use   
another    proving    parameter.    It   is   shown    below    that   in   the   case   of   the   
simpler   flood   routing   methods   the   speed   of   flood   peaks   is   generally   more   
convenient    than   the   roughness    coefficient.    This   is   because   the   speeds   of   
previous   flood   peaks   in   a   river   are   often   known   and   because   the   simpler   
methods   can   all   be   derived   in   terms   of   the   speed.   Another   advantage    in   
using   the   speed   as   a   proving   parameter   is   that   observations   of   the   speed   of   
flood   peaks   include    the   direct   effect   of   irregularities    in   the   width   and   
bottom   slope   of   the   channel.    These   irregularities,    which   have   a   length   
scale   along   the   river   of   say,   many   times   the   width   of   the   channel.    can   
possibly    be   included    in   a   detailed    numerical    model    if   the   roughness    
coefficient   can   be   found   for   each   small   subreach.   But   because   the   simpler   
flood   routing   methods   make   simplifications    to   the   geometry   of   the   river   
channel   and   in   effect   use   an   `equivalent'   channel   with   average   values   along   
the   reach   for   the   parameters    describing    the   geometrical    characteristics    of   
the   natural   channel,    these   methods    can   include    implicitly    the   effect   of   
irregularities.    As   explained   in   Chapter   I,   it   was   this   sort   of   consideration    
which   led   Hayami   to   propose   his   diffusion   method.   

The   extension   of   the   models   to   include   storage   and   flow   over   an   associ-
ated   flood   plain   increases   the   complexity    of   the   problem.   For   example,   if   
the   river   channel   in   the   model   is   regarded   as   straight,   the   plan   geometry    
of   the   flood   plain   will   be   distorted.   This   makes   the   exchange   of   water   and   
momentum    between   the   channel   and   the   flood   plain   difficult   to   simulate.   
One   way   round   this   difficulty    is   to   regard   the   flood   plain   simply   as   an   
extension    of   the   channel.   This,   however,    is   inappropriate    because   of   the   
large   difference    between    typical   velocities    in   the   channel   and   over   the   
flood   plain.   But   once   it   is   accepted   that   the   flow   over   the   flood   plain   is   to   
be   regarded   as   separate   from   the   flow   in   the   channel,   then   the   exchange   of   
water   and   momentum    between    the   channel    and   flood   plain   has   to   be   
considered.   

Obviously    the   effect   of   channel    meanders    on   the   exchange    can   be   
extremely   complicated,    and   there   would   be   little   hope,   even   with   present   
day   computers,   of   correctly   simulating   in   detail   the   processes   involved   over   
a   long   reach   of   river.   A   considerable    amount   of   research   has   been   concen-
trated   in   recent   years   on   these   processes,    particularly    in   the   USSR.   The   
two   main   processes   are   a   direct   convection    of   momentum    via   the   flow   to   
and   from   the   channel,   and   a   diffusion   effect.   This   latter   effect   arises   from   
the   difference   in   the   velocity   of   the   flow   on   the   flood   plain   and   the   flow   in   
the   channel.   Obviously   the   velocity   in   the   channel   will   generally   be   greater   
than   the   velocity   of   the   water   over   the   flood   plain   immediately    adjacent   to   
the   channel.   This   velocity   difference   produces   vortices   which   diffuse   and   
are   convected    from   the   channel   to   the   flood   plain.   In   turn   this   leads   to   a   
small   reduction   of   the   velocity   in   the   channel   and   a   larger   increase   in   the   
velocity   over   the   flood   plain.   Zheleznyakov    (1971)   has   made   a   thorough   
study   of   this   phenomenon,    which   has   been   termed,   somewhat    inappro-
priately,   the   'kinematic   effect'.   
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Fig   2.1   Definition   sketch.   

Theory   of   flood   routing   

Another   important   feature   of   flow   over   a   flood   plain   is   the   flow   normal   
to   the   general   direction   of   the   river   channel.   In   a   numerical    model   this   
difficulty   can   be   partly   overcome   by   using   a   separate   equation   to   describe   
flow   to   and   from   the   channel.   This   equation   might   include   a   term   with   a   
structure   similar   to   the   formula   for   the   discharge   over   a   broad   crested   weir.   
In   a   simple   flood   routing   model,   however,    it   does   not   seem   possible   to   
include   transverse   flow   over   the   flood   plain   as   a   distinct   feature   and   still   
preserve   a   necessary   simplicity   in   the   model.   The   analytical   development   
of   the   flood   routing   model   below   assumes   that   the   flows   in   the   channel   and   
over   the   flood   plain   are   distinct   but   related   by   the   condition   that   the   water   
level   in   the   channel   is   the   same   as   that   over   the   flood   plain   and   is   uniform   
across   a   section.   This   is   equivalent   to   saying   that   the   lateral   flow   over   the   
flood   plain   is   instantaneous.    

2.3   Basic   equations    

The   Saint—Venant    equations   for   gradually   varying   flow   in   open   channels   
are   
continuity:   

aA   ac,   
7t   

=
q   

momentum:   

a    Q   a     (Q2   
—   
at   ax   A )   

—   =    A   g   —    —(s   s,    r)+   (lug   

where   A   is   the   wetted   cross-sectional   area,   Q   is   the   discharge,   q   is   the   lateral   

inflow/unit   length,   g   is   the   acceleration   due   to   gravity,   s   is   the   bottom   slope   

of   the   channel,   y   is   the   depth,   sir,   is   the   friction   slope,   and   uri    is   the   velocity   

component   of   q   along   the   channel   in   the   downstream   direction   (Figure   2.1).   
A   good   approximation    for   sir    is   given   by   the   Strickler—Manning    

formula:   
Q2n2    

S   i    =    

r   42R   413    

where   R   is   the   hydraulic   radius   and   /7   is   the   Manning   roughness   coeffi-

cient.   

2   

0,    
q,   .TanO2   

s.TanO,   

(2.1)   

(2.2)   

(2.3)   

Equations    2.1   and   2.2   have   no   exact   analytical    solution   relevant   to   
flood   wave   propagation    other   than   the   monoclinal    wave   in   a   uniform    
channel   which   is   infinitely    wide   (Henderson,    1966,   p.   372).   This   wave   
travels   with   constant   speed   and   tends   to   a   fixed   depth   downstream    and   a   
larger   fixed   depth   upstream.   In   the   absence   of   a   more   general   exact   solu-   
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Basic   equations   2.3    

tion,   it   is   necessary    to   resort   to   approximate    analytical    solutions    of   the   
basic   equations.   This   is   possible   because   some   of   the   terms   in   Equation   2.2   
are   less   important    than   others.   Following    Henderson    (1966,   p.   364),   the   
relative   importance    of   the   terms   in   the   basic   equations    can   be   deduced    
from   an   order   of   magnitude   analysis.   

Because   the   flow   is   one-dimensional    in   space,   and   because   the   lateral   
inflow   is   often   negligible,    the   terms   on   the   left   hand   side   of   Equation   2.1   
must   have   a   similar   magnitude.    Formally,   if   X   and   T   are   the   length   and   
time   scales   for   a   flood   wave   respectively,   

A   Q    
T   —   X   (2.4)   

where   the   superposition    of   a   bar   above   a   variable    denotes   the   scale   for   
that   variable.   It   now   follows   from   Equation   2.2   that   

2-    I1(9    =   I XA   =   1   a   t   ax   T     

using   Equation   2.4.   So   the   local   acceleration   and   convection   of   momentum   
terms   in   Equation   2.2   are   of   the   same   order.   To   make   a   further   comparison   
of   the   terms   in   Equation   2.2   it   is   necessary   to   have   estimates   of   the   values   
for   the   various   scales   which   are   typical   for   British   rivers.   Set   

=   60   m   g=   10   m   
=   io-   3   j,-     =   5   m   

5   =   4   x   10-2   q    =   10-4    m2   s   (2.6)   
A   =   300   m2   T   =   105  s   

=   500   m3    s   q =    0.5   m   s- '.   
With   these   data   

X=   QT/A^   1.7   x   105    m   =-•   200   km   

IgAsfrillgAsi   =   

(2.5)   

ay   
gA   —   

ax   

aQ   
at   

IIgAsi   =   x   10-2   

IgAsi   =   7'2   gAs-    —   1.7   x   10 -3   (2.7)   

=   45,/gAg—   1.7   x   10-5   

I   O   _    
x10-1.   Igli   T

A   
=q[7.--0.3   

These   relationships    show   that:   

i   the   momentum    of   the   flow   in   the   river   is   governed    primarily    by   the   
bottom   and   friction   slopes,   and   is   modified    by   the   water   surface   slope,   
ay/ax,   which   is   defined   relative   to   the   bottom   slope   of   the   channel;   

ii   the   acceleration    and   convection    of   momentum    terms   can   be   ignored;   

iii   the   contribution   to   the   momentum   in   the   main   channel   from   tributaries   
and   lateral   inflow   can   also   be   ignored;   

iv   the   lateral    inflow    from   small   tributaries    and   direct   runoff    can   be   
significant    under   snowmelt    conditions,    but   in   general   its   effect   is   small;   
and   
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v   the    length   scale   of   a   flood   wave   is   considerably   greater   than   the   lengths   
of   most   British   rivers.   

Conclusion   ii   would   not   of   course   be   true   for   flow   in   steep   rivers,   and   
the   conclusion   may   also   be   violated   locally   for   flow   through   bridges,   weirs   
and   other   obstructions   in   the   river.   However,   in   the   latter   case   it   can   often   
be   assumed    that   head   losses   at   such   obstructions    are   included    in   the   
appropriate    values    for   the   parameters    of   a   particular    flood   routing    
method.   

Using   the   above   conclusions,    the   following   equations   can   be   recom-
mended   for   the   routing   of   inbank   floods   in   British   rivers:   

8A   (1c ,   

at   ax   =
q   

Q 2,1  2   
0    s    '    

ax   A    2   R413   

Equation   2.9   can   now   be   solved   to   give   Q   explicitly,   and   Q   can   then   be   
substituted    directly   into   Equation    2.8   to   give   an   equation    involving    A   

(or   y)   alone:   

"    AR2"(s-11=    q   (2.10)   
ax-   17   a   X   

where   y   is   a   prescribed    function   of   x   and   A.   However,   Equation   2.10   is   
inappropriate    for   an   analytical    study   of   flood   routing   because   the   peak   
value   of   A   is   strongly   dependent    on   the   local   channel   geometry.    This   
difficulty,   which   will   be   explained   in   more   detail   below,   is   avoided   if   Q   is   

the   dependent   variable   rather   than   A.   

2.4   Equations   for   flow   in   channel-flood   plain   systemst   

Previous   steady   flow   studies   of   flooding   over   flood   plains   have   assumed   
that   the   storage    and   flow   over   the   flood   plain   can   be   introduced    by   
separating    the   total   discharge    along   the   river   into   a   discharge    Q,   in   the   
channel   and   a   discharge   Q r    over   the   flood   plain   (Zheleznyakov,    1971).   As   
commented    in   Section   2.2,   such   a   distinction   is   crude   from   a   local   view-
point   due   to   such   geometrical   features   as   the   bifurcation   of   the   flood   plain   
and   the   meanders   in   the   channel.   However,   over   a   long   reach   this   division   
of   the   total   discharge    is   a   good   approximation    to   reality.    Next,   it   is   
assumed   that   the   water   level   across   the   flood   plain   normal   to   the   general   
direction    of   the   main   channel    is   uniform    and   the   same   as   that   in   the   
channel.   Then,   if   Equations   2.8   and   2.9   can   also   be   taken   to   describe   the   
flow   over   the   flood   plain,   the   equations   describing   the   flow   in   the   whole   
system   are,   for   the   channel:   

aA,   aQ,    _   q*   
ax   

(2.11)   

Q   2n   2   

0   —   s   "    
x   211•213    

(2.12)   

and   for   the   flood   plain:   

(2.8)   

(2.9)   

tThis   section    may   be   omitted    on   a   
first   reading    of   this   chapter.    

0A1    aQ,    
—   
or   

+—
al-   

=   —q*   +q   (2.13)   
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Cqni.   0   =   a3    (s—   
ax   A11013    (2.14)   

where   q*   is   the   lateral   inflow   per   unit   length   from   the   flood   plain   to   the   
channel.   As   subscripts,    c   and   f   refer   to   variables    for   the   channel   and   the   
flood   plain   respectively.    The   sinuosity,   a,   is   defined    as   the   ratio   of   the   
length   of   the   channel   to   the   length   of   the   prototype   flood   plain   in   the   mean   
direction   of   the   channel.   Note   that   Af    refers   to   the   wetted   cross-sectional    
area   of   the   flood   plain   in   the   model.   Because   the   channel   in   the   model   is   
regarded    as   straight   and   the   plan   area   of   the   flood   plain   in   the   model   is   
the   same   as   that   in   the   prototype,    the   width   of   the   flood   plain   in   the   
model   will   be   1/o-    times   the   width   of   the   prototype   flood   plain   (Figure   2.2).   

Fig   2.2   Schematic    channel-flood    
plain   model.   

Equations   2.11   and   2.13   can   be   combined   to   give   

a    
at   ox    

3Q   
A—   (   c+o-    Ad+   =    q.   (2.15)   

The   problem   now   is   to   replace   /lc+   o-A1    by   a   function   form   involving    Q.   
Because    the   level   of   the   water   surface   across   a   section   of   the   river   and   
flood   plain   is   taken   as   uniform,   it   is   possible   to   express   Af    as   a   function   of   
A.   So,   Equation   2.15   can   be   rewritten   as   

/   aloaA,    3Q   
+a   —a,4)-31   =    q   

where   

aA,   Wf   
=   ak   

Here   117c    and   Wf    are   the   inundated    widths   of   the   channel   and   the   flood   
plain   respectively.   Next,   from   Equations   2.12   and   2.14,   

Q   Qc+    Qf   =   S   --    ax   (2.18)   
AcRP3   Ar    .12,3131(   

[    n,   a312   nf   

aQ   
at   =   

or,   differentiating    this   equation   with   respect   to   t,   

(AfRP3)    
ay   aA    y   RP3    (   2   AcaRc)   a3/2   (3    

L   nc   k    3A,   of    aAc    ax   at    

_+Q(s_ay    
ax

c)-'   ii    ,   (   
aat   (2.19)   ax   we   ))   •   

By   eliminating   aAdat   between   Equations    2.16   and   2.19,   and   assuming    
that   the   channel   has   a   large   width   to   depth   ratio   
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aQ   +41-1    ,,,    31"    (a    s2   —q)   =   
at   s ax   ax    

(   ax    j   
ayc)   

 ax    
-1    a   r    1     (aQ    VI   

—IQ   s—   p.wc\ax    q     jj   

where   

Q  f   2   Ac    aRc   
c   =   

2(Qcnc)315    Hq"   s3"011   

J.   =   I   -1-0-w1lwc   

and   

=   0.3,,A,R1/3[A,w,(,    2   A   l    a   R   f)    (    _   
nr   AlL   We   3   Rf    aA,   

rAcRP3   
3   

A   Rf   131   -    I   
+0'    

/2   f   

L   ne   ,if   

(2.20)   

(2.21)   

(2.22)   

2   A   OR   

c)1   3   We   aige   

(2.23)   

tThis   is   true   even   for   the   hydrological   
or   storage   routing   methods,   if   they   
are   to   produce   accurate   results.   See   
Section   2.15   and   Cunge   (1969).   

If   the   flood   plain   is   not   inundated   or,   for   the   purposes   of   this   study,   if   the   
discharge   is   less   than   the   bankfull   discharge   Q,„   J   =   I   and   0   =   0.   For   

simplicity   it   is   assumed   that   the   water   surface   width   of   the   channel   when   
the   flood   plain   is   inundated   is   the   bankfull   width.   

Finally,   when   q   is   effectively    uniform   along   the   river,   and   laydaxi   is   
small   compared   with   s,   then   Equation   2.20   becomes   

aQ   aQ    a    (   aQ\    Q    ds   aQ   3   0.2\2    
at   4-    ax   Q    aX   1  1-   s   ax   ax   + 5   a`   (3.x)   +cq   

where   

=    (2).   .    (2.25)    

2.5   Convection—diffusion    equation   

The   flood   routing   equation   derived   in   the   previous   section   (Equation   2.24)   
is   basically   a   convection-diffusion    equation.   The   second   term   on   the   left   
hand   side   of   the   equation    describes    a   convection    with   speed   c   of   the   

quantity   Q.   This   change   in   time   of   the   local   value   of   Q   is   modified   by   the   

terms   on   the   right   hand   side   of   Equation   2.24,   which   can   be   regarded   as   
describing   a   diffusion   of   Q.   Similarly,   the   convection   of   1-(')qdx'   with   speed   
c   also   affects   the   local   value   of   Q.   

Equation   2.24,   or   a   similar   equation   with   the   stage   as   the   dependent    
variable,   can   be   shown   to   be   the   basis   for   most   of   the   simpler   flood   routing   
methods.t   These   models   generally   assume   that   c,   a   and   a   Q   are   constant   

in   space   and   time,   and   that   the   third   term   on   the   right   hand   side   of   
Equation   2.24   is   negligible;   for   example,   see   Cunge's   improvement   of   the   
Muskingum   method   (Cunge,   1969),   the   kinematic   wave   method   (Lighthill   
&   Whitham,   1955)   and   the   diffusion   method   (Hayami,   1951;   Thomas   &   
Wormleaton,   1970;   Price,   1973a).   These   assumptions   make   the   convection-
diffusion   equation   linear,   and   it   is   then   comparatively    easy   to   obtain   an   
exact   analytical    solution   of   the   equation   (Hayami,   1951).   However,   the   
expressions   for   c   and   a   in   the   previous   section   indicate   that   these   para-
meters   are   properly   functions   of   several   variables,   including   Q   and   x.   In   

particular,   the   magnitude   of   the   parameters   will   vary   considerably    when   
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there   is   flooding   of   an   associated   flood   plain.   It   follows   that   in   such   a   case   
of   flooding   it   is   better   where   possible   to   know   the   functional    forms   for   c   
and   a.   Although   c   is   defined   by   an   equation   (Equation   2.21)   in   the   previous   
section,   the   structure   of   the   terms   in   that   equation   makes   the   task   of   find-
ing   c   as   an   analytical   function   of,   say,   Q   and   .v   rather   difficult.   An   alterna-
tive   and   more   convenient    approach   is   to   calculate   c   from   records   of   the   
time   of   peak   for   several   floods   at   each   end   of   the   reach.   This   procedure    
is   of   course   more   accurate   the   longer   the   reach.   If   there   is   also   a   gauging   
station    with   a   good   rating   curve   at   some   section    of   the   river   then   the   
values   for   the   speed   of   each   flood   peak   can   be   correlated   with   the   corres-
ponding   peak   discharges.   In   this   way   c   can   be   found   as   an   averaged   func-
tion,   c,   of   Q   alone.   

It   remains   now   to   calculate    the   appropriate    functional    form   for   a   in   
terms   of   Q   alone.   Values   for   a   for   particular    floods,   with   a   defined   in   
terms   of   average    values   for   the   bottom   slope   and   the   maximum    width   
of   the   river   (Equation    2.25)   could   be   used,   but   such   values   for   would    
ignore   the   variations   in   2   We    and   s   along   the   reach.   And   it   is   precisely    
these   variations   which   Hayami   (1951)   argued   are   important   and   should   be   
included   in   a.   Inevitably,    to   obtain   this   averaged   value   of   a   some   sort   of   
analytical    solution    of   Equation    2.24   has   to   be   derived    for   an   arbitrary    
flood   wave   in   a   given   river.   Fortunately,    it   is   possible   to   adapt   Hayashi's   
(1965)   method   of   solving   the   Saint—Venant    equations   to   the   solution   of   
Equation    2.24,   and   by   making   some   appropriate    assumptions,    to   obtain   
an   explicit    expression    for   a.   The   solution    uses   a   technique    known    as   
perturbation   analysis.   

2.6   First   order   solution    

Because   the   terms   on   the   right   hand   side   of   Equation   2.24   can   be   regarded   
as   being   significantly    smaller    than   the   terms   on   the   left   hand   side,   it   
follows   that   to   the   first   order   Equation   2.24   can   be   written   as   

aQi   aQ,    c,—    =   0   (2.26)    
at   ax    

where   Q,   is   the   first   order   term   in   the   expansion   for   Q,   and   

c,   =   c(Q,,   x).   (2.27)    

Equation    2.26   implies   that   Q,   is   a   function    of   a   single   characteristic    
variable   1",   defined   by   

'   
=    -    

dx   
(2.28)   

o   ei   

For   clarity,   set   

Q1   (x,    t) F1 ( T )•  (2.29)   

F,(t)   is   the   function   for   the   discharge   hydrograph    at   the   upstream   section   
of   the   reach.   

Equation   2.26   describes   a   kinematic   wave   moving   with   a   velocity   c,   
(Lighthill    &   Whitham,    1955).   The   peak   discharge    for   this   wave   is   un-
affected   by   variations   in   the   channel   geometry.   However,   as   the   speed   of   
the   wave   is   a   function   both   of   distance   along   the   reach   and   the   discharge,   
the   variations   in   c,   directly   affect   the   shape   of   the   discharge   hydrograph    
for   the   kinematic    wave   at   sections    along   the   river.   To   illustrate    what   
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happens,   consider   a   given   discharge   hydrograph   at   the   upstream   section   
of   a   reach   of   a   river   with   extensive   flood   plains   and   assume   that   Equation   
2.26   is   an   adequate   description    of   the   motion   of   the   flood   wave.   The   
discharge   hydrograph   at   a   downstream   section   will   have   three   important   
features   (Figure   2.3).   

Fig   2.3   Deformation    of   the   discharge    
hydrograph   for   a   kinematic   wave.   

Suppose   in   the   first   instance   that   the   kinematic   wave   is   entirely   con-
tained   within   the   banks   of   a   rectangular   channel.   It   can   be   shown   from   
Equation   2.21   that   the   speed   of   the   crest   of   the   wave   is   then   greater   than   
the   speed   of   the   foot   of   the   wave.   So,   the   rising   part   of   the   discharge   
hydrograph   at   the   downstream   section   will   be   steeper   than   the   correspond-
ing   part   of   the   discharge   hydrograph   at   the   upstream   section.   This   is   also   
true   in   general   for   the   inbank   part   of   a   kinematic   wave   which   inundates   
the   flood   plain   (region   t   in   Figure   2.3).   Observations   of   floods   in   proto-
type   channels   show   a   similar   feature.   

Next,   consider   what   happens   to   the   kinematic   wave   when   the   flood   
plain   is   inundated.   From   Equation   2.21,   if   the   flood   plain   is   infinitely   rough,   
0   =   0   and   the   speed   of   the   kinematic   wave   will   be   considerably   reduced   for   
that   part   of   the   wave   above   bankfull,   depending   on   the   magnitude   of   2.   
Even   when   0   0   it   is   found   that   c,   is   smaller   than   it   would   be   if   there   was   
no   flood   plain.   This   reduction   in   the   speed   for   the   overbank   part   of   the   
kinematic    wave   leads   to   a   distinct   flattening    of   the   rising   part   of   the   
discharge    hydrograph    at   the   downstream    section   in   the   region   of   the   
bankfull   discharge;   see   region   n.   This   feature   is   very   pronounced   if   the   
flood   plain   is   flat   and   can   be   assumed   to   be   bounded   by   vertical   walls.   
Correspondingly,    in   region   iii   where   the   water   is   receding   from   the   flood   
plain,   the   discharge   hydrograph   is   markedly   steeper   than   the   same   part   
of   the   hydrograph   at   the   upstream   section.   In   practice   however,   region   iii   
is   not   as   pronounced   as   in   Figure   2.3.   This   is   because   the   drainage   off   the   
flood   plain   tends   to   smooth   the   curve   in   this   region.   As   may   be   expected,   
the   effect   of   the   drainage   off   a   flat   flood   plain   is   more   important   than   the   
drainage   off   a   flood   plain   which   slopes   towards   the   river.   

2.7   Second   order   solutiont   

tThis   section   may   be   omitted   on   a   The   terms   on   the   right   hand   side   of   Equation   2.24   modify   the   kinematic   
first   reading   of   this   chapter.   wave   solution.   To   find   the   additional   small   term   Q,   it   is   necessary   to   
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extract   the   second   order   equation   from   Equation   2.24;   

aQ2   aQ2   aQ,   [a    (   aQ,)    8Q 1 1   
+c,   ±c  2   —,   =    

Q'    [ a x   a   1   —n   —   
0/   OX   OX    OX    d x   OX   

2   
+3   el   q   

5   1`    ax    
(2.30)   

where   

"   1   =   "(Q1,    x).   (2.31)   

Equation   2.30   can   be   solved   as   follows.   

As   Q2    is   a   function    both   of   r   and   x,   expressions    can   be   obtained    for   
the   partial   derivatives    of   Q2:   

aQ2   =   aF2   
at   at    

aQ2   8F 2    8F  2   

Here,   Q2    (x,   i)   a-   F2    (T,   x)   and   the   function   4)    is   defined   by   

,   
x   I   ac,   dF,   

(VI    dT    

It   can   similarly   be   shown   that   

I   0   (   aQ   1   ds.   aQ,   3   (aQ,   )2   "   i    ___   _i__   _   _A__   „    
e,   1    ax   ax    s    dx    ax    5   c   Ox    

4)2    {   d  2F,   (dF,)  2(   ±   2   Oc   1   I    a    al    3   ,-,,,   
=    0    _    

cl   
dr2   dr    e,    aF,   „,   ar,   5   F,   

—   f[   I   (-,,2ei   
 2    (a

ct   
 yi    ,    dF,   \   

0    cl   aF,2    —   73-1  VF,)    fix   .   ( I)    dr    /   

I   dF,    [ac,   c,    8,,,   C,   ds   1   4)    
_I__    _   ___    _   __   ___1    =   _,.   G(T,    x).   

(/)   dr   OX    n,   ax   s    dx   c,   

By   substituting    the   expressions    above   in   Equation   2.30   it   follows   that   

(F 2 )   I   

(IX   4)   4)    
F,G   

(2.36)   ger,   x)+1   
-).wcsc   

This   equation   can   be   integrated   to   

x   

give   

x   Gds'   
Q2   F2     =    qdx'   +-1-4)F,   

o   
(2.37)   

The   expression   for   Q2   in   Equation   2.37   is   an   exact   solution   of   Equation   
2.30.   However,    the   complexity    of   the   function   G(r,   x)   makes   it   difficult   to   
develop   the   solution   for   practical   purposes.    So   three   additional    assump-
tions   are   made:   

i   the   reach   is   sufficiently   short   so   that   4)—   I   ;   

ii   the   contribution    from   the   terms   in   Equation    2.35   involving    ac,/ax,   
ac   ,/ax   and   ds/dx   to   the   second   integral   in   Equation   2.37   can   be   neglected;   
and   

iii   c,    is   a   separable   function   of   x   and   Q1 .   
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Theory   of   flood   routing   

These   assumptions   may   appear   at   first   to   be   severe   and   so   they   require   
further   comment.   

The   first   assumption   can   obviously   be   made   applicable   by   reducing   
the   length   of   the   reach   being   considered.   The   actual   length   of   the   reach   
will   of   course   depend   on   the   geometrical   characteristics    of   the   channel   
through   the   quantity   ac,/aFI,   and   on   the   maximum   slope   of   the   discharge   
hydrograph   (Equation   2.34).   If   ac,/aF,   is   small,   as   is   the   case   for   rivers   
with   wide   and   reasonably   flat   flood   plains,   the   maximum   length   of   the   
reach   which   satisfies   the   first   assumption   can   be   considerable.   

The   second   assumption   is   more   difficult   to   justify,   and   it   may   well   be   
that   the   term   involving   ac,/ax,   aa,,/ax   and   ds/dx   are   not   always   negligible.   
However,   if   the   flood   plain   is   not   too   irregular,   the   changes   of   sign   in   these   
functions   along   the   reach   will   tend   to   make   the   contribution   from   the   term   
involving   these   quantities   fairly   small.   

Finally,   the   third   assumption   can   readily   be   justified   when   there   is   little   
or   no   flow   along   the   flood   plain.   By   introducing   an   average   speed   e(Q)   
and   regarding    s-3/1°,,s-    1/3   

S113   (X)   1   r L),(Q     v')    
c(Q,   x)   =   e(Q)   dx'   (2.38)    

2(Q,   x)   L   0    s'13    (x')   

where   L   is   the   length   of   the   reach.   It   is   now   assumed   that   the   definition   of   
e   as   a   function   of   Q   in   Equation   2.38   gives   an   adequate   definition   of   c   for   
any   reach,   even   when   there   is   flow   along   an   associated   flood   plain.   

The   substitution   for   c   from   Equation   2.38   in   Equation   2.37,   together   
with   the   first   two   assumptions   above,   gives   

(a'   
5   C.

ce.   (dF   
Q2   =

o   

where   

(2.39)   F,   d   dF,)    ,)2    
qdx'    +—    c,   --

+-   —   
di   c,   dr   ,    dT    

0('(Q,,    I   I    ).   dx   fl"    f   x    (-)2   dx'.   
0   S   

(2.40)   1-3    x)   =   
2   1717c   L   ,   3') /3   

1   

Here   the   channel   width   W,   is   assumed   to   be   approximately    uniform   
along   the   channel.   

2.8   Attenuation   of   peak   discharge   

At   the   peak   of   the   discharge   hydrograph   for   any   section   aQ/at   =   0.   If   the   
reach   is   sufficiently   short   so   that   aQ/at   ^   0   at   the   peak,   or   alternatively    
dF,/dre   0,   then   the   attenuation,    Q*,   of   the   peak   discharge    is   given   
approximately   by   

a'(F,,   L)   d
di2   Q*   —    F1   (2.41)   

where   all   the   functions   on   the   right   hand   side   of   Equation   2.41   are   evalu-
ated   for   the   peak   discharge   at   the   upstream   section   and   it   is   assumed   that   
q   =   0.   Because   of   the   close   connection   of   a'   with   the   attenuation   of   the   
peak   discharge    it   is   convenient    to   call   a   =   ce(F,,   L)   the   attenuation   
parameter   for   the   reach.   

The   attenuation   of   a   flood   wave   was   first   discussed   analytically    by   
Forchheimer    (1930),   who   considered   the   attenuation   of   the   peak   stage   
along   a   prismatic   channel.   Because   Forchheimer's   channel   was   prismatic,   
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the   integral    in   the   expression    for   a   above    did   not   appear    in   his   derivation.    

Van   der   Made    (1  968)   extended    Forchheimer's    analysis    to   include    the   

effects    of   overbank    flooding,    but   he   too   avoided    an   integral    formulation    

for   the   attenuation    by   using   the   concept    of   a   'stream    carrying    width'.    The   

importance    of   the   integrals    in   Equation    2.40   is   that   they   include    a   contri-

bution    to   the   attenuation    from    irregularities    in   the   width    of   the   flood    

plain    and   the   channel    slope    along    the   natural    river.    For   example,    if   the   
second    integral    were   replaced    by   the   square    of   the   average    value    of   )./s   

along   the   reach    times   the   length    of   the   reach,    a   significant    contribution    to   

the   attenuation    of   a   flood    wave    would    be   lost.   Analytically,    as   the   inte-

grand   contains    the   square    of   21s,   the   integral    is   a   minimum    when    )./s   is   

uniform    along    the   reach.    In   physical    terms    this   result    implies    that   for   a   

given   reach    a   short   wide   flood   plain   will   induce    a   larger    attenuation    of   an   

overbank    flood   than   a   flood   plain   with   the   same   area   uniformly    distributed    

along   the   reach,    provided    the   values    for   e,   are   similar    in   both   cases.    This   
conclusion    is   reinforced    by   the   fact   that   where    the   flood    plain    is   wide,    s   

is   usually   smaller    than   the   average    value,   3,   for   the   whole   reach.   

It   is   important    to   remember    that   the   flood   routing    solution    above    has   

only   been    developed    to   the   second    order:    that   is,   the   application    of   the   

solution    should    ideally    be   restricted    to   reaches    along    which    the   predicted    

attenuation    is   less   than,   say,   10   %   of   the   original    peak   discharge.    The   need   

for   such   a   restriction    on   the   use   of   the   solution   is   evident   from   the   theoretical    

work   of   Hayami    (1  951  )   and   the   computations    of   Di   Silvio    (1  969),    which    
indicate    that   in   prismatic    channels    the   rate   of   attenuation    appears    to   

decrease    exponentially    with   distance    downstream.    As   may   be   expected,    

when   a   flood   wave   attenuates,    the   curvature    at   the   peak   of   the   hydrograph    

is   reduced    at   sections    along    the   river,    so   reducing    the   rate   at   which    the   

wave    attenuates    further.    Hayami's    theoretical    solutions    show    that   this   

reduction    in   the   rate   of   attenuation    is   partly    a   consequence    of   the   term   

in   Equation    2.39   involving    d2F,/cr2.    Following    Hayami    (1  951  )   and   the   

theoretical    work   of   Hayashi    (1965),    the   formula    for   the   attenuation    of   the   
peak   discharge    in   Equation    2.40   can   be   regarded    as   the   first   order   term   

from   the   alternative    formula    

a,   dzF,ll
l     Q*   =   F1  {1   —   .    (2.42)    

2    c,   dr  JT   
However,    although    this   formula    may   be   more   accurate    than   Equation    

2.41   for   the   attenuation    of   a   flood    wave    in   a   long    reach,    it   should    be   

observed    that   the   higher    order    solutions    of   Equation    2.24   also   play   an   

important    part   in   determining    how   the   flood    wave    attenuates.    It   can   be   

anticipated    that   the   third   order    solution    for   the   attenuation    will   include    

third   and   fourth   order   derivatives    of   F,   at   the   peak   of   the   upstream    hydro-
graph.    So,   for   a   long   reach    Equation    2.42   will   be   accurate    to   the   second    

order    only.    In   addition,    Equation    2.39   shows    that   over   a   long   reach    the   
effect   of   changes    in   e,   and   a,   with    F1    can   be   important.    In   particular,    if   

de,/dF,    >   0   for   values    of   F,   in   the   neighbourhood    of   the   crest    of   a   flood    

wave,    then    the   decrease    in   the   rate   of   attenuation    will   be   less    than    if   
de.,/dF,   <O.   So,   for   these   reasons,    when   the   predicted    attenuation    along   the   
reach   is   more   than,   say,   10   %   of   the   original    peak   discharge,    it   is   preferable    

to   return    to   the   flood    routing    equation,    Equation    2.24,    and   to   solve    it   

numerically    for   the   propagation    of   the   entire    hydrograph    along    the   reach.    
In   this   way   a   more   accurate    result   will   be   obtained    for   the   attenuation    than   

by   using   the   formula    in   Equation    2.41.   
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2.9   Variable   parameter    diffusion   method   

If   c   in   Equation   2.24   is   defined   in   terms   of   the   average   speed,   e(Q),   along   
the   reach,   then   (1   has   to   be   defined   in   terms   of   a   similar   averaged   value   for   
the   attenuation    parameter.   Consequently,    Equation   2.24   becomes   

aQ   aQ    a    (a   aQ   3ac    0,2\2    

at   ±e    ax   =   Q   ax   )+   5L   )   eq.   

It   is   now   assumed    that   c,   and   a   defined    by   Equation    2.40   with   x   =   L,   
provide   an   adequate   definition    of   what   can   be   termed   the   equivalent    river   
model,   even   though   the   attenuation    predicted    by   Equation    2.41   may   be   
greater   than   10   %   of   the   original   peak   discharge.   

The   next   objective    is   to   solve   Equation    2.43   for   a   particular    flood   
hydrograph,    given   prescribed    functional    forms   for   e   and   a.   However,    it   is   
apparent    from    Equation    2.43   that   any   solution    for   the   routing    of   a   
hydrograph    using   this   equation    is   liable   to   be   sensitive    to   the   functional    
form   for   da/dQ.    In   addition,    because    it   happens    that   the   curve   fora   is   
generally    much   more   difficult    to   calculate    for   a   particular    river   than   the   
corresponding    curve   for   c7,   it   was   decided    to   confine    attention    to   the   
equation   

aQ   _aQ    a   a2Q   
=   —   Q   —   +eq.   (2.44)   

at    ax    L   ax2   

The   flood   routing    method    based   on   Equation    2.44   with   c   and   a   as   
prescribed   functions   of   Q   can   be   termed   the   variable   parameter    diffusion   
method.   

2.10   Calculation    of   the   attenuation    parameter    

The   most   convenient    way   of   evaluating    a   for   a   given   reach   of   river   is   to   
divide   the   reach   into   a   number    of   sub-reaches,    so   that   the   geographical    
width   of   the   prototype    flood   plain   in   each   sub-reach    is   approximately    
uniform.   a   can   then   be   written   as   

M    p
m

-    M    

1(Q)   =   {   

1   

7   
}   3   

E   ,    2   I   (2.45)   
sm   m =1    L  n.STni   

where   Pm    is   the   plan   area   of   the   inundated    flood   plain   and   the   channel   in   
the   inth   sub-reach,   and   Lm    and   sm    are   the   corresponding    length   and   bottom   
slope   of   the   channel.    It   has   again   been   assumed    that   the   width   of   the   
channel,   14/,,   is   approximately    uniform   along   the   reach.   

a(Q)   can   readily    be   found   for   the   largest    recorded    flood   if   limits   of   
flooding   on   the   flood   plain   are   known.   In   addition,   x   can   be   calculated   for   
a   small   inbank   flood   from   

(2.43)   

However,    intermediate    values   for   a(Q)   are   much   more   difficult    to   
obtain   unless   there   are   data   available   on   the   extent   of   flooding   by   different   
overbank    floods.    If   the   data   are   not   available,    then   the   curve   for   a(Q)   
between    the   inbank   and   extreme    flood   values   has   to   be   estimated.    The   
present    investigation    has   indicated    that   irregularities    in   the   channel    
width   may   tend   to   make   a   approximately    constant    for   Q<   01,,   where   01,   

is   the   average   value   for   the   bankfull   discharge   along   the   reach.   Obviously    
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the   shape   of   the   curve   for   Q>   0,   depends   to   a   large   extent   on   the   flatness   
or   otherwise   of   the   flood   plan.   

a(Q)   has   been   obtained   for   the   reach   of   the   River   Wye   (Herefordshire)    
between   Erwood   and   Belmont.   As   flooding   in   this   reach   forms   the   major   
case   study   in   Chapter   3,   it   is   sufficient   at   this   stage   to   draw   attention   to   the   
relevant   curve   for   a(Q)   in   Figure   2.4.   

1?   2   0   
a   Calculated    

values   

a   

Cf.   1   0   

0   

Fig   2.4   Attenuation   parameter   for   
the   Erwood   to   Belmont   reach   of   the   

< 00   River   Wye.   0    200    400    600    800    1   000    1   200    
DISCHARGE    IcrlVs)   

2.11   Calculation   of   the   convection   speed   

The   procedure   for   calculating   the   speed   e   from   records   of   previous   floods   
is   facilitated   by   having   good   stage   recording   stations   along   the   river,   and   
at   least   one   gauging    station   with   a   reasonably    accurate    rating   curve.   If   
there   is   no   reliable   rating   equation   for   any   station   along   the   river   it   may   
still   be   possible   to   find   e(Q).   In   this   case,   unit   hydrograph    or   some   similar   
theory   has   to   be   used,   both   to   obtain   the   peak   discharges    of   previous    
floods   to   correlate   with   the   observed   speeds   of   those   floods,   and   to   generate   
discharge   hydrographs    at   the   upstream   section   as   the   input   for   the   flood   
routing   method.   For   the   River   Wye,   data   were   extracted   from   the   gauging   
stations    at   Erwood    and   Belmont.    Both   of   these   stations    have   rating   
equations   which   are   reasonably    accurate   even   for   high   flows,   and   so   the   
flow   data   from   the   reach   between   the   stations   are   of   good   quality.   

It   should   be   emphasised    that   e(Q)   is   properly   defined   as   the   average   
speed   along   a   reach   of   the   flood   wave   with   peak   discharge   Q   under   the   
condition   that   there   is   no   attenuation.    This   condition   is   equivalent    to   the   
requirement   that   e(Q)   is   the   speed   derived   from   the   equations   for   steady   
flow   with   discharge   Q.   When   there   is   attenuation    of   the   peak   discharge    
the   observed   speed   of   the   flood   peak   is   a   function   not   only   of   e   but   also   of   
the   shape   of   the   discharge   hydrograph.    For   example,   Hayami   (1951)   has   
shown   from   a   theoretical    treatment   of   the   convection-diffusion    equation   
for   the   stage,   in   which   co   and   p,   the   convection   and   diffusion   parameters,    
are   assumed   constant,    that   flood   waves   of   short   periods   propagate    with   
speeds   greater   than   w.   If   the   observed    speed   of   the   flood   wave   is   LITp   
where   T,   is   the   travel   time   of   the   peak   along   the   reach,   then   a   correction    
to   LIT;   can   be   derived   from   Hayami's   analysis   to   give   

L   2a   
=   L Q*   (2.47)   Tp   

(see   the   Appendix    at   the   end   of   this   chapter).   In   addition,   because   c   is   a   
function   of   Q,   and   because   in   longer   reaches   it   is   not   necessarily   true   that   
dFadt•:.-_0    at   the   peak   of   the   hydrograph    for   a   downstream    section,   then   
LITp    is   a   function   of   de/dQ   and   possibly   dd/dQ.   

Experiments    (Price,   1973b)   with   numerical    models   of   flooding    in   
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Fig   2.5   Speed—discharge    curves   for   
the   Erwood    to   Belmont    reach   of   the   
River   Wye.   

synthetic   rivers   indicate   that   there   is   a   strong   dependence   ofJ   on   d(L/Tp)id   Q   
and   on   the   attenuation    Q*.   For   example,   it   is   found   that   the   curves   for   
LITp    and   e(Q)   intersect   where   d(LITp)IdQ-0.   Further,   the   deviation    
between   the   two   curves   is   greatest   when   the   floods   are   peaky;   in   other   
words,   when   the   attenuation   is   large.   Consequently,    it   is   suggested   that   e   
should   be   defined   by   

d   L   
=   Q*   —   —   

dQ   
(2.48)   

Tp   

where   w   is   given   by   Equation   2.47.   
Naturally   the   definition   of   e   by   Equation   2.48   is   not   entirely   satisfac-

tory.   One   of   the   main   objections   to   Equation   2.48   is   that   e   is   now   a   func-
tion   of   Q*,   which   is   certainly   not   unique   for   a   given   Op.   However,   like   the   
assumptions    of   unit   hydrograph    theory,   it   can   be   assumed    that   in   the   
mean   Q*   is   proportional    to   Q,.   The   success   of   the   flood   routing   model   
below   in   predicting    floods   in   the   River   Wye   appears   to   establish    that   
Equation   2.48   is   a   reasonable   definition   of   e   in   Equation   2.44.   

Figure   2.5   shows   the   points   for   LITp    and   e(   p)    for   the   reach   of   the   
River   Wye   between   Erwood   and   Belmont   together   with   the   corresponding   
estimates   of   the   curves   through   these   points.   

200   400    600    800    1000    1200    

Discharge    (m3/s)    

The   shape   of,   say,   the   c   curve   in   Figure   2.5   is   typical   of   almost   any   
reach   of   a   natural   river.   There   are   a   number   of   points   of   interest.    For   
example,   c   has   a   maximum   value   for   a   discharge   which   is   usually   less   than   
the   average   bankfull   discharge    along   the   reach.   This   shows   that   small   
inbank   floods   will   travel   considerably    faster   than   a   flood   which   is   just   
bankfull.   The   main   reason   for   this   effect   is   that   the   river   channel   generally   
has   a   more   irregular   surface   width   as   the   depth   of   water   increases,   and   the   
irregularities    increase   the   effective   storage   of   the   channel.   This   storage   is   
magnified   when   water   begins   to   pond   up   on   the   flood   plain.   So   for   some   
discharge   greater   than   the   bankfull   discharge   e.   will   be   a   minimum.   Here   
the   river   is   most   efficient   at   storing   water   and   attenuating   flood   peaks.   As   
the   discharge   increases   there   is   an   effective   flow   of   water   along   the   flood   
plain   and   the   speed   also   increases.   For   extreme   discharges   the   whole   of   the   
flood   plain   begins   to   act   like   the   main   channel.   
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The   estimation    of   LITp    for   floods   strongly    affected    by   lateral   runoff   
along   the   reach,   or   by   a   tributary    with   a   significant    discharge,    can   be   
difficult.    If   the   runoff   or   the   discharge    from   the   tributary    is   reasonably    
steady   then   it   is   advisable   to   plot   LITp    against   the   value   of   Q,   equal   to   the   
estimated   average   peak   discharge   with   no   lateral   inflow.   

Where   local   records   for   the   times   of   flood   peaks   at   the   upstream    and   
downstream    ends   of   the   reach   are   not   available   or   only   one   or   two   times   
are   known,   the   curve   defining   e(Q)   has   to   be   determined    using   Equations    
2.18   and   2.21.   However,   it   has   already   been   commented   that   the   use   of   the   
theoretical   Equations   2.18   and   2.21   to   define   the   speed   is   extremely   diffi-
cult   due   to   the   need   to   specify   the   roughness    coefficients.    Whereas    the   
Manning's   n   can   be   estimated   with   some   degree   of   precision   for   a   natural   
river   channel,   the   values   of   11   for   the   flood   plain   can   have   large   variations   
depending    on   the   texture   of   the   surface   and   the   presence   of   obstructions    
such   as   trees   and   hedges.   In   addition   there   is   some   doubt   about   the   value   
of   Manning's    n   for   the   boundary   of   the   channel   flow   when   there   is   over-
bank   flooding.   Zheleznyakov    (1971)   has   indicated   that   the   roughness   due   
to   the   shear   between   the   flow   in   the   channel   and   over   the   flood   plain   can   
play   a   significant   role   in   reducing   the   total   discharge   in   the   river.   Because   
of   these   difficulties   it   is   emphasised   that   the   following   method   for   produc-
ing   a   synthetic   speed—discharge    curve   should   be   used   with   caution.   

In   the   case   of   a   reasonably   flat   flood   plain   and   a   wide   channel,   e   and   Q   
are   approximately    given   by   

eb    =   [z
2/3   K(z   —   1)2/31   =   b   f   (z.    K)   

A   T-   '    
and   

Q   =   Qb   [2513   +147:   1)5"]   Obf2(Z,     K)   

where   

K   =   
—3/2   Wrfl   

141c   fir   

s i   
Qb    =   --c    •    

ne   

Here,   eb/7,   and   Qb   are   the   bankfull   values   for   e   and   Q,   and   )7   and   yb    are   the   
average   depth   and   bankfull   depth   along   the   reach.   It   is   suggested    that   yb   
should   be   defined   by   Ab/   We,   where   Ab   is   an   average   bankfull   area,   prefer-
ably   measured   off   cross-sectional    data,   and   We    is   an   estimated    width   for   
the   channel   averaged   over   depth.   This   means   that   ):   is   defined   by   Wb/   We   
when   .)7   =   yb    (z   =   1).   Note   that   Wb/   We    is   only   equal   to   unity   when   the   
channel   has   a   perfectly    rectangular    cross-section.    The   parameters    K,   e,   
and   Qb    can   readily   be   calculated    from   prototype    data   with   estimates    for   
iii    and   Flf.   If   values   for   eb    and   01,   are   known   from   the   prototype,    then   fie   
should    be   calculated    directly    from   the   expressions    in   Equation    2.51.   
Similarly,    if   an   isolated   record   of   e   and   Q   exists   for   a   large   flood,   it   is   
preferable   to   use   this   record   to   find   K   and   hence   to   calculate   fir.   If   such   a   
record   is   not   available,    it   is   suggested    that   K   be   chosen   between   0.1   and   
0.2,   depending   on   whether   the   flood   plain   is   regular   or   irregular   along   the   
river   and   whether   the   flow   is   relatively   free   of   obstructions.   The   curves   for   
an   inbank   flood   with   T,   =   1   and   an   overbank    flood   with   j   given   some   
predetermined    value   greater    than   unity,   can   then   be   drawn   using   the   
curves   for   f,   and   J2    in   Figure   2.6.   
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Fig 2.6a Design curves to calculate
theoretical speed—discharge curve.
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Figure 2.5 shows the theoretical curves for C.,derived from data for the
Erwood to Belmont reach. The following data were used:
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= 50 m = 0.0374

= 0.00088 eb = 3.33 m

yb = 4.0 m = 8.18 (2.52)

Q, = 400 m3 s- K = 1.680

= 1.1 /if  = 0.184

W f = 359 m
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Calculation of the convection speed 2.11

For an overbank flood

= 1.01 m s- 1

Q = 1090 m3 s'

Again there does not appear to be any precise way of finding the shape of
the speed-discharge curve for the intermediate floods and this part of the
curve has to be estimated.



Fig   2.7   Finite    difference    net.    
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2.12   Numerical    technique    

The   equation   to   be   solved   numerically    is   

aQ   as2    a   02Q   
at   +a    ax   =   ax2     +   (71.   (2.53)   

At   the   upstream    boundary,    Q   is   prescribed    as   a   function    of   t,   and   at   the   
downstream    boundary    a   'free'   condition    is   used.    This   free   boundary    
condition    is   based   on   the   characteristic    form   of   Equation    2.53   

dQ    a    a2c,
dt   

_   
=   EQ    axe    +'   

with   the   characteristic    curve   given   by   

dx   

di   
=   e.   

A   numerical    solution    of   Equation    2.53   for   the   equivalent    river   model   
can   be   obtained   by   writing   the   equation   in   finite   difference    form   using   the   
implicit   Crank—Nicholson    scheme   (Richtmyer    &   Morton,   1967):   

4A   
_   

x   
c7(Q0[Q1,;_i.

i   —   
Q,;_.    1   

_   Q .
)qt,   +   t   

2LAx

At   
2   cf(Q.)Q.[Qn'    —   2   QT+]+   

+   QT.4_   1    —   2   CI'   i ]   =   0   (2.56)    

for   all   1   <j<   J   —   1,   where   

Qa   =   1[Qr1    +   (2.57)   

Qi    denotes   the   finite   difference    expression    in   Equation    2.56   and   J   is   the   
label   for   the   downstream    boundary.    The   subscript    j   refers   to   a   variable    
evaluated   at   the   point   distance   jAx   downstream    of   the   upstream    boundary,    
where   Ax   is   the   space   step.   Similarly,   the   superscript   n   refers   to   the   variable   
evaluated    at   the   time   nAt   after   the   beginning    of   the   calculations,    where   At   
is   the   time   step;   see   Figure   2.7.   

(2.54)   

(2.55)   

A   A    A    A    A   n+2   

Q   Io   
Characteristic   cu   rve   I    

7-1   n   
0.41     

n   -6   -    A   A    A   /o    

0   1   -1   1+1    Jj    J    

The   boundary    conditions    for   Equation    2.53   are   
initial   condition:    

Q°   =   =    constant   for   0   <j   <J   

upstream   condition:    

0=    F,(nAt)    for   0<n   
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downstream    condition:   
aznyi    

'   =   +[ey.    chn•+   
LQ   J'ax2    

 ]et    (2.60)   

from   Equation   2.54.   F,(t)   above   is   the   recorded    discharge    hydrograph    
which   is   used   as   the   input   for   the   model   at   the   upstream    boundary.    J'   in   
Equation    2.60   refers   to   the   point   at   time   net   on   the   characteristic    curve   
through   the   point   {JAx,   (n   +1)At}.   The   distance,   Ax',   of   the   point   labelled   
J'   from   the   downstream   boundary   is   given   approximately    by   

Ax'   =   ey,   At   (2.61)    

from   Equation   2.55.   Qp,   is   then   calculated   from   a   quadratic   spline   through   
0,   Q7_   and   Q3_2    using   Ax'.   But   as   Ax'   is   itself   a   function   of   Qi   it   is   
necessary   to   iterate   to   find   an   accurate   value   for   Q.     Once   Qr.   is   known,   
values   for   q,   ay,   and   (a2    oax-2);   can   be   evaluated    and   substituted    in   
Equation    2.60   to   find   Q.   

Given   the   values   for   0,-"   Q7+1    and   the   {0}    it   remains   to   solve   the   
set   of   non-linear    simultaneous    equations    in   the   {Qr+I    }.   The   most   con-
venient   way   of   solving   these   equations   is   to   use   the   generalised    Newton   
iteration   procedure   (Amein   and   Fang,   1970).   This   procedure   involves   the   
evaluation   of   Qi    for   estimated   values   of   the   {Qc+1}.   The    {0+1}   are   then   
replaced   by   the   set   {0+1    +   d0+1},   where   the   {dCor   }   are   the   solution    
of   the   simultaneous    linear   equations   

ai , j_,   dgy+1   +a   dQ    Q.    

The   matrix   {aj,,}   is   defined   by   

=0    k=    I,   2,   .   .   .   —2    

=   r    At   
e+   

 At    
aQ.   

L4Ax    2LAx2    

At   de   
=   I   +   -   -   -    1  1    +   Q;41  —    11    8Ax   d   Qa   

At   de   n+i   At   da   _    
2   d   Q„   q'   4LAA-2    —    2   Q?   +1    +   

At   
+   QT,    1-2Qc   +   Q;1_11   

+LAx2    
 a   Q   

'   •   

At   At   
aJ    •   1+    '   2LAx2   «Q.   

ai,k   = 0   k    =   j   +   2,   .   .   .   ,   J.   

Because   of   the   banded   nature   of   the   matrix   it    is   a   simple   matter   to   
set   up   a   Gaussian   elimination   procedure   to   solve   the   linear   equations.   First   
define   

a2,   =    a2,2   (72 , 3   =   (22 , 3   

=   

—   a) , )   
a•   •   J.J-1   a;- 1,.i +1   (2.64)   

aJ,J+1   =   a.   •   

0   a:    J-1   j-i,j+1    fli   =    
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for   j   =   3,   4,   .   .   .   ,   J   —   1.   Then   

d   =   
-    I   (2.65)   

a1-   I   ,   1-   1   

and   

d   Qr1    =   (f2;   —   1     dQ11:,+-11)/ai,   (2.66)    

for   j   =   J   —   2,   J   —   3,   .   .   .   ,   2.   So   it   is   a   matter   of   sweeping   in   each   direction   
along   the   band   of   the   matrix   When    the   values   of   the   {dQr1}   
have   been   calculated,   the   new   values   for   {   Qi1+   I    }   are   evaluated   and   another   
set   of   values   for   the   {Oi}   are   found.   The   iteration   continues   until   the   
maximum   value   of   Id   Q;   for    a   particular   iteration   is   less   than   a   certain   
error   value.   As   a   rough   guide   this   error   value   can   be   taken   as   10'   times   
the   peak   discharge   of   the   largest   floods   in   the   particular   river.   For   example,   
in   the   River   Wye   between   Erwood   and   Belmont,   large   floods   have   peak   
discharges   of   the   order   of   103    m3    s-1.   This   gives   an   error   value   for   the   
iteration   of   10-    m3   

It   will   be   observed   that   the   forms   of   the   derivatives   for   e   and   a   with   
respect   to   Q.   in   Equation   2.63   have   not   been   specified   in   detail.   One   way   
of   deriving   expressions   for   de/dQa    and   da/dQa    would   be   to   define   quadratic   
splines   through   four   of   the   data   points   adjacent   to   Q.   for   each   of   a   and   a   
to   differentiate    the   resulting   quadratic   equation   and   so   evaluate   de/dQ   
and   da/dQ   at   Q   =   Qa.   However,   small   errors   in   the   data   for   e   and   a   can   
produce   incorrect   large   values   for   the   gradients   of   e   and   a.   These   large   
values   inevitably   upset   the   iteration   process   described   above.   So   to   avoid   
such   errors   it   is   preferable   to   use   smoothed   quadratic   curves.   In   other   
words,   a   quadratic   curve   is   fitted   through,   say,   the   four   adjacent   points   to   
Q.   for   both   e   and   a   by   the   method   of   least   squares.   e,   a,   dc/dQa    and   da/dQa   
are   all   calculated   from   the   equations   for   these   new   quadratic   curves.   The   
details   of   the   procedure   for   calculating   the   coefficients   of   the   equations   can   
be   found   in   Section   5.3   in   the   computer    program,   FLOODS2,   under   the   
subroutines   DATIN   and   FIT.   

For   maximum   accuracy   of   the   implicit   finite   difference   scheme   above,   
Ax   and   At   should   be   chosen   so   that   

Ax   
At   >   eave   (2.67)   

where   cave    is   an   average   value   for   a   defined   over   the   anticipated   range   of   
values   for   Q.   However,   there   are   two   additional   constraints   on   At   which   
have   to   be   satisfied.   The   first   constraint   is   to   ensure   that   enough   detail   
of   the   hydrograph    at   the   upstream    boundary    is   fed   into   the   model.   
Because   the   peak   of   the   hydrograph   is   usually   the   most   important   feature,   
it   is   suggested   here   that   At   is   chosen   so   that   

At<    2   
(   1   

Qdt2    
d2   +   

(2.68)   )   

where   the   right   hand   side   of   this   inequality   is   evaluated   at   the   peak   of   the   
upstream   hydrograph.   The   second   constraint   on   At   comes   from   the   down-
stream   boundary   condition.   Basically,   it   is   necessary   that   the   length   of   the   
characteristic   used   at   the   downstream   boundary   between   the   old   and   new   
time   levels   is   sufficiently   small   so   that   the   characteristic   curve   is   approxi-
mately   a   straight   line.   Such   a   condition   is   given   analytically   by   
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At<   (2.69)    

where   IdQ/dilm„„   is   the   maximum    gradient   of   the   upstream   hydrograph.    
min    and   Ide/dQlmax    are   the   minimum    and   maximum    values    of   e   and   

Idc/dQI   in   the   range   of   discharge   anticipated   at   the   downstream   boundary.   
In   practice,   At   should   be   determined    first   from   Equations    2.68   and   2.69,   
and   Ax   should   then   be   calculated    from   Equation    2.67.   Finally,    Ax   is   
adjusted   so   that   L/Lx   is   an   integer.   

2.13   Application    of   the   flood   routing    method    

The   method   described   in   the   previous   sections   has   been   applied   to   floods   
in   a   number   of   British   rivers.   These   cases   are   discussed   in   the   following    
chapter.    It   is   sufficient    here   to   draw   attention    to   results   for   two   floods   
in   the   Erwood   to   Belmont    reach   of   the   River   Wye.   Figures   2.8   and   2.9   
show   the   recorded   and   predicted    hydrographs    at   Belmont    for   an   inbank   
flood   and   a   large   overbank   flood   respectively.   In   both   cases   the   agreement   
between   the   observed    and   theoretical    hydrographs    is   good   on   the   rising   
part   of   the   hydrograph.    In   addition,   the   predicted   peak   discharge   and   time   
of   arrival   of   the   peak   are   in   good   agreement    with   the   records    of   both   
floods.   
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Fig   2.9   Overbank    flood   for   the   River   3   4    5    7    
Wye,   December    1960.   DATE   

There   is,   however,   some   departure   in   the   predicted   hydrograph    from   
the   recorded   hydrograph   for   the   large   flood   as   the   discharge   is   decreasing.   
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Two   main   reasons   can   be   given   for   this   disagreement.    The   first   reason   is   
a   tendency   for   the   implicit   finite   difference   scheme   to   become   inaccurate.   
This   inaccuracy   occurs   when   0Q1ar   is   large.   For   example,   it   was   noted   in   
the   discussion    of   the   kinematic    wave   as   the   first   order   solution   of   the   
convection-diffusion    equation   that,   when   the   water   is   receding   from   the   
flood   plain,   the   change   in   the   speed   of   the   kinematic    wave   produces    a   
steepening   of   the   curve   for   the   downstream   hydrograph.   Correspondingly,    
if   the   change   in   the   speed   with   discharge   is   large   and   the   reach   is   suffi-
ciently   long,   then   aQ//ix   can   be   infinite.   Analytically,   it   can   be   shown   that   
this   situation   is   equivalent   to   the   condition   that   4),   as   defined   in   Equation   
2.34,   is   infinite.   Obviously,   the   implicit   finite   difference   scheme   will   not   be   
able   to   deal   with   this   case.   

The   second   reason   for   the   disagreement    between    the   recorded    and   
predicted   hydrographs    is   that   the   inertia   terms   in   the   dynamic   equation   
(Equation    2.2),   and   the   neglected    terms   in   Equation    2.43   may   become   
important    when   there   is   extensive    inundation    of   a   flood   plain.   As   yet,   
there   is   no   evidence   that   the   inertia   terms   are   important   in   this   particular   
case.   In   addition,   a   flood   routing   method   based   on   Equation   2.43   instead   
of   Equation   2.44,   gives   only   a   marginal   improvement    in   accuracy   (Price,   
1973a).   It   is   possible   that   a   third   reason   should   be   adduced   for   the   disagree-
ment   between   the   hydrographs,   namely   that   the   drainage   off   the   flood   plain   
in   nature   leads   to   a   violation    of   the   condition,    assumed    above,   that   the   
water   surface   across   the   flood   plain   is   uniform   and   has   the   same   level   as   
the   water   surface   in   the   channel.   The   condition,   of   course,   is   not   unreason-
able   when   the   water   level   is   rising   in   the   channel,   as   the   flow   of   water   on   to   
the   flood   plain   is   governed   primarily   by   the   rate   of   rise   of   the   water   level.   
However,   when   the   water   level   is   falling,   the   drainage   off   the   flood   plain   
into   the   channel   is   controlled   more   by   the   flood   plain   characteristics,    such   
as   the   lateral   slope   and   roughness,   than   by   the   rate   of   fall   of   the   water   level   
in   the   channel.   It   can   therefore   be   argued   that   the   retention   of   water   on   the   
flood   plain   when   the   water   level   is   falling   has   two   effects.   The   first   effect   
is   that   the   total   discharge   along   the   river   (when   the   water   level   is   above   
bankfull)    is   less   than   if   the   water   level   was   uniform   across   the   river   at   
each   section.   Similarly,   when   the   water   level   in   the   channel   is   at   or   below   
bankfull,   the   drainage   off   the   flood   plain   tends   to   increase   the   discharge   
along   the   river.   Consequently,    the   assumption    of   a   uniform   water   level   
across   the   river   is   questionable   for   rivers   with   large   flood   plains.   

It   would   appear   therefore   that   a   condition   limiting   the   change   in   the   
speed   of   the   flood   wave   with   discharge   when   the   flood   level   is   falling   may   
help   both   to   avoid   the   numerical   inaccuracy   in   the   finite   difference   scheme   
and   to   be   more   realistic    physically.    Run   2   in   Figure   2.9   illustrates    the   
result   of   fixing   e   when   the   discharge   at   any   point   along   the   equivalent   river   
model   falls   below   a   certain   value,   Qx,   which   in   this   case   is   400   m3    s-1.   
The   condition   is   only   applied   however   when   the   discharge   has   previously   
exceeded    some   value   greater   than   the   bankfull   discharge    in   the   natural   
river.   It   will   be   seen   that   there   is   a   significant   improvement   in   the   predicted   
hydrograph   for   the   inbank   part   of   the   flood.   

It   is   evident   from   the   results   in   this   section   and   in   the   following   chapter   
that   the   variable   parameter   diffusion   method   holds   considerable    promise   
for   application   to   floods   in   rivers   with   inundation   of   extensive   flood   plains.   
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2.14   Linear   diffusion   method   

The   linear   diffusion    method    as   used   by   Hayami    (1951),    Thomas    &   
Wormleaton    (1970,   1971)   and   a   number   of   others   with   the   stage   as   the   
dependent   variable,   is   based   on   the   equation   

2   c.   aco    a    a   Q,    
—+01—   =   p

a   
—   +coq   (2.70)   

at   ax   x2   

where   both   w   and   p   are   regarded   as   constant   parameters.    In   this   case   p   
is   defined   by   

it   
ot(Q   

=   L P   Q   (2.71)   

w   is   again   defined   by   Equation   2.47.   Because   Equation   2.71   is   strictly   
linear,   the   corresponding   finite   difference   equation   can   be   solved   directly,   
without   using   the   generalised   Newton   iteration   procedure.   Again,   a   set   of   
equations    similar   to   Equation    2.62   can   be   derived   with   the   {Qr-1}   in   
place   of   the   {d   Qr.   1}.   The   same   Gaussian   elimination   procedure   gives   the   
most   efficient   way   of   solving   the   equations.   

2.15   Muskingum—Cunge   method   

The   improvement    of   the   Muskingum    method   is   presented   in   detail   by   
Cunge   (1969).   However,   a   brief   description   is   given   here   for   the   sake   of   
completeness.   

Suppose   that   the   inflow   at   the   upstream   section   of   a   reach   is   given   by   
Qj    and   the   outflow    by   Then    from   the   Muskingum    equations    
(Equations   1.1   and   1.2)   it   follows   that   

K   —
dt

{EQ   j+   (1   —   e)Q   ,}   =   Qj—Qj+1.   (2.72)    

This   equation   can   be   rewritten   in   the   finite   difference   form:   

At   eQ
9+1    4-   (1   —   e)QPV   8QI   —(1   e)QT+11   

"    
=   1{QP+1—  QT,-11+QT—,QT+1).   

Now   if   K   is   defined   by   

Ax   
K   =   —   

where   w   is   the   average   speed   of   the   flood   peak   arid   Ax   is   the   length   of   the   
reach,   then   it   can   be   seen   that   Equation   2.73   is   a   finite   difference   represen-
tation   of   the   kinematic   wave   equation   

aQ    +waQ    —   0.   
at   ax    

So   with   K   defined   as   in   Equation   2.74   it   remains   to   calculate   E.   At   first   
sight   there   is   no   obvious   form   for   a,   but   Cunge   observed   that   by   expressing   
the   {Q1'}   in   terms   of   their   Taylor   expansions   Equation   2.73   is   also   a   finite   
difference   representation   of   the   equation   

aQ    aQ    02Q   
—a-t-   =    Ox2    
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when   

=   —    e)wAx.   

As   µ   =   a   OpIL   from   Equation   2.71,   it   follows   that   

c'QP   E   =   2   

where   L   is   now   the   length   of   the   whole   reach   which   is   divided   into   a   
number   of   sub-reaches,    each   of   length   Ax.   Again   a   is   the   value   of   the   
attenuation    parameter    corresponding    to   the   discharge   O   p   ,   and   w   is   the   
speed   as   defined   by   Equation   2.47.   Cunge   originally    derived   Equation   
2.78   in   terms   of   the   average   slope   and   width   of   the   channel.   all,   in   Equation   
2.78   replaces   Cunge's   factor   (2s   W)-   

Once   K   and   E   have   been   determined,   the   discharge   hydrograph   at   the   
downstream    end   of   the   reach   is   determined   from   the   recurrence   relation-
ship   

Q11+1'   =   C1   +    C2    QT+1    +   C3    Qi1+1+   C4   (2.79)    

where   

e+14t   
Cl,   —   

—e)+1Af   
(2.80)   

K(1   --e)---4At   qAtAx    
C3    =   

K(1   —e)+1At   C4    K(1   —E)+    4t   

The   accuracy   of   the   finite   difference   scheme   in   Equation   2.79   depends   
largely   on   the   magnitude   of   e.   For   floods   in   British   rivers   Ax   can   be   set   
equal   to   L/10   and   E   is   then   calculated    from   Equation    2.78.   Then   the   
relevant   value   of   Ax/(wAt)   is   read   off   the   curve   in   Figure   2.10   for   the   
particular   s,   and   the   corresponding   value   for   At   is   determined.   In   practice,   
of   course,   the   reach   length   L   will   be   divided   into   a   number   of   sub-reaches,   
each   of   length   Ax,   and   At   can   be   chosen   as   an   integral   number   of   hours   so   
that   Ax/(wAt)    lies   below   the   curve   in   Figure   2.10.   This   is   sufficient    to   
ensure   accuracy   of   the   method.   
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2.16   Summary   of   methods   

It   is   valuable   to   summarise   the   relationships   between   all   the   flood   routing   
methods   derived   and   referred   to   in   this   chapter   (Figure   2.11).   

Firstly   it   is   anticipated   that   a   method   for   solving   the   full   Saint—Venant   
equations   is   likely   to   give   the   most   accurate   results   for   a   flood   routing   
study   if   features   of   the   flow,   such   as   flow   over   the   flood   plain,   are   correctly   
modelled,   and   there   are   sufficient   data   to   determine   the   roughness   coeffi-
cients   with   precision.   The   next   class   of   flood   routing   method   is   obtained   
by   ignoring   the   inertia   terms   in   the   dynamic   equation.   Without   making   
any   further   approximation    Equation    2.10   can   be   solved   using,   say,   a   

Approximation    Method    of   
solution    

Full   Saint-Venant    

equations    None    A   finite    difference    scheme    

on   eqs   2.1   and    2.2   

Neglect    inertia    terms    Implicit    finite    difference    

in   dynamic    equation    scheme    on   eq   2.10   

Regard    ay/ax    

as   small    
Variable    parameter    

diffusion    method    

Assume    E.   00   are    

constant    parameters    
Linear    diffusion    

method    

Fig   2.11   Summary    of   flood   routing    
methods.   

Replace    dynamic    
equation    by   a   linear    

expression    for   the   
storage    

Muskingum-Cunge    

method    

Crank—Nicholson   type   of   implicit   finite   difference   scheme.   Such   a   method   
has   not   been   considered   here   because   of   the   need   to   know   the   roughness   
coefficient.   The   diffusion   and   kinematic   wave   methods   essentially   regard   
ay/ax   as   small   compared   with   the   bottom   slope,   and   e   and   a,   or   .6,    Q,   as   
either   functions   of   Q   or   constant   parameters   for   a   given   flood.   The   final   
class   of   methods   assumes   that   the   dynamic   equation   can   be   replaced   by   an   
algebraic   relationship   between   the   storage   and   the   inflow   and   outflow   to   
the   reach.   This   is   the   basis   of   the   Muskingum   and   similar   storage   routing   
methods.   

2.17   Appendix:   derivation   of   formula   for   the   convection   speed,   co   
(linear   theory)   

Hayami   (1951)   based   his   diffusion   method   on   a   linear   convection-diffusion   
equation   for   the   stage.   The   corresponding   equation   for   the   discharge   is   

aQ    aQ    a2    
=    Q    

at   ax    ax2    

where   w   and   ti   are   constant   parameters.    Consider   the   elementary   flood   
wave   solution   

35   

(2.81)   



Theory   of   flood   routing   

co   
Q   =   Qr   exPf(ii i

—pr)x}sin(yrt—qrx)   (2.82)    

where   Qr    is   the   peak   discharge   at   x   =   0,   y,?Qr    is   the   curvature   at   the   peak   
of   the   hydrograph    at   x   =   0,   and   

(P) _   (2p)   Kw2)2 +   
co2)i

.    (2.83)   

The   observed    speed   of   the   flood   peak   is   yr/q,   =   L   IT   p.   In   particular,   

when   

w2/4p>    Yr   

as   is   the   case   for   floods   in   British   rivers,   then   

(2.84)   

Yr   L   
—
yr   

=   
TP   

Similarly,   

2p2   y   

Equation   2.8,   

(2.85)   

(2.86)   

CU   
3   

.   
(0   

with   the   condition   in   

2   
PY   r   

'=""   +   Pr   
2,u   co   

3    •   

If   p   is   now   

gQr   

defined   by   

(2.87)   P   = L   

then   the   attenuation   along   the   reach   is   given   by   

Q*   =   —exp{(7
1

—pr)L}1    
PY,2L   Q,    2,,   

Yr   Vr•   (2.88)   Qr   
0)3   

=   
0)3   

So   from   Equations   2.85   and   2.88   

L   21Q*   
(2.89)   

C    °+   L2    

or   

L   2a   Q*   
(2.90)   

T    L   2    
P   
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3   Comparison    of   flood   routing   methods   

3.1   Methods   considered   

This   chapter   describes   a   comparison    of   several   flood   routing   methods   
appropriate   for   use   in   British   rivers.   As   explained   in   Chapter   I,   attention   
is   confined   in   this   study   to   the   simpler   types   of   flood   routing   methods:   
those   methods   which   are   based   on   an   accurate   solution   of   the   full   Saint—
Venant   equations   are   ignored   as   being   too   complex   for   general   use   and   so   
requiring   the   assistance   of   a   research   organisation.    Three   of   the   simpler   
types   of   flood   routing   methods   are   considered:   

a   Muskingum    method,   devised   by   McCarthy   (1938)   and   improved   by   
Cunge   (1969).   

b   Linear   diffusion   method,   formulated   by   Hayami   (1951)   and   developed   
as   a   numerical   method   by   Thomas   &   Wormleaton   (1970,   1971).   

c   Variable    parameter    diffusion    method,    described    in   the   previous    
chapter.   

The   concepts   used   in   the   derivation    of   the   Muskingum    method   are   
basically   hydrological,   so   the   inclusion   of   the   method   may   be   disturbing   
to   those   who   anticipate    that   attention   should   be   confined   to   hydraulic    
flood   routing   methods.   It   happens,   however,   that   the   Muskingum   method   
and   similar   storage   routing   methods   have   been   used   for   a   large   number   of   
years   to   route   floods   in   rivers,   and   the   method   has   been   successfully    
applied   in   a   number   of   cases;   for   example    see   McCarthy    (1938)   and   
Pitman   &   Midgley   (1966).   In   addition,    the   improvement    of   the   basic   
Muskingum   method   by   Cunge,   referred   to   in   Chapter   1   and   described   in   
Section   2.15,   essentially    converts   the   Muskingum    method   from   being   
hydrological   in   theory   into   a   method   based   on   hydraulic   principles.   This   
conversion   arises   in   the   numerical   application   of   the   original   Muskingum   
equations.   When   these   equations   are   written   in   finite   difference   form,   a   
numerical   error   is   introduced   which   acts   as   a   diffusion   on   the   basic   solu-
tion.   Cunge   identified   the   magnitude   of   this   error   term   with   that   of   the   
diffusion   term   in   the   convection-diffusion    equation   as   used   by   Hayami   in   
the   diffusion    method.   So,   by   a   proper   choice   of   the   parameters    in   the   
Muskingum    method,    a   good   approximation    can   be   obtained    for   the   
solution   of   the   convection-diffusion    equation.   

There   are   two   well   documented   methods   which   have   not   been   included   
in   the   list   above.   These   methods   are   the   kinematic   wave   method   suggested   
by   Lighthill   &   Whitham   (1955),   and   the   graphical   method   of   characteris-
tics,   described   in   detail   by   Chow   (1959).   The   reason   for   not   considering   
the   kinematic   wave   method   below   is   that   this   method   can   be   regarded   as   a   
version   of   the   linear   diffusion   method   with   the   basic   equation   written   in   its   
characteristic   form.   Consequently   the   value   of   the   kinematic   wave   method   
resides   primarily   in   its   use   as   a   graphical   method.   However,    the   com-
plexity   of   the   method   in   comparison   with,   say,   the   graphical   form   of   the   
Muskingum    method,   and   the   increasing   availability    of   digital,   or   even   
analogue   computers,   makes   it   preferable   to   use   the   linear   diffusion   method.   
The   method   of   characteristics   is   avoided,   again   because   it   is   complicated   
to   use,   and   because   it   is   devised   in   terms   of   friction   coefficients   rather   than   
the   speeds   of   flood   peaks.   There   is   a   marginal   advantage    in   using   the   
method   of   characteristics   because   the   method   includes   the   inertia   terms   in   
the   dynamic   equation.   But   more   importantly,    the   method   has   the   dis-
advantage   that   it   is   then   tied   to   the   dynamic   wave   speeds   rather   than   the   
kinematic   wave   speed;   see   Lighthill   &   Whitham   (1955,   p.   291).   
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In   view   of   the   success   of   the   variable   parameter   diffusion   method   
described   in   the   previous   chapter,   there   exists   the   possibility   that   a   version   
of   the   Muskingum   method   using   similar   variable   parameters   might   also   
be   a   viable   flood   routing   method,   and   an   improvement    on   the   original   
Muskingum    method   (Linsley,   Kohler   &   Paulhus,   1958).   However,    a   
preliminary   examination   of   a   variable   parameter   Muskingum   method   has   
shown   that   the   results   tend   to   be   somewhat    inaccurate.    It   remains   for   
future   work   to   clarify   the   usefulness   or   otherwise   of   such   a   method.   

To   ensure   consistency   in   the   comparison   of   the   three   methods   listed   
above,   the   same   values   for   the   speed   and   attenuation   parameters   are   used,   
where   relevant,   in   the   tests   below.   Because   these   parameters   are   derived   
so   that   the   methods   predict   accurately   the   value   and   time-of-arrival    of   
the   peak   discharge   for   a   flood   at   the   downstream   section,   the   comparison   
of   the   methods   is   based   on   the   standard   deviation   of   the   predicted   hydro-
graph   from   the   recorded   hydrograph.   It   should   be   observed   that   it   is   often   
the   reverse   procedure   which   is   employed:   namely   that   the   standard   devia-
tion   is   first   minimised   and   then   the   accuracy   of   the   predicted   peak   dis-
charge   is   noted.   However,   because   most   flood   routing   studies   are   aimed   
at   an   accurate   prediction   of   peak   values   rather   than   the   shape   of   a   hydro-
graph,   the   former   procedure   is   adopted   in   this   study.   

3.2   Comparison    tests   

The   primary   objective    of   the   comparison    tests   described    below   is   to   
determine   the   accuracy   of   each   flood   routing   method   under   prescribed   
conditions,    typical   of   those   found   in   British   rivers.   As   mentioned    in   
Section   1.3,   there   are   two   factors   which   affect   the   accuracy   for   each   
method.   The   first   factor   is   the   neglect   and   simplification   of   terms   in   the   
full   Saint—Venant    equations   by   a   particular   method,   and   secondly,   the   
assumptions    inherent   in   the   treatment   of   the   storage   and   flow   over   the   
flood   plain.   In   the   first   instance,   the   simulation   of   floods   in   uniform   chan-
nels   will   isolate   the   significance   of   the   neglected   terms   in   the   full   equations.   
The   magnitude   of   the   error   involved   can   be   found   by   comparing   results   
from   the   flood   routing   method   with   an   accurate   numerical   solution   of   the   
full   Saint—Venant   equations.   However,   it   is   also   important   to   determine   
how   accurately   the   methods   simulate   floods   in   natural   rivers.   Such   a   test   
should   also   clarify   the   importance    of   the   assumptions    made   about   the   
interaction   of   the   flow   in   the   channel   and   over   an   irregular   flood   plain.   
So,   the   methods   are   applied   to   floods   in   the   Rivers   Wye,   Nene   and   Eden.   
The   Wye   and   the   Nene   have   important   flood   plains.   In   particular   a   flood   
plain   on   the   Wye   some   20-30   km   above   Hereford    contributes    to   an   
attenuation   of   a   large   flood   at   Belmont   (Hereford)   of   up   to   45   %   of   the   
peak   discharge   for   a   large   flood,   measured   70   km   upstream   at   Erwood.   
The   Nene   was   chosen   primarily   because   it   has   a   large   number   of   control   
structures   such   as   weirs   and   locks.   These   structures   play   a   significant   part   
in   controlling   the   smaller   floods   in   the   river.   Unfortunately   the   only   large   
flood   in   the   Nene   with   reliable   flow   data   is   the   snowmelt   flood   of   1947.   
Despite   the   fact   that   very   little   is   known   about   the   runoff   from   the   catch-
ment   along   the   river,   the   flood   routing   methods   are   reasonably   successful   
in   simulating   this   flood.   Finally,   the   Eden   is   an   example   of   a   shorter   and   
steeper   British   river.   

Throughout    the   following    work   four   error   parameters    are   used   to   
compare   the   predicted   with   the   recorded   or   'exact'   discharge   hydrographs.   
These   parameters   are   defined   as   follows:   
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Percentage    error   in   the   attenuation    =   

(recorded    peak   discharge-predicted    peak   discharge    

recorded   peak   discharge   
 x   100   (3.1)    

Percentage    error   in   the   speed   of   the   flood   peak   =   

(recorded    speed-   predicted    speed   

recorded   speed   
x   100   (3.2)    

Percentage    standard    deviation    =   

C
+    1   2N1    

2N   +1   n1=   I   (recorded   discharge-    predicted   discharge)2]    

100    
x   (3.3)    

average   recorded   discharge   

Percentage    mean   deviation    =   

(average    recorded    discharge-average    predicted    discharge    l
x   100   (3.4)    

average   recorded   discharge   

where   the   average   discharge   is   defined   by   

N   I   
average    discharge    =   —   E   (0_,   +40+    Qin+    I)   (3.5)    

6N   n=1   

Here   2N   +1   is   the   number   of   points   for   the   downstream    hydrograph    pro-
duced   by   2N   time   steps   in   each   method,    and   J   is   the   space   label   for   the   
downstream    boundary.    

3.3   Flood   routing   in   regular   channels   

The   objective   of   this   test   is   to   isolate   for   each   method   the   magnitude    of   the   
error   due   to   the   neglect    or   approximation    of   terms   in   the   Saint-Venant    
equations.    This   is   achieved    by   routing    a   synthetic    flood   in   a   uniform    
rectangular    channel,    100   km   long   and   50   m   wide,    with   a   Manning's    
roughness   coefficient   of   0.035.   Four   channels   with   bottom   slopes   2   x   10-3,   

10',   0.5   x   10-3     and   0.25   x   10-3    are   used   in   the   test.   The   synthetic    flood   
hydrograph    at   the   upstream    section   of   the   reach   is   defined   by   

Q(t)   =   Qbase   +   Qamp[-t    exp   1   ---t-   (3.6)    
tp   tP   

where   /3   is   a   parameter,    tp    is   the   time   to   peak,   0   ....base   is   the   base   flow,   and   
Qbase   +   Qamp   is   the   peak   discharge   for   the   flood.   The   curvature   at   the   peak   
of   this   hydrograph    is   /3Qamp/T2,   so   /3   is   directly   proportional    to   the   curva-
ture   at   the   peak   of   the   upstream    hydrograph.    A   typical   extreme    flood   in   
the   channel    with   bottom   slope   of   10-3    can   be   estimated    to   have   a   peak   
discharge   of   900   m3    s-    with   a   base   flow   of   100   m3    s-1.   For   the   sake   of   
consistency    this   flood   is   also   used   in   the   channels    with   the   other   bottom   
slopes.   The   time-to-peak    of   the   flood   is   taken   as   24   hours,   and   /3   is   given   
the   value   16.   This   gives   a   curvature    at   the   peak   of   the   hydrograph    of   
1.58   x   10-6    m3    s-3.   Using   Equations    2.18   and   2.21,   the   speed-discharge    
curve   can   be   derived   from   

Q   =   WyR2I3s11217-1    (3.7)   

and   
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Q   {   2   y   dRI   
e-   —    +-    =—   

Wy   3   R   dy   

where   

R   =   y(1   +   2y/   W)   .   

Figure   3.1   shows   the   speed—discharge    curves   calculated   from   the   above   
equations   for   all   four   channels.   

(3.8)   

(3.9)   

In   a   detailed   study   of   the   various   numerical    techniques    (including    
explicit,   implicit   and   characteristic    finite   difference   schemes)   for   solving   
the   full   Saint—Venant    equations    (Price,   1974),   it   was   found   that   the   
explicit   leapfrog    method   is   the   most   accurate    method   of   second   order   
accuracy    if   a   'free'   boundary    condition    is   required    at   the   downstream    
boundary   and   if   the   method   is   only   applied   to   regular   floods   in   uniform   
channels.    For   irregular    channels    the   leapfrog   method   tends   to   become   
unstable   and   a   characteristic    method   is   more   suitable.   If   a   rating   equation   
is   available   at   the   downstream    boundary   then   the   more   versatile   implicit   
method   of   Amein   &   Fang   (1970)   is   to   be   preferred.    Other   results   and   
conclusions   from   this   secondary   study   also   have   an   important   bearing   on   
the   application    of   numerical    methods   to   the   solution   of   the   full   Saint—
Venant   equations   for   flood   routing.   

The   results   from   the   three   simplified   methods   for   routing   the   discharge   
hydrograph    given   by   Equation   3.6   along   the   channel   with   bottom   slope   
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Method   
tlx    Zit    

(km)   (s)    

Error   in   
peak   

discharge   
(%)   

M  uskingum-Cunge    10    720    -0.1   1   
10   1500    -0.08    
1  0   3600    -0.03    
1  0   1  8000    -2.87    

100   720    -1.36    
100   1800    -1.36    
100   3600    -1.37    
1  00    1  8000    0.27    

Linear   diffusion   

Variable   parameter   
diffusion   

5   720    -0.08    
5   1800    -0.06    
5   3600    

1  0   720    -0.06    
10   1800    -0.19    
10   3600    

5   720    -0.02    
5   1800    -0.02    
5   3600    

10   720    0.02    
10   1800    0.02    
1  0   3600    -0.08    

Flood   routing   in   regular   channels    3.3    

10-3    were   first   used   to   determine    which   values   of   Ax   and   At   should    be   
adopted    by   each   method    to   obtain   the   optimum    accuracy    for   the   hydro-
graph   at   the   downstream    section.    In   each   case   the   predicted    hydrographs    
were   compared    with   the   hydrograph    produced    by   the   explicit    leapfrog    
method   using   Ax   =   5   km   and   At   =   360   s.   Table   3.1   gives   the   values   for   

Error   in   
speed   

of   flood   
peak   (%)   

Standard    
deviation   

(%)   

-0.80    27.1    
-0.96    27.1    
-1.57    27.0    

-19.50    24.2    
19.44   35.9    
19.35   36.3    
18.77   36.2    

4.22   29.4    

-1.07    27.0    
-1.17    27.0    

Unstable   
-1.49    26.9    

4.23   26.9    
26.9   

0.02   3.1    
0.68   3.2    

Unstable   
0.83   4.5    
0.92   4.7    

-   1.03   5.0    

Table   3.1   Errors   in   predicted    
hydrographs    for   channel   with   slope   
1.0   x   10-s.   

Recorded    peak   discharge    =   878.7   m3   
s-1,   Qp   =   894   m3    s   -1  ;   recorded    speed   
of   flood   peak   =   4.07   m   s-',   w   =   4.06   m   
s-1;   average   recorded    discharge    =   261   
m3   a    =   1.00   x   106.   

Mean   
deviation   

(%)   

-0.08    
0.08   
0.13   
1.08   
0.08   
0.08   
0.13   
1.24   

--0.08   
0.08   

--0.08   
0.08   

-0.13    

0.80   
0.80   

0.80   
0.78   
0.71   

the   accuracy    parameters    together    with   the   values   of   Ax   and   At   used   in   
each   run   for   the   methods.    These    parameters    were   calculated    for   the   
duration    of   the   computer    runs.   The   following    conclusions    can   be   made   
from   Table   3.1.   

Muskingum-Cunge    method   

The   mean   deviation   is   small,   showing   that   the   average   predicted   discharge   
compares    well   with   the   average    recorded    discharge    for   all   values   of   Ax   
and   At.   Alternatively,    the   total   volume   is   accurately    predicted   in   each   run.   

A   close   examination    of   the   error   in   the   speed   of   the   flood   peak   shows   that   
the   error   is   zero   when   Ax/At   is   approximately    equal   to   the   speed   of   the   
peak.   This   conclusion    was   also   deduced    theoretically    by   Cunge   (1969).   
For   a   more   precise   definition    of   Ax/At   for   optimum   accuracy   see   Section   
2.15.   In   addition,    Table   3.1   shows   that   there   is   a   greater    latitude    in   the   
choice   of   At   to   preserve    the   accuracy    of   the   peak   discharge    when   Ax   is   
smaller.    The   standard    deviation    is   large   for   all   the   values   of   Ax   and   At   
tested,    though    a   reduction    in   Ax   generally    leads   to   a   reduction    in   the   
standard   deviation.   

Linear   diffusion   method   

Again   the   mean   deviation    is   small   and   about   the   same   magnitude    as   for   
the   Muskingum-Cunge    method.    Variations    in   Ax   and   At   do   not   signifi-   
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cantly   affect   the   magnitude    of   the   standard   deviation,    though   the   finite   
difference    scheme   is   unstable   if   At   is   too   large.   It   is   preferable    to   keep   
Ax/At   greater   than   the   wave   speed   (Equation   2.67).   The   predicted   speed   
and   peak   discharge   are   reasonably   accurate   in   each   case.   

Variable    parameter    diffusion    method    

Here   the   errors   in   the   predicted    speed,   peak   discharge    and   standard    
deviation   are   all   significantly    smaller   than   the   other   methods,   though   the   
error   in   the   mean   discharge   is   larger.   Again   the   method   is   unstable   if   At   
is   too   large.   A   reduction   in   both   Ax   and   At   generally   leads   to   an   improve-
ment   in   the   accuracy   of   the   method.   

So,   within   the   range   of   values   tested   the   Muskingum-Cunge    method   is   
more   accurate   when   Ax/At   is   approximately   equal   to   the   wave   speed.   The   
linear   diffusion   method   shows   little   variation   in   accuracy   for   different   
values   of   Ax   and   At,   and   the   variable   parameter   diffusion   method   is   more   
accurate   when   both   Ax   and   At   are   small.   In   the   remaining   runs   described   
in   this   section   Ax   =   100   km   and   At   =   3600   s   for   the   Muskingum-Cunge    
method,    and   Ax   =   5   km   and   At   =   720   s   for   the   linear   diffusion    and   
variable   parameter   diffusion   methods.   

A   comparison   of   the   results   from   the   three   methods   for   the   same   flood   
in   channels   with   bottom   slopes   2   x   10-3,   0.5   x   10-3    and   0.25   x   10-3    are   
given   in   Table   3.2.   In   addition,    Figure   3.2   shows   the   recorded   and   the   
predicted    hydrographs    for   each   method    in   the   channel    with   bottom    
slope   10-3.   

Method    Ax    At   

Error   in   
peak   

discharge   
(%)   

Error   in   
speed   of   

flood   peak   
(%)   

Standard   
deviation   

(%)   

Mean   
deviation   

(%)   

s   =   2   x   10-3   
Recorded   peak   discharge   =    892.2   m3    s"    
Recorded    speed   of   flood   peak   =   5.25   in   s"   
Average   recorded   discharge   -    272   m3    s"   

Q   p    =    896   m3    s-1   
w   =    5.25   m   

-   0.50    x   106   
MC   10   3600    0.79    -0.97    23.5    -0.25    
LD   5   720    0.30    -0.47    23.6    -0.23    
VPD   5   720    0.32    -    0.30   

s =   1.0   x   10'   

1.1   -0.50    

Recorded   peak   discharge   =    878.7   m3    S-1   Q,   =   894   1113   

Recorded   speed   of   flood   peak   =   4.07   m   =   4.06   m   
Average    recorded    discharge    =   261   m3    s-1   a    =   1.00x    106   

MC   10   3600    -0.03    -1.57    27.0    -0.13    
LD   5   720    -0.08    -1.07    27.0    -0.08    
VPD   5   720    -    0.02   0.02    3.1    0.80    

s   =   0.5   x   10-3   
Recorded   peak   discharge   =    822.2   m3    s"   
Recorded   speed   of   flood   peak   =   3.11   m   
Average   recorded   discharge   =    251   m3    s"   

=   
w   =   
a   =    

861   m3    s-1   
3.09   m   
2.00   x   106   

MC   10   3600    -0.92    -2.41    27.5    -0.13    
LD   5   720    -0.73    -0.90    27.8    -0.00    
VPD   5   720    -1.63    -5.70    1.4    1.61    

s   =   0.25   x10-3    
Recorded   peak   discharge   =    700.0   m3    s-1   Qp   =    800   m3    s'    

MC   Muskingum-Cunge,    Recorded    speed   of   flood   peak   =   2.50   m   s"   w    =   2.48   m   5-'    
Lo   linear   diffusion,   Average    recorded   discharge   =    251   m3    s"   a    =    4.00 x   106   
VPD   variable   parameter   diffusion.   MC   10   3600    -2.06    1.85    30.4    -0.01    

LD   5   720    -0.91    7.45    31.8    -0.01    
Table   3.2   Errors    in   predicted   
hydrographs    for   regular   channels.   

VPD   5   720    -9.17    -11.09    3.7    -0.06    
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900   5.25    1.58    x   10-6    4.90   4.89    8    
900   4.07    1.58    x   10-6     21.09   20.85    11    
900   3.09    1.58    x   10-3     96.39   91   .41   68    
900   2.48    1.58    x   10-6     372.91   305.30    200    Table   3.3   Predicted    attenuation    in   

regular   channels.    
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Predicted    Predicted    
attenuation    attenuation    

Curvature    Equation    Equation    Recorded    
a   0   w    at   peak   2.41    2.42    attenuation    

(x   1  06)   (m3     s-1)   (m    s   -1)   (m°    s-')    (m3     s-1)   (m3     s-1)   (m3     s-')    

It   can   therefore   be   concluded   that   the   Muskingum-Cunge    and   linear   
diffusion   methods   are   of   similar   accuracy,   and   that   the   variable   parameter   
diffusion   method   generally   predicts   the   shape   of   the   hydrograph    much   
more   accurately    than   the   other   methods.   From   Figure   3.2   it   is   evident   
that   the   error   in   the   shape   of   the   predicted   hydrograph    for   the   first   two   
methods   is   greatest   near   the   foot   of   the   wave   in   each   case.   So   it   can   be   
anticipated   that   a   benefit   in   using   the   variable   parameter   diffusion   method   
instead   of   the   Muskingum-Cunge    and   linear   diffusion   methods   arises   
from   a   more   accurate   prediction   of   the   shape   of   the   hydrograph   for   the   low   
flows   occurring   during   a   large   flood.   Notice   that   the   prediction    of   the   
peak   discharge   by   the   variable   parameter   diffusion   method   is   worse   for   
the   smaller   slopes.   This   is   possibly   due   to   the   neglect   of   terms   in   Equation   
2.43.   

The   use   of   the   formulae    in   Equations    2.41   and   2.42   to   predict   the   
attenuation   of   the   peak   discharge   along   the   regular   channels   above   pro-
duces   the   results   shown   in   Table   3.3.   Notice   that   the   improved   formula   of   
Equation   2.42   is   more   accurate   than   the   linearised   formula   of   Equation   
2.41   though   both   formulae   are   markedly   inaccurate   as   the   slope   of   the   
channel   decreases.   This   highlights   the   need   to   route   hydrographs   using   a   
numerical   method   when   the   attenuation    is   large.   It   is   suggested    that   a   
numerical   flood   routing   method   should   be   used   when   Q*IQp    is   greater   
than   0.1.   For   large   slopes   of   the   order   of   2   x   10'   it   can   be   observed   that   
the   attenuation   formula   predicts   an   attenuation   which   is   too   large.   This   is   
because   the   convection   terms,   ignored   in   the   derivation   of   the   convection-
diffusion   equation,   become   important   in   this   case;   see   Henderson   (1963).   

43   



Erwood   
G.S.   

Winforton    

Brobury   

Bredwardine    
A   A   

Bridge   
Sollers   

Hereford   

C   Belmont   
G.S.   Scale   

Comparison    of   flood   routing   methods   

3.4   Flooding    in   the   River   Wye:   Erwood   to   Belmont   

Fig   3.3   River    Wye:    Erwood    to   
Belmont.    

This   reach   of   the   River   Wye   is   perhaps   the   most   suitable   of   all   reaches   of   
British   rivers   in   which   to   test   the   flood   routing   methods.   As   explained   in   
Section   2.11   the   recording   stations   at   Erwood   and   Belmont   have   good   
quality   rating   curves,   even   for   high   flows,   and   there   are   more   than   30   years   
of   records   at   both   stations.   In   addition,   the   reach,   which   is   69.75   km   long,   
has   no   important   tributary   and   the   mean   annual   lateral   inflow   along   the   
reach   is   about   14   m3    s-1.   This   value   for   the   lateral   inflow   is   small   com-
pared   with   the   mean   annual   flood   discharge   at   Belmont   of   560   m3    s".    
Another   important   feature   of   the   reach   is   the   large   flood   plain   between   
Bredwardine   and   Witney,   some   20-30   km   above   Belmont;   see   Figure   3.3.   
This   flood   plain   plays   a   crucial   part   in   reducing   peak   discharges   at   Erwood   
by   up   to   45   %   at   Belmont,   and   so   gives   important   protection   to   the   city   
of   Hereford.    The   largest   recorded    flood   in   recent   years   occurred    in   
December   1960   with   a   peak   discharge   of   about   1200   m3    s'   at   Erwood.    
This   value   was   reduced   to   980   m3    s'   at   Belmont.    A   later   flood,    in   
December   1965,   had   a   peak   discharge   at   Erwood   of   1080   m3    s-1.   The   
corresponding   value   at   Belmont   was   620   m3    s".   

Because   of   the   quality   and   length   of   data   at   both   gauging   stations,   it   is   
an   easy   matter   to   extract   the   curve   for   LITp    and   c.   These   curves,   which   are   
also   presented   in   the   previous   chapter,   are   shown   in   Figure   3.4.   The   times   
of   travel   of   the   peak   levels   were   extracted   from   stage   data   at   Erwood   and   
Belmont,   and   the   curves   for   LITp    and   c   were   drawn   using   information    
about   the   peak   discharges   at   the   two   stations.   The   attenuation   parameter   
for   the   largest   recorded   flood   (December,    1960)   was   calculated    from   
Equation   2.45   using   the   area   inundated    by   the   flood   along   the   reach.   
The   data   for   this   calculation   were   supplied   by   the   Wye   River   Authority.   
See   Table   3.4   for   the   numerical    values   for   the   parameters    used   in   the   
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calculation,    and   Figure   3.3   for   the   corresponding    subdivisions    of   the   
reach.   Similarly,   Equation   2.46   was   used   to   find   the   attenuation   parameter   
for   an   inbank   flood.   The   two   values   of   a   are   0.20   x   106    for   the   large   over-
bank   flood   and   1.10   x   106    for   the   inbank   flood.   Observations    of   the   river   
channel,   particularly   along   much   of   the   upper   parts   of   the   reach,   show   that   

Length   of   subreach   Flood    plain   area   
(km)   (km2)    

Bottom   slope   

Table   3.4   Data   used   to   calculate   a   
for   Erwood   to   Belmont,   River   Wye.   

4.5   1.23    2.0x    10-3   
8.3   2.92    2.0x    10-3   
3.0   1.74    0.8    x   10-3   
2.9   1.38    0.8    x   10-3   
4.5   2.52    0.8    x   10-3   
4.6   0.55    0.8    x   10-3   
3.5   1.28    0.8    x   10-3   

13.6   11.83    0.5    x   10-3   
24.9   5.12    0.6    x   10-3   

Total   69.8   Total    28.57   Average    0.88   x   10-3   

there   is   a   considerable   increase   in   the   effective   storage   in   the   channel   as   
the   depth   increases.   Even   though   the   average   width   of   the   channel   appears   
to   increase   as   the   discharge   increases,   it   was   anticipated   that   the   increase   
in   the   storage   due   to   the   irregularities   in   the   channel   width   would   probably   
lead   to   a   being   approximately    constant   for   values   of   discharge   less   than   
the   average   bankfull   discharge   along   the   reach.   A   close   examination   of   the   
discharge   hydrographs    at   Belmont   indicates   that   this   discharge   is   about   
400   m3    s   -1  ;   see,   in   particular,   Figure   3.6   below.   This   discharge   can   be   
compared   with   the   bankfull   discharge   of   590   m3    s'   at   Belmont.    The   curve   
for   a   was   therefore   drawn   from   a   =   1.10   x   106    at   Q   =   0   to   a   value   of   
1.0   x   106    at   Q   =   400   m3    s'   (Figure    3.4).   Because    a   tends   to   zero,   or   a   
small   finite   value,   as   the   discharge   becomes   very   large,   the   curve   for   a   was   
drawn   from   Q   =   400   m3    s"   through    the   point    for   a   =   0.2   x   106    at   
Q   =   1080   m3    s",   so   that   this   limiting    condition    on   a   was   satisfied.    In   
addition,   because   the   flood   plain   is   so   irregular,   the   curve   for   a   greater   
than   400   m3    s-'   was   drawn   so   that   it   varies   slowly   with   discharge.   If   the   
flood   plain   had   been   relatively   flat   and   not   so   irregular,   the   curve   would   
have   to   be   drawn   so   that   a   decreases   more   rapidly   as   the   discharge   in-
creases.   

The   formulae    for   the   attenuation    of   the   peak   discharge    (Equations    
2.41   and   2.42)   were   applied   to   a   number   of   floods   between   Erwood   and   
Belmont.   Table   3.5   gives   the   corresponding   predicted   and   recorded   attenu-   
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Fig   3.4   River   Wye:   speed   and   
attenuation   parameter   for   Erwood   
to   Belmont.   
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Flood   date   (   x   106)   
QP   

(m3    

Curvature   
at   peak   
(m3    s-1)   

Predicted   
attenuation    

Equation   2.41   
(m3    s-')   

Predicted   
attenuation    

Equation   2.42   
(m3    s-1)   

Recorded   
attenuation    

(m3    s-')   

Jan.   1969   1.00    378    1.74    —0.747    x   10-6    54   50    50    

Dec.   1965   0.38    1077    0.80    —2.18    x   10-6    1743   864   460    
Dec.   1960   0.20    1210    0.98    —1.48    x   10-6    381   327    235    

Feb.   1950   0.93    626    0.95    —1.03    x   10-6    699   421    194    

Jan.   1948   0.33    815    0.93    —1.55    x   10-6    518   383    260    

Nov.   1939   0.80    710    0.92    —1.33    x   10-6    966   528    260    
Aug.   1939   1.00    536    1.38    —2.08    x   10-6    424   293    173   

Table   3.5   Predicted    attenuation    for   
floods   in   the   River   Wye   between   
Erwood   and   Belmont.    

ations.   Generally    the   predicted    attenuations    are   too   large.   The   notable   
exception    is   the   January   1969   flood,   which   has   a   predicted   attenuation    
(Equation   2.41)   of   14.8   %   of   the   peak   discharge   at   Erwood.   As   has   already   
been   commented   in   Section   3.3,   when   Q*IQp    is   of   the   order   of   0.1   it   can   
be   anticipated   that   the   predicted   attenuation   will   be   reasonably   accurate.   

The   flood   routing   methods   were   applied   to   four   floods   in   the   reach.   
The   hydrographs    predicted    by   the   Muskingum-Cunge    and   variable    
parameter    diffusion    methods    are   shown   in   Figures    3.5-3.8,    and   the   
corresponding   error   parameters   for   all   the   methods   are   given   in   Table   3.6.   
The   time   interval   during   which   the   error   parameters    were   calculated    is   
indicated   by   a   thick   line   along   the   time   axis   in   the   figures.   Ax   was   taken   
as   6975   m   in   each   method,   whereas   in   the   Muskingum-Cunge    method   
At   was   7200   s   for   all   except   the   1969   flood   for   which   At   was   3600   s,   and   in   
the   remaining   methods   At   was   1800   s.   The   cutoff   discharge   in   the   variable   
parameter   diffusion   method   was   400   m3    s-1  .   

Both   of   the   1939   floods   were   affected   by   rain   on   the   catchment   along   
the   reach;   consequently    the   predicted    hydrographs    at   Belmont    show   a   
marked   deviation   from   the   recorded   hydrographs    prior   to   the   main   part   
of   the   floods.   However,    it   can   readily   be   seen   from   the   figures   that   the   
hydrographs   predicted   by   the   Muskingum-Cunge    and   variable   parameter   
diffusion   methods   agree   well   with   the   recorded   hydrographs.   An   examina-
tion   of   the   standard   deviations   in   Table   3.6   indicates   that   the   variable   para-
meter   diffusion   method   is   more   accurate   than   the   other   methods,   though   
all   the   methods   predict   the   peak   discharge,   speed-of-flood    peak,   and   the   
mean   discharge   to   a   similar   degree   of   accuracy.   
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Fig   3.9   River   Wye:   Belmont    to   
Red   brook.   

The   second   reach   of   the   River   Wye   follows   on   directly   from   Belmont   down   
to   Redbrook    which   is   about   5   km   downstream    of   Monmouth    (Figure   
3.9).   The   gauging   station   at   Redbrook,   like   that   at   Belmont,   has   a   good   
quality   rating   curve   and   the   station   has   more   than   30   years   of   records.   
Unlike   the   Erwood   to   Belmont   reach   however,   this   reach   of   the   River   
Wye   has   two   important   tributaries:    the   River   Lugg   just   downstream    of   
Hereford   and   the   River   Monnow    which   joins   the   Wye   at   Monmouth.    
Unfortunately,    the   gauging   station   on   the   River   Lugg   upstream   of   the   
confluence   is   inaccurate   for   high   flows,   particularly   as   there   can   be   a   signi-
ficant   backwater   effect   from   the   Wye.   Because   of   this   difficulty   it   was   
decided   to   ignore   the   discrete   lateral   inflow   due   to   the   River   Lugg   and   to   
suppose   that   the   discharge   from   the   tributary   can   be   included   as   part   of   
the   lateral   inflow   uniformly   distributed   along   the   channel.   Though   this   is   
a   fairly   crude   assumption   it   does   not   appear   to   affect   seriously   the   routing   
of   a   flood   from   Belmont   down   to   Redbrook.   This   is   primarily   because   the   
maximum   discharge   from   the   Lugg   appears   to   be   less   than   10   %   of   the   peak   
discharge   in   the   Wye   for   the   floods   considered   below.   

The   influence   of   the   River   Monnow   on   flooding   can   be   serious   in   the   
Monmouth    area.   However,   because   the   confluence    of   the   two   rivers   is   
near   to   Redbrook,   the   simplest   procedure   is   to   assume   that   the   contribu-
tion   to   the   discharge   at   Redbrook   from   the   Monnow   can   be   added   to   the   
discharge   predicted   by   the   flood   routing   method.   Note,   however,   that   in   
the   diffusion   methods   this   additional   discharge   should   not   be   included   in   
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the   calculations   of   the   finite   difference   scheme   itself   but   simply   added   to   
the   predicted   downstream   value.   

The   River   Monnow   is   gauged   at   Kentchurch,   40   km   upstream   of   the   
confluence   with   the   Wye.   The   hydrographs   at   Kentchurch   were   lagged   by   
3   hours   to   produce   the   relevant   hydrographs   at   Monmouth.   

The   flood   plain   between   Belmont   and   Redbrook   is   widest   at   the   con-
fluence   with   the   River   Lugg.   Downstream    of   Ross-on-Wye,    the   river   
passes   through   hills   and   there   is   consequently   very   little   flood   plain.   So,   
although    the   river   channel   is   up   to   90   m   wide   in   places,   most   of   the   
contribution    to   the   attenuation    parameter    for   an   overbank    discharge    
arises   from   the   upper   part   of   the   reach.   

As   for   the   Erwood   to   Belmont   reach,   the   curves   for   L/T,   and   c;   can   
readily   be   extracted   from   the   records   at   Belmont   and   Redbrook   (Figure   
3.10).   Because   the   peak   of   the   flood   in   the   Monnow   generally   reaches   
Monmouth   before   the   flood   peak   in   the   Wye,   no   correction   need   be   made   
to   the   peak   discharge   at   Redbrook   when   calculating    the   average   peak   
discharge   along   the   reach   to   correlate   with   the   values   for   L/T,   and   e.   
The   attenuation   parameter   for   the   largest   recorded   flood   (December   1960)   
was   again   calculated   from   data   supplied   by   the   Wye   River   Authority.   
An   average   channel   width   of   62   m   was   assumed   when   calculating   the   
attenuation    parameter   for   an   inbank   flood;   see   Figure   3.9   for   the   sub-
divisions   of   the   reach   used   in   the   calculation    of   a.   Table   3.7   gives   the   
numerical   values   for   quantities   used   in   the   calculations.   For   the   flood   of   
December   1960,   a   =   0.40   x   106.   This   corresponds    to   an   average   peak   
discharge   along   the   reach   of   910   m3    s-1.   For   an   inbank    flood,    a   =   
1.66   x   106.   Again   the   curve   for   a   was   drawn   as   a   slowly   varying   function   
of   discharge,   passing   through   the   point   for   a   =   0.40   x   106    at   Q   =   910   
m3    s-    and   tending   to   zero   as   the   discharge   became   infinite   (Figure   3.10).   

Again,   the   formula   for   the   attenuation   of   the   peak   discharge   (Equation   
2.41)   was   applied   to   the   large   overbank   flood   of   December   1960.   Here   

0.40   x   106    x   980   x   1.51   x   10-6   
Q*   —    =   370   m3    s-1   (3.10)    

(1.17)3   

or   38   %   of   the   upstream   peak   discharge.   This   compares   with   the   recorded   
attenuation   of   about   260   m3    s-',   where   allowance   has   been   made   for   the   

50   



Flooding   in   the   River   Wye   :   Belmont   to   Redbrook   3.5    

lateral   inflow.   It   follows    that   it   is   necessary    to   use   the   flood   routing    
methods   to   route   the   complete   discharge   hydrograph   so   that   the   attenua-
tion   may   be   predicted   more   accurately.   
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The   results   of   routing   two   floods   along   this   reach   of   the   Wye   are   shown   
in   Figures   3.11   and   3.12   and   Table   3.8.   Again   the   peak   discharges   and   times-
of-arrival   at   Redbrook   are   accurately    predicted,    though   there   is   some   
disagreement   by   all   the   methods   at   the   front   of   the   hydrographs.   This   is   
primarily   due   to   an   underestimate   of   the   discharge   hydrograph   from   the   
River   Monnow.    Despite   the   disagreement    however,   the   error   for   the   
standard   deviation   is   small   for   all   the   methods.   

Mc   Muskingum-Cunge,    tr)   linear   diffusion,    VPD   variable   parameter   diffusion.   

Table   3.8   Errors    in   predicted    
hydrographs    at   Redbrook,    River   Wye.   

Comparison    of   flood   routing   methods   

Length   of   subreach   Flood    plain   area   
(km)   (km2)    

Bottom   slope   

1.5   0.34    0.4    x   10-3   
3.3   0.92    0.4x    10-3   
3.5   1.04    0.5    x   10-3   
5.0   2.57    0.5    x   10-3   
6.6   3.14    0.4x    10-3   
9.7   1.56    0.4x    10-3   
4.1   2.23    0.4x    10-3   
3.6   1.46    0.4x    10-3   

12.5   3.89    0.4x    l0-3   
3.3   0.93    0.6    x   10-3   
9.4   1.09    0.4    x   10-3   
3.8   1.40    0.5    x   10-3   
8.0   0.77    0.5    x   10-3   
3.0   1.12    0.5    x   10-3   
3.3   0.31    0.5    x   10-3   

Table   3.7   Data   used   to   calculate    a   
for   Belmont    to   Redbrook,    River   Wye.   

Total   80.5   Total    22.77   Average    0.46   x   10   -3   

Flood    M   ethod    C°'    
(m3    s-')   (m   s-1)   

p   

Recorded    Percentage    Percentage    Average    
Recorded   Percentage    Percentage    peak   error    in   error    in   recorded    

speed   standard    mean    discharge    predicted    predicted    discharge    (m   s-1)   deviation    deviation    
(m3    s-')    discharge   speed    (m3     s-    ')   

Dec.   1965   mc    595    0.92    0.87   x   106   585    7.51    0.94    8.64    354    19.08    -2.78    
LD   595   0.92    0.87    x   106   585    8.40    0.94    11.91    354    19.62    0.51    
VPD   -    -    585   -    I.00   0.94    9.83    354    9.46    -3.51    

Dec.   1960   mc    910    0.96    0.5   x   106   840    -0.60    1.00    2.46    416    15.07    5.94    
LD   910   0.96    0.5    x   106   840    0.10    1.00    5.53    416    13.60    8.00    
VPD   -    -    -    840   -0.10    1.00    8.71    416    10.84    7.52    

3.6   Flooding    in   the   River   Nene:   Northampton    to   Wansford    

The   River   Nene   is   one   of   the   flatter   British   rivers   and   flows   down   through   
Northampton   and   Peterborough   to   the   Wash.   The   river   is   navigable   up   to   
Northampton    so   there   are   a   large   number   of   locks   and   weirs   along   the   
river.   These   structures   dominate   all   the   low   flows   so   that   the   hydrograph   
of   a   small   flood   at   Northampton   is   completely   distorted   by   the   time   the   
flood   reaches   Wansford   (Figure   3.13).   Inevitably   such   control   structures   
make   flood   routing   an   extremely   difficult   problem.   In   addition,   as   the   high   
flows,   which   are   more   amenable   to   a   simple   flood   routing   approach,   are   
not   particularly   well   gauged,   the   problem   is   made   even   more   complex.   
The   flood   chosen   for   the   routing   exercise   was   the   1947   flood,   which   was   
largely   generated   by   direct   lateral   runoff   from   melting   snow.   In   this   case   
it   was   recognised   that   as   the   snow   was   fairly   uniformly   distributed   over   
the   whole   of   the   catchment   above   Wansford   (Jamieson   &   Wilkinson,   1972)   
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the   lateral   inflow   along   the   reach   during   the   main   period   of   the   flood   could   
be   regarded   as   approximately   proportional   to   the   instantaneous   discharge   
at   Northampton.    This   assumption    gives   a   very   simple   measure   of   the   
variation   in   the   lateral   inflow   with   the   meteorological   conditions.   A   check   
on   the   total   volume   past   the   two   gauging   stations   during   the   flood   using   
discharge   hydrographs   supplied   by   the   Welland   and   Nene   River   Authority   
showed   that   at   any   instant   the   lateral   inflow   (in   m3    5-    km-')    could   be   
taken   as   2.74   x   10-5    times   the   corresponding   discharge   at   Northampton.   
If   this   constant    is   taken   as   the   ratio   of   the   catchment    area   between    
Northampton   and   Wansford   and   the   catchment   area   above   Northampton,   
the   corresponding   value   would   be   2.22   x   10-5.   Although   this   value   is   less   
than   the   former   value,   the   similarity   of   the   values   indicates   the   approxi-
mately   uniform   nature   of   the   runoff   over   the   whole   catchment   above   
Wansford   under   snowmelt   conditions.   

The   attenuation   parameter   was   calculated   from   data   again   supplied   
by   the   Welland   and   Nene   River   Authority   (Table   3.9   and   Figure   3.14).   
Some   problems   were   raised   in   the   calculation    of   the   speed-discharge    
relationship,   due   to   the   shortage   of   data   for   large   floods   and   the   difficulty   
of   correlating   flood   peaks   at   Northampton   and   Wansford   for   the   smaller   
floods.   

Because   of   the   shortage   of   data   it   is   evident   that   the   more   complicated   
variable   parameter   diffusion   method   has   little   advantage   over   the   other   
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Comparison    of   flood   routing   methods   

Length   of   subreach    Flood    plain   area   
(km)   (km2)    

Bottom    slope   

1.9   
3.8   
1.4   
3.9   

0.60   
3.88   
0.71   
3.23   

0.89x   10-3   
0.89   x10-3    
0.89   x   1  0-3   
0.89   x   1  0-3   

2.1   2.94    0.64x    10-3   
16.8   6.1   1   0.64x    10-3   

2.0   0.88    0.61    x   1  0-3   
7.0   3.20    0.61    x   10-3   
8.0   3.26    0.38    x   10-3   
4.9   1.50    0.38    x   10-3   
3.1   1.36    0.38    x   10-3   
3.7   0.73    0.38    x   10-3   
2.0   0.77    0.38    x   10-3   
1.8   0.39    0.38    x   10-3   
5.1   3.01    0.38    x   10-3   
7.2   3.50    0.38    x   1  0-3   
1.9   0.40    0.38    x   10-3   

Table   3.9   Data   used   to   calculate    a   
for   Northampton    to   Wansford,    River   
Nene.   

Total   76.6   Total    36.07   Average    0.59   x   10-3   

Recorded    Percentage    Percentage    Average    
Recorded   Percentage    Percentage    

0,   
Flood    Method    

Q,   
a,   

peak   error    in   
speed   

error   in   recorded    
standard   mean    

(m3    5-')   (m   s-')    discharge    predicted    recorded    discharge    (m   s-    ')   deviation    deviation    
(m3    s-')   discharge    speed    (m3     s-1)   

roc   Muskingum-Cunge,    LD   linear   diffusion,    VPD   variable    parameter    diffusion.    

Table   3.10   Errors   in   predicted    
hydrographs    at   Wansford,    River   Nene.   
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Fig   3.1  5   River    Nene:    flood    of   March    
1947.   

methods.    This   is   reflected    in   the   results   of   simulating    the   1947   flood   
(Figure   3.15   and   Table   3.10).   However,   despite   the   shortage   of   data   there   
is   a   reasonable    agreement    between    the   predicted    and   recorded    hydro-
graphs   at   Wansford,    particularly    for   the   Muskingum-Cunge    method.   

Fig   3.1  6   River    Eden:    Temple    
Sowerby    to   Warwick    Bridge.    

3.7   Flooding   in   the   River   Eden:   Temple   Sowerby   to   Warwick   Bridge   



Fig   3.1  7   River   Eden:    speed    and   
attenuation    parameter    for   Temple    0   

Sowerby   to   Warwick   Bridge.   
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The   River   Eden   has   its   source   in   the   Pennines   and   flows   down   through   a   
very   picturesque   valley,   which   in   parts   is   fairly   narrow,   to   Carlisle,   and   so   
into   the   Solway   Firth   (Figure   3.16).   The   river   is   fairly   steep,   and   from   
Temple   Sowerby   to   Warwick   Bridge   most   of   the   flooding   occurs   just   
below   the   confluence   with   the   River   Eamont   which   is   a   tributary   with   a   
discharge   of   the   same   order   as   the   Eden.   The   gauging   stations   at   Temple   
Sowerby   and   Udford   on   the   Eamont   have   rating   equations   of   reasonable   
quality,   though   the   river   does   overflow   locally   at   both   stations.   Similarly,   
the   station   at   Warwick   Bridge   is   reliable   until   there   is   overbank   flooding   
at   about   560   m3    s-1.   It   is   assumed   by   all   the   flood   routing   methods   that   
the   discharge   from   the   Eamont   can   be   added   to   that   at   Temple   Sowerby   
to   produce   the   relevant   discharge   hydrograph   for   the   input   to   the   reach.   

Length   of   subreach    Flood    plain   area   Bottom    slope   
(km)   (km2)    

1.3   
0.8   
2.1   
1.2   
4.9   
1.1   
3.4   
8.0   
1.3   
0.9   
1.2   
8.8   
2.0   

Total   37.0   

Table   3.1  1   Data   used   to   calculate    cc   

for   Temple    Sowerby    to   Warwick    
Bridge,    River   Eden.   

0.33   1.6x    10-3   
0.09   1.6    x   10-3   
0.63   1.6x    10-3   
0.69   1.5    x10-3   
2.03   1.5    x   10-3   
0.15   1.3    x   10-3   
1.04   1.3    x   10-3   
0.65   2.6x    10-3   
0.17   1.5x    10-3   
0.07   1.5x    10-3   
0.24   1.5    x   10-3   
0.85   2.0x    10-3   
0.41   2.0    x   10-3   

Total   7.35   Average    1.65   x   10-3   

The   data   used   to   calculate   the   attenuation   parameter   is   given   in   Table   
3.11,   and   Figure   3.16   shows   the   division   of   the   river   into   the   sub-reaches   
for   the   calculation.   a   and   c   are   shown   in   Figure   3.17.   

The   results   for   the   February   1967   flood   in   the   River   Eden   are   shown   in   
Figure   3.18   and   Table   3.12.   Because   the   River   Eden   is   one   of   the   steeper   
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February   1967.   

Recorded   Percentage   Percentage    Average   Recorded   Percentage    Percentage   
Flood   Method    P    peak   error    in   

speed   error   in   recorded    standard   mean    (m3    s-')   (m   s   -1)   c`"    discharge    predicted   predicted    discharge   
(m3    s-9   discharge    speed    (m3     s-1)   (m   s-   deviation    deviation    

0.35   x   105     543   0.93    1.93    9.88    153    15.17    —4.62    
0.35   x   105     543   0.73    1.93    9.25    151    15.09    —4.61    

—   543   0.78    1.93    10.52    151    10.53    —4.95    

Feb.   1967   Mc    540    1.90    
LD   540   1.90    
VPD    —    —    

Mc   Muskingum-Cunge,   LD   linear   diffusion,   VPD   variable   parameter   diffusion.   

Table   3.12   Errors   in   predicted   
hydrographs   at   Warwick   Bridge,   
River   Eden.   

British   rivers,   there   is   little   evidence   of   attenuation   in   this   reach.   So,   again,   
the   methods   all   predict   the   floods   accurately,    and   there   is   little   to   dis-
tinguish   the   methods.   



4   Strategy   for   flood   routing   

4.1   Final   comparison   of   methods   

Three   major   conclusions   can   be   drawn   from   the   results   of   the   preceding   
chapter.   
i   Given   sufficient   data   each   of   the   methods   predicts   the   total   volume   past   
the   downstream    section,   the   attenuation   of   the   peak   discharge,   and   the   
time   of   arrival   of   the   flood   peak   within   10   %.   
ii   Again,   if   the   data   for   the   river   geometry    and   previous    floods   are   
sufficiently    accurate,   the   standard   deviation   of   results   for   a   particular   
river   and   flood   using   the   variable   parameter    diffusion   method   can   be   
smaller   by   a   factor   of   0.25   or   more   than   the   standard   deviation   of   results   
from   the   other   three   methods   tested.   Where   there   is   difficulty   in   defining   
the   data   curves   for   e   and   a   then   the   variable   parameter   diffusion   method   is   
no   more   accurate   than   the   other   methods.   
iii   There   is   little   difference   between   the   Muskingum—Cunge   method   and   
the   linear   diffusion   method   whether   or   not   the   data   from   the   river   are   
accurate.   

It   follows   from   the   third   conclusion    that   the   Muskingum—Cunge    
method   is   preferable   to   the   linear   and   non-linear   diffusion   methods.   This   is   
because   the   Muskingum—Cunge   method   has   the   advantages   that   it   is   very   
simple   conceptually,   it   can   be   readily   applied   by   desk   calculation,   and   is   
much   cheaper   than   the   other   methods   when   applied   by   computer.    In   
addition,   this   method   can   include   a   tributary   as   a   discrete   lateral   inflow,   
which   the   other   methods   cannot   do   in   a   simple   way.   A   disadvantage    
with   the   Muskingum—Cunge    method,   and   indeed   with   all   the   other   
simplified   flood   routing   methods   described   in   this   volume,   arises   when   
there   is   a   disturbance    such   as   a   tide   affecting   the   flow   in   the   river   up-
stream   of   the   downstream   boundary.   

A   second   disadvantage   with   the   Muskingum—Cunge   method   is   that   it   
does   not   accurately   predict   the   shape   of   the   discharge   hydrograph   at   the   
downstream   boundary   when   there   are   large   variations   in   the   kinematic   
wave   speed,   such   as   due   to   the   inundation   of   a   large   flood   plain.   If   the   
convection   speed   and   attenuation   parameter   can   be   accurately   defined   for   
the   river   then   there   is   an   advantage    in   using   the   variable    parameter    
diffusion   method   which   will   give   a   better   prediction   of   the   shape   of   the   
hydrograph.   If   not,   the   Muskingum—Cunge    method   produces   results   as   
accurate   as   those   produced   by   the   other   methods,   and   is   preferable   for   the   
reasons   of   simplicity   and   ease   of   application   as   stated   above.   

With   these   conclusions   it   is   now   possible   to   outline   how   a   flood   routing   
problem   should   be   approached.   

4.2   Strategy   for   a   flood   routing   problem   

As   in   any   engineering   study,   it   is   important   to   be   clear   in   the   first   instance   
what   the   objective   of   the   study   is,   including   the   type   of   information   (atten-
uation   of   peak   discharges,   shape   of   hydrographs)    and   the   accuracy   re-
quired.   Secondly,   the   type   and   quality   of   all   the   available   data   on   previous   
floods   in   the   river   should   be   scrutinised.   Where   there   are   no   data   on   the   
speed   of   flood   peaks   along   the   river   there   is   little   opportunity   of   being   able   
to   do   an   accurate   flood   routing   exercise   at   all.   However,   other   data,   such   
as   design   hydrographs    and   peak   discharges,    can   be   refined   using   unit   
hydrograph    theory   or   data   from   a   neighbouring    catchment.    Where   
possible,   the   curves   for   the   convection   speeds,   LITp    and   a,   and   the   attenua-
tion   parameter,   a,   versus   discharge   should   be   drawn   (Section   5.1).   
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Decide   on   results   required   

from   flood   routing   study   
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Fig   4.1   Strategy   for   flood   routing.   Given   the   objective   of   the   study   and   the   curves,   or   at   least   some   values   
for   LIT   p    and   a,   the   formula    for   the   attenuation    of   the   peak   discharge    
(Equation   2.41   or   5.5)   should   be   used   to   calculate   the   magnitude   of   the   
attenuation   along   the   river   of   a   typical   flood   in   the   range   being   considered   
(Figure   4.1).   This   attenuation,    as   a   ratio   of   the   peak   discharge    at   the   
upstream   section   of   the   reach,   can   be   regarded   as   a   parameter   which   indi-
cates   the   magnitude   of   the   flood   routing   problems.   It   is   recommended   that   
if   the   ratio   is   greater   than   0.1,   the   Muskingum—Cunge    method   should   be   
used   to   find   the   attenuation   more   accurately   (Section   5.2).   When   the   shape   
of   the   downstream    hydrograph    is   important,    it   is   sufficient    to   use   the   
Muskingum—Cunge   method   to   route   the   hydrograph,   unless   the   equivalent   
river   model   is   accurately   defined   and   there   is   extensive   inundation   of   an   
associated   flood   plain.   In   the   latter   case   there   are   advantages   in   using   the   
variable   parameter   diffusion   method   (Section   5.3).   

4.3   Other   applications   for   methods   

The   strategy   in   Section   4.2   has   been   outlined   for   a   straightforward    study   
of   routing   floods   in   a   river.   Obviously   if   the   curves   for   a   and   a   are   accurate,   
they   can   be   safely   extrapolated   to   deal   with   larger   floods   than   have   previ-
ously   been   recorded.   But   the   methods   considered   in   this   volume   can   also   
be   used   for   other   problems,   such   as   the   calibration    of   rating   curves   for   
downstream   gauging   stations,   the   improvement   of   flood   warning   systems,   
the   operational    management    of   upstream   reservoirs,    and   the   design   of   
flood   alleviation   schemes.   

Generally,   low   flows   in   smaller   rivers   can   be   accurately   gauged   using   
a   control   structure   such   as   a   weir.   Alternatively,    in   the   larger   rivers,   in-
bank   flows   can   be   gauged   by   current   metering   at   a   stable   cross-section.    
However,   difficulties   usually   arise   when   gauging   the   higher   flows   if   there   is   
bypassing    of   the   main   channel   with   flow   over   the   local   flood   plain   or   
through   a   relief   channel.   In   most   cases   the   discharges   for   these   high   flows   
have   to   be   obtained   by   extrapolating   the   rating   curve   calibrated   from   the   
low   flows.   It   is   suggested   here   that   the   flood   routing   methods   presented   in   
this   volume   can   be   used   to   check   the   rating   curves   for   downstream   gauging   
stations,   and,   if   the   upstream   hydrographs   for   particular   large   floods   are   
known   to   be   accurate,   the   methods   should   provide   an   improvement   to   the   
curves   for   high   discharges.   

59   



Strategy   for   flood   routing   

The   benefit   of   using   flood   routing   methods   to   improve   a   flood   warning   
system   arises   from   the   increase   in   the   accuracy   of   predicted   flood   levels   at   
certain   sites   along   the   river,   resulting   in   better   use   of   resources   and   man-
power   when   the   flood   arrives.   For   example,   many   flood   warning   systems   
in   Britain   are   based   on   the   correlation    of   levels   recorded   for   previous   
floods   at   different   stations   along   the   river.   Inevitably   there   is   a   certain   
range   of   error   involved   in   the   use   of   the   correlations   due   to   the   different   
characteristics   of   each   flood:   a   peaky   flood   at   some   upstream   station   will   
experience   a   larger   attenuation   along   the   reach   to   a   particular   site   than   a   
flood   with   a   similar   peak   discharge   and   a   smaller   curvature   at   the   peak.   
Similarly,   flood   levels   in   rivers   with   a   complex   network   of   tributaries,   
such   as   the   Yorkshire    Ouse   or   the   Severn,   can   be   difficult   to   predict   
using   correlation   curves.   In   these   cases   a   flood   routing   method   can   provide   
a   more   accurate   prediction   of   peak   discharges   and   levels.   There   also   exists   
the   possibility   of   using   the   methods   for   detailed   predictions   during   a   flood,   
rather   than   just   in   the   design   of   a   particular   flood   warning   scheme.   

Although   the   flood   routing   methods   have   been   discussed   in   the   report   
primarily   in   relation   to   high   flows   off   a   given   catchment,   the   methods   can   
also   be   used   to   determine   a   strategy   for   operating   upstream   reservoirs.   
For   example,   several   of   the   larger   British   rivers,   such   as   the   Dee   and   the   
Severn,   have   reservoirs   designed   to   ensure   proper   control   of   flows   at   
certain   extraction   points   downstream.   In   particular,   the   reservoirs   can   be   
operated   on   a   long-term   basis   to   maintain   flows   above   a   certain   minimum   
level,   or   to   alleviate   flooding   (Jamieson   &   Wilkinson,   1972).   Obviously   
the   operating   schedule   for   the   reservoirs   depends   on   a   knowledge   of   the   
propagation   and   attenuation   of   flood   waves   in   the   river   downstream   of   the   
reservoirs.   

The   value   of   using   the   flood   routing   methods   to   assist   in   the   design   of   
a   flood   alleviation    scheme   arises   primarily   from   the   definition    of   the   
equivalent    river   model.   Suppose   that   there   is   some   concern   about   the   
increase   in   peak   discharge   or   levels   downstream   which   a   particular   scheme   
may   produce.   Then   the   equivalent   river   model,   on   which   all   the   methods   
described   in   this   report   are   based,   can   be   reconstructed   for   the   river   as   it   
will   be   after   the   improvements   have   been   made.   This   enables   the   results   of   
routing   floods   in   both   equivalent   river   models   to   be   compared,   to   find,   in   
particular,    the   change   in   the   attenuation    along   the   reach   of   the   peak   
discharge   for   a   certain   design   flood.   The   techniques   for   constructing   the   
new   from   the   old   equivalent   model   can   be   derived   from   the   equations   
defining   the   speed   and   the   discharge   in   terms   of   the   water   depth   (Equations   
2.49   and   2.50)   and   from   the   expression    for   the   attenuation    parameter   
(Equation   2.40).   

Consider   a   simple   example   where   the   river   channel   is   to   be   deepened   
to   convey   a   larger   discharge.   Suppose   that   the   curves   for   the   speed   and   
attenuation   parameters   are   available   for   the   river   before   improvements.    
Then   Equations   2.49   and   2.50   are   used   first   to   specify   a   water   depth   over   
the   flood   plain   for   a   particular   discharge   in   the   old   model   and   secondly   to   
find   the   new   speed   and   discharge   for   the   same   depth   over   the   flood   plain   
with   the   new   value   for   the   bankfull   depth,   which   has   to   be   worked   out   
beforehand   from   the   flow   which   the   new   channel   is   to   convey.   In   this   way   
the   new   speed—discharge    curve   can   be   plotted,   as   can   the   attenuation   
parameter.   The   attenuation   formula   or   the   Muskingum—Cunge   method   is   
then   used   to   compare   the   attenuation   of   a   particular   flood   in   both   equiva-
lent   models.   

If   alterations   are   made   to   the   flood   plain   by   reducing   the   amount   of   
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area   available    for   flooding,    the   attenuation    parameter    has   to   be   recalcu-
lated   using   Equation   2.45.   The   discharge    and   speed   for   a   given   depth   of   
flooding   over   the   flood   plain   are   again   calculated   from   Equations   2.49   and   
2.50,   using   adjusted   values   for   W   f   and   /if    if   necessary.   

4.4   Further   research   

There   still   remains   a   considerable    amount   of   basic   research   to   be   done   on   
simplified    flood   routing    methods.    In   particular,    two   lines   of   research    
should   be   pursued.   The   first   is   a   closer   study   of   the   functional   forms   for   e   
and   a.   There   is   a   need   to   investigate    the   definition    of   C.   in   Equation   2.48   
more   rigorously,    and   also   to   examine    values   of   a   for   bankfull    flows.   In   
addition,   there   exists   the   possibility   of   using   the   C.   and   a   curves   for   a   given   
reach   to   calculate   a   typical   cross-section    and   roughness   values   (Kawecki,   
1973).   The   second   line   of   research   is   the   development    of   a   variable   para-
meter   Muskingum    method,   similar   to   the   method   proposed    by   Linsley,   
Kohler   &   Paulhus   (1958).   This   latter   method,   if   developed,    may   well   be   
preferable    to   the   variable    parameter    diffusion    method   in   predicting    the   
shape   of   a   hydrograph.    

In   conclusion,   mention   should   again   be   made   of   the   considerable   amount   
of   world-wide    research   on   the   application    to   flood   routing   of   numerical    
methods   based   on   solutions   of   the   full   Saint—Venant    equations.    As   yet,   
the   use   of   such   methods   to   simulate   flooding   in   a   river   with   extensive   flood   
plains   is   at   an   early   stage,   but   current   developments    both   in   this   country   
and   on   the   Continent   hold   considerable    promise   for   the   future.   
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5   Appendices    

5.1   Attenuation   of   the   peak   discharge   

Four   quantities   are   required   to   be   known   before   the   attenuation    of   the   
peak   discharge   for   a   particular   flood   can   be   calculated.   These   quantities   
are   the   peak   value   and   curvature   at   the   peak   of   the   upstream   discharge   
hydrograph,   together   with   the   attenuation   and   speed   parameters   corres-
ponding   to   an   average   value   for   the   peak   discharge   along   the   reach.   If   the   
attenuation   is   being   found   for   either   the   largest   recorded   overbank   flood   
or   a   typical   inbank   flood,   data   are   usually   available   to   calculate   the   corres-
ponding   values   for   the   attenuation   and   speed   parameters.   So,   assuming   
that   the   first   two   quantities   above   are   given   or   have   been   derived   from   the   
methods    in   Volume    I   it   is   a   straightforward    matter   to   calculate    the   
attenuation   for   either   of   the   floods.   However,   if   the   flood   being   studied   is,   
say,   a   small   overbank   flood   for   which   only   the   speed   parameter   can   be   
directly   calculated   from   records,   or   if   a   synthetic   design   flood   is   to   be   
routed   along   the   reach,   then   it   is   necessary   to   know   the   curves   defining   the   
attenuation   and   speed   parameters   as   functions   of   discharge.   In   this   latter   
case   the   problem   resolves   into   one   of   defining   the   parametric   curves.   

So,   two   cases   need   to   be   considered,    namely   the   calculation   of   the   
attenuation   for   the   largest   recorded   flood   or   a   typical   inbank   flood,   and   for   
a   recorded   intermediate   flood   or   synthetic   design   flood.   

Case    1   Attenuation    of   the   peak   discharges    for   the   largest    recorded    

flood    and   a   typical    inbank    flood    

A   Calculate   the   attenuation   parameter   

i   Define   the   flood   plain   as   the   known   area   inundated    by   the   largest   
recorded   flood,   or   as   estimated   from   a   survey   map.   

ii   Divide   the   reach   into   a   number   of   subreaches   so   that   the   geographical   
width   of   the   flood   plain   in   each   subreach   is   approximately   uniform.   Where   
the   flood   is   not,   or   is   unlikely   to   be   overbank,   define   the   subreaches   such   
that   the   slope   of   the   channel   is   approximately   uniform   in   each   subreach.   

iii   For   each   subreach   measure   the   length,   Lm,   of   the   channel,   the   average   
slope,   sm,   of   the   channel,   the   plan   area,   Pm,   of   the   flood   plain,   (including   the   
plan   area   of   the   channel).   

It   is   sufficient   for   most   purposes   to   calculate   s   from   the   distance   along   
the   channel   between   the   sections   where   the   25   ft   contours   cross   the   channel   
on   an   Ordnance   Survey   map.   

iv   For   the   whole   reach   calculate   the   length,   L,   of   the   channel,   and   an   
average   width,   W,   of   the   channel.   

v   Calculate   the   attenuation   parameter,   ocp,   for   the   largest   recorded   flood   
from   

1    M    }   -3    
M    P2    

=   1{7   7,   2   ,   
ni.,    m   .1   mn   m   .1    ._am2    

and   for   a   typical   inbank   flood   from   

1   f   1   M,   44-3    14,   Lm   
=   2   W   IL   L'   s"3f   ,2    •    

c   m   =1    m    rn=1   
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B   Calculate   the   convection   speed   

Extract   the   times   of   travel,   Tp,   of   the   peak   of   the   largest   recorded   flood   and   
the   inbank   flood   from   records.   Define   the   speed   by   LIT,.   

C   Calculate    the   curvature    at   the   peak   of   the   upstream    discharge    
hydrograph   

i   Find   the   time-to-peak,   tp,   of   the   flood   hydrograph   and   locate   the   time-
of-occurrence    of   the   peak.   Mark   off   two   points   on   the   hydrograph    at   a   
time   interval,   61,   either   side   of   the   peak,   where   it   is   defined   to   the   nearest   
hour   by   

it   =   tpI5.   (5.3)   

it   need   not   however   be   greater   than   3   hours.   

ii   Calculate   the   curvature   at   the   peak   from   

d2Q,    Qi+Q_,    —2Q,   
dt2   (602    

where   Q,   is   the   discharge   at   the   peak   and   Q,   and   Q_   
charges   either   side   of   the   peak.   

(5.4)   

are   the   two   dis-   

D   Calculate    the   attenuation    of   the   peak   discharge    

i   Use   the   formula   

Q*   =   
a

P   (LI   T„)3   Qp   

ii   If   Q*/Qp>   0.1,   redefine   Q*   by   

=   Q,   [1   exp(   )]    
Qp    

(5.6)   

and   define   co,   by   

L   2a   co   P   n*    

P   

=   
T   L2    flevi.   

Recalculate   the   attenuation   using   Equation   5.5,   with   LIT,   replaced   by   cop,   
and   Equation   5.6   if   necessary.   

Case   2   Attenuation   of   the   peak   discharge   for   an   intermediate   or   a   
synthetic   flood   

A   Define   the   curves   for   the   attenuation    and   speed   parameters    as   
functions   of   discharge   

i   Calculate   ap    for   the   largest   recorded   flood   and   for   a   typical   inbank   flood   
from   Equations   5.1   and   5.2   above.   In   addition,   calculate   cep    for   any   other   
flood   with   the   relevant   data.   

ii   Calculate    the   attenuation    of   the   peak   discharge    and   the   speed,   cop,   
for   the   largest   recorded   flood   and   the   inbank   flood,   as   explained   in   Case   1.   
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iii   Define   the   average   peak   discharge,   Op,   for   each   flood   by   

Q,   =   Q,-   (5.8)   

iv   Correlate    the   values   of   a,   and   cop    with   the   values   of   O   p   .   Plot   the   

points   on   a   graph.   

v   Estimate   the   curve   for   a.   If   the   flood   plain   is   fairly   uniform   along   the   
river,   it   is   probable   that   the   curve   fora   will   drop   sharply   as   the   discharge   
increases   above   an   average   bankfull   value.   Ensure   that   the   curve   tends   
asymptotically    to   zero   as   the   discharge   becomes   infinite.   

vi   Extract    the   times   of   travel,   Tp,   for   as   many   recorded   floods   as   possible.   
Calculate   values   for   w,   using   Equation   5.7   and   the   calculated   values   for   
the   attenuation    in   each   case.   Use   values   for   ap    read   off   the   curve   for   the   

attenuation   parameter.   

vii   Estimate   the   curve   for   w(Q).   

B   Calculate    the   attenuation    of   the   peak   discharge    

i   Calculate   the   curvature   at   the   peak   of   the   upstream   hydrograph    as   in   
Case   1.   

ii   Use   the   formula   

a   
Q*   =   Qp   

(0   

where   a   and   w   are   initially   read   off   the   corresponding    curves   at   Q   =   Q ,.   

iii   Refine   the   estimate   of   Q*   as   in   Case   1,   but   this   time   adjusting    the   
values   of   a   and   w   according   to   the   value   of   the   average   peak   discharge,   
Q   p    (Equation   5.8).   

5.2   Muskingum—Cunge   method   

This   method   can   either   be   applied   by   desk   calculation   or   by   using   a   digital   
computer.   

1   Desk   version   

A   Calculate   parameters   

i   Derive   curves   for   the   speed   and   attenuation   parameters    as   described   in   
Section   5.1,   Case   2.   

ii   Record   the   upstream   peak   discharge,   Qp,   of   the   flood   to   be   routed,   

together   with   the   corresponding    value   of   the   curvature   at   the   peak   of   the   
discharge   hydrograph.   

iii   Calculate   the   attenuation,    Q*,   of   the   peak   discharge   along   the   reach,   

length   L,   for   values   of   LITp    and   a   corresponding    to   Qp.   If   Q*/Q,>   0.1,   

correct   Q*   using   the   equation   

Qnew   =   Qp    fl   —   exp(—f-
p
)}.   (5.10)    

iv   Calculate    a   provisional    value   for   the   average   peak   discharge,    Op,   
along   the   reach   from   

Qp   =   Q,—   7Qnew   (5.11)   

(If   the   downstream   peak   discharge   is   known   then   define   O   p    as   the   average   

of   the   peak   discharges   at   each   end   of   the   reach.)   
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v   Record   the   values   of   w   and   a   corresponding    to   O   p    and   recalculate   Q*   
and   a   new   value   for   O   p   .   

vi   Calculate    K   and   E   from   

K=   co—
L   

(5.12)   

«Op   
E   =   L2    co'   (5.13)   

vii   Read   the   value   of   Ll(coAt)   corresponding    to   this   particular   value   of   E   
off   the   graph   in   Figure   2.11.   Calculate    At   and   round   up   to   the   nearest   
integral   number   of   hours.   

viii   Calculate   the   four   Muskingum   parameters   

—   
K(1   —e)++At   

—   Ks   
C2   —   

K(1—   e)+1At   

K(1   —6)—   lAt   
C3   —   

K(1—   e)+-fAt   

LqAt   
C4   =   

K(1   —E)+-1-At   

where   q   is   the   lateral   inflow/unit   length.   

B   Calculate   the   outflow   hydrograph   

i   Read   off,   or   calculate   from   a   stage   discharge   relationship,   the   values   of   
the   input   discharge,   Qp,   at   intervals   of   At.   

ii   Assume   an   initial   value,   03,   for   the   outflow   discharge   equal   to   the   
value   of   the   input   discharge,    0,   at   the   same   time,   and   generate   the   rest   
of   the   outflow   hydrograph,   03,   using   the   recurrence   formula   

=   C10-1-C2QP+1+C3Q;+C4.    (5.18)    

Note   The   lateral   inflow   can   be   regarded   as   a   function   of   t,   in   which   case   
the   lateral   inflow   hydrograph   has   to   be   specified   at   intervals   of   At.   

2   Digital   computer   version   

A   Calculate   parameters   

i   Derive    O   p    and   w   as   in   the   desk   version   above.   

ii   Fix   Ax   =   L/10   and   determine   K   and   E   from   

Ax   
K   =   —   

co   

ce0   
E_   =   

LcoAx   

iii   Read   the   value   of   Axl(coAt)   corresponding    to   this   particular   value   of   
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E   off   the   graph   in   Figure   2.11.   Calculate   At   and   round   up   to   the   nearest   
integral   number   of   hours.   

B   Prepare   card   data   

The   program   listed   below   reads   the   data   in   the   following   order.   Eight   cards   
containing   the   heading   for   the   output   from   the   program.   Cards   containing   
I   1   integers   (free   1-format):   

ix   the   number   of   space   nodes   
LEND   the   number   of   time   steps   
IQH   the   number   of   data   points   for   the   upstream   hydrograph   
IQDNS   the   number   of   data   points   for   the   downstream   hydrograph   
ITRI   the   number   of   data   points   for   the   hydrograph   from   the   first   

tributary   
ITR2   the   number    of   data   points   for   the   hydrograph    from   the   

second   tributary   
JTI   the   space   node   for   the   confluence   of   the   first   tributary   with   

the   main   channel   
JT2   the   space   node   for   the   confluence   of   the   second   tributary   with   

the   main   channel   
the   discharges    along   the   reach   are   written   at   J   i   intervals   
apart   

Li   the    discharges   along   the   reach   are   written   when   the   number   
of   times   steps   is   equal   to   a   multiple   of   Li   

L2   only   the   downstream   discharge   is   written   when   the   number   
of   time   steps   is   equal   to   a   multiple   of   L2.   

Cards   containing   12   real   numbers   (free   E-format):   
DXLR   length   of   reach   
DT   time   step   
DTQHYDRO   time   interval   between   successive   data   points   for   each   specified   

hydrograph   
QINIT   initial   discharge   along   the   reach   
Q1NB   base   flow   for   the   lateral   inflow   
QINA   amplitude   of   the   variable   part   of   the   lateral   inflow   
TQIN   time   when   the   peak   lateral   inflow   occurs   
TSQIN   timescale   for   the   variable   part   of   the   lateral   inflow   
wSP   value   of   L/T,   
Al'   value   of   a   
QCON   value   of   Op   
TDEVN   time   after   which   the   error   parameters   are   calculated.   

Notes   

i   If   there   is   no   downstream   hydrograph   IQDNS    =   0   and   TDEVN   is   set   to   a   
value   greater   than   the   real   time   for   routing   the   flood.   Similarly,    1TRI,   

ITR2,   JT1   and   JT2   should   be   set   equal   to   zero   if   there   are   no   tributaries.   

ii   The   computer   version   above   of   the   Muskingum—Cunge    method   can   
also   be   used   in   a   desk   calculation   if   DC   is   not   too   large.   

The   computer   program   below   is   written   in   FORTRAN   iv.   The   program   
can   be   extended   to   deal   with   any   number   of   different   reaches   in   the   same   
river.   
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C   u1    -    ARRAY    FOR   TH1:   DISCHARGE    ALONG    THE   REACH    AT   THE   NFU   TIME   LEVEL.    C   Q2    -    ARRAY    FOR   THE   oiscHA2nE    ALONG    THE   REACH    AT   THE.    OLD   TIME    LEVEL.    
C   DX   -    SPACE    INCREMENT,    
C   DXLR    -    LENGIH    OF   THE.   RFACH.    
C   JX    -    NUMBER    OF   SPACE    GRID    POINTS,    
C   X    -    ARRAY    FOR   THE   5ISTANcES    OF   THE   GRID    POINTS    ALONG    THE   CHANNEL.    
C   DT    -    TIME    INCREMENT,    
C   T   -   TIME    TN    sEcnkns.    
C   TH    -    TIME    TN   HOoRs,    
C   LEND    -    NUMBER    OF   TrIE    STEPS    
C   TITLE    -   ARRAY    WHICH    STORES    DATA    FOR   THE    HEADING    OF   THE    0:!TEuT,    
C   J1.    L1   AND    1  2   REFER    TI   WHEN   Gun   HOW   THE   RESULTS    ARE.   WRITTEN,    

C   WSP   -   WAVE.    SPEED.    
C   Ap    -    ATTENUATION    PARAMETER,    
C   wCON    -    DISCHARGE    CONSTANT.    
C   C1t    CO.   C3   AND   C4   ARE   PARAMETERS    IN   THE   MUSKINGUM    METHOD.    
C   OTONYDRO    TIME   INTERVAL    IN   HOURS    BETWEEN    THE   DATA    POINTS    FOR   THE   INPUT    AND   
C   OTHER    DISCHARGE    HYDROGRAPHS,    
C   OHYDRO    -   ARRAY    WHICH    ;TOPES    THE   DATA   FOR   THE   RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE   UPSTREAM    SECTION.    
C   ON    -    NUMBER    OF   DATA   POINTS    FOR   THE   UPSTREAM    MYDROGRAPH,    
C   OTRIB1    -   ARRAN,     WHICH    STORES    THE   DATA   FOR   THE   RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE   FIRST    TRIBUTARY.    
C   ITR1    -   NUMBER    OF   DATA    POINTS    FOR   THE   HYDROGRAPH    AT   THE   FIRST    TRIBUTARY.    
C   JT1    -    POSITION    OF   THE    INPUT    DISCHARGE    FROM    THE   FIRST    TRIBUTARY,    
C   OTRIR2    -   ARRAY    WHICH    STORES    THE   DATA   FOR   THE   RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE   SECOND    TRIBUTARY,    
C   ITR2    -    NUMRER    OF   DATA    POINTS    fOR   THE   HYDROGRAPH    AT   THE   SECOND    TRIBUTARY,    
C   JT2    -    POSITION    OF   THE   INPUT    DISCHARGE    FROM    THE   SECOND    TRIBUTARY,    
C   VISIT    -    INITIAL    DISCHARGE    FOR   THE   FLOW    THROUGHOUT    THE   REACH,    
C   OINB    -    BASE    VALUE    FOR   THE   LATERAL    INFLOW.    
C   NINA    -    AMPLITUDE    OF   THE   FUNCTION    FOR   THE   LATERAL    INFLOW.    
C   TUN    -   TIME   WHEN    THE.   LATERAL    INFLOW    TAKES    ITS   MAXIMUM    VALUE.    
C   7SCOIN    -   TIME    SCALE    FOR   THE   LATERAL    INFLOW    FUNCTION.    
C   ODNS    -    ARRA),    WHICH    STORES    THE   DATA   FOR   THE   RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE   DOWNSTREAM    END   OF   THE   REACH.    
C   IODNS    -   NUMBER    OF   DATA   POINTS    FOR   THE   DOWNSTREAM    HYDROGRAPH,    

C   TDEVN    -   TIME   IN   HOURS    WHEN    THE   CALCULATIONS    OF   THE   ERROR    PARAMETERS    ARE   
C   BEGUN,    
C   TOTOIS    -   AVERAGE    RECORDED    DISCHARGE    AFTER    THE   TIME   TDEVN,    
C   TnTo    -   AVERAGE    PREDICTED    DISCHARGE    AFTER    THE.   TIME   TDEVN,    
C   DisnIF    -   DIFFERENCE    BFTWFEN    THE.   AVERAGE    RECORDED    AND   PREDICTED    DISCHARGES    
C   AS    A   PERCENTAGE    OF   THE   RECORDED    DISCHARGES.    
C   DF.VN    -    ULTIMATELY    RECORDS    THE   STANDARD    DEVIATION    OF   THE   PREDICTED    
C   DISCHARGE    AS   A   PERCENTAGE    OF   THE   AVERAGE    RECORDED    DISCHARGE.    

MASTER   FLOODS,   

REAL    01  (50),02(50),XIS0/    
COMMON   oX,   OT.JX,   DELH,LENn,TH,J1   ,0,L2,TtTLE(60),    

1JTI.JT2,0TEiril(20o),QTEIE2(200),OHY0Eo(200),DTpHyoEn,    
20FNIT   ,01NB,QINA,TQIA.Tsc01N,AE,wsP,QcON.    
4   OOHS(  2nu)    TDEVN   

C   FIRST    READ    IN   THE   APPROPRIATE    DATA    AND    WRITE    IT   OUT   FOR    EASY    REFERENCE.    

CALL   SATIN   

C   NEXT   CALCULATE    VARIOUS    CONSTANTS    AND   PARAMETERS    FOR   USE   BELOW.    

OXRDX1R/FLOAT(JX-1)    
OK•DX/WSP    
EPSILONEO,SA(1.0-000N.AP.2.0/(DXRHSP.DXLR))    
CCEDK.(1.0-EPSILON).DT.O,S    
C1E(DX•EPSILON.07.0.5),CC    
C2E(DT.O.S-DK.EPSILON)/CE    
C3.(D10,(1   .0-EPSILON)-DT.O.5)/CE    
CARDTADX/EC   
JXM1EJX-1    
TA0.0    

C   THE.   FOLLOWING    VARIABLES    ADE   ONLY   USED   WHEN   A   RECORDED    DOWNSTREAM    
C   HYDROGRAPH    IS   AVAILABLE    FOR   COMPARISON.    ALL    SUCCEEDING    
C   STATEMENTS    BEGINNING    IN   COLUMN    13   REFER    TO   THIS   CASE    ONLY.    AND   
C   SHOULD    NOT   BE   INCLUDED    OTHERWISE.    

DEVNE0.0    
TO7DIS    DU,0    
TOTDD0,0    
opt.FHHIT    
Qp2.ctINIT    
00NP2ROINIT    
CIDNP1E0INIT    
JCnuNT.c    
ICOLINT.0    

C   DEFINE    X   AND    THE    INITIAL    VALUES    

DO   2   JR1,JX    
X(j)=DX.FLOAT(J-1)    
01   (J),    02(.1   ).,(11NIT    

2   CONTINUE    

C   BEGIN    THE    MAIN    TIME    LOOP    

OF   01   ONO    Q2   
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DO   14   L.1,LEND    
T•T+DT   
TH.7/3600.0    

CIP2.0P1   
OP1.01(JX)    
ODNP2mODNP1   
CIDNP1.01IN   
QDR.FF(   O   DNS  ,   TH,DTQHYDRO)   

C   UPDATE   THE   VALUES    FOR   THE   DISCHARGE    

DO    4   j.1  ,JK    
02(J).01   (J)   

4   CONTINUE    

C   FIND   THE   VALUE    OF   ol(i)    FROM   THE.   INPUT   HYDROGRAPH    AND   ADD   THE   
C   CONTRIBUTION    FROM   THE   TRIBUTARY,    IF   ANY   

0101.0.0    
IF(J71,E0.1)    OTOT.FF(QTRIB1,TH,DTONYDRO)    
O1(1)=FF(OHYDRO,TH,DTQHYDRO)•UTOT    

C   THE   MAIN   CALCULATIONS    FOR   01   ARE   PERFORMED    IN   THE   FOLLOWING   LOOP   

DO   6   J.2rJK    
C   GTOT   REFERS    TO   THE   INFLOW   DISCHARGE    FROM   TRIBUTARIES    AND   LATERAL   
C   RUNOFF,    UNDER   SNOW-MELT    CONDITIONS    IT   MAY   BE   PREFERABLE    TO   TAKE   
C   THE   LATERAL   INFLOW   AS   PROPORTIONAL    TO   THE   DISCHARGE    AT   THE   
C   UPSTREAM   BOUNDARY   

TX.(TH:TOIN)/TSCOIN    
OTOT.OINA.EXP(-TX.TX).QINFI    

C   QTOT=01 (1)•CONST/DXLR    
IF(J,EQ.JT1)    QTOT•QTOT•FF(OTRIBI,TH,DTQHYDRO)/DX    
IF(J.EO.JT2)    OTOT.OTOT.FF(OTRIB2,TH,OTOHYDRO)/DX    

01(J).C1.02(J-1)+C2•Q1(J-1)•C3•Q2(J)+C4•QTOT    
6   CONTINUE    

C   PERFORM   VARIOUS   SUMS   ON   THE   ERROR   PARAMETERS    

IF(TH.LT.TDEVN)    GO   TO   R   
DEVN.DEVN+(U1(JX)-ODN)•(Q1(JX).ODN)    
ICOUNT.ICOUNT4  ,1   
JCOUNT.JCOUNT.1    
IF(JCOUNT.NE.2)    GO   TO   8   
TOTD.TOTD.2.0.0T.(01(jX)*(IP1.00p2)/3.0    
TOTDIS.TOTDIS+2.O.OT•(0DN+QONP1•QDNP2)/3.0    
JCOUNT.O   

C   NOW    WRITE    OUT    THE   RESULTS    -   IF   IT   IS   TIME    

8   IF(    L,   NE.   L1•(   L/   L1))   GO   TO   12   
WRITE(3,301   )   (TH,X(.0,01   (.1  ),J.1   ,JXHI,J1)    

301   FoRmATc(20x,F6.2,9x,F8.1   ,8x,F7.2))    
10   WRITE(3,302)    TH,X(JX),01(JX),ODN    
302   FORMAT((20X,P6.7,9X,F8.1,2(1K,F7.2)))    

WRITE(3,303)    
303   FORMAT(1H    ,/)   

GO   TO   14   
17   IF(L,E0,L2•(L/L2))    GO    TO    10   
14   CONTINUE    

C   FINALLY,    WORK   OUT   THE   ERROR   PARAMETERS    

TOTDIS.TOTDIS/I(TH-TDEVN)•3600.0)    
TOTD.TOTOMTM-TDEVN)*3600.0)    
DISDIF.(1,0'TOTU/TOTDIS)•100,0    
DEVN.SORT(DEVN/FLOAT(ICOUNT)).100.0/TOTDIS    
WR/TE(3,304)    TOTOIS,DISDIF,    DEVN    

304   FORMAT(34H    AVERAGE    RECORDED    DISCHARGE    •   ,F7.2.   
1   9H    CUMECS/    
2   56H    DIFFERENCE    BETWEEN   RECORDED   AND   PREDICTED   AVERAGE   D,   
3   11HISCHARGE    •   ,F6.2,1)1K/    
4   26H    STANDARD    DEVIATION    •   ,F6.2,1HK/i)    

STOP   
ENO   

SUBROUTINE    DATIN   

C   THIS   SUBROUTINE    READS    IN   THE   RELEVANT    DATA,    WRITES    IT   OUT   
C   REFERENCE,    AND   PROVIDES    A   HEADING   EON   THE   RESULTS   

COMMON    Dx,DT.Jx.DxLR,LEND  ,   TH,J1   ,LI,L2,TITLE(60),    
1  .1  1  1  .JT2,DTRIR1   (200),GTRI821   200),WIYDR0(200),GTomvpRo,    
20INIT,OINB,QINA,TOIN,TSCOIN,AP,WSP,OCON,    
4   coNs(200),ToEvN    

FOR   EASY   

READ(1   000)    (TITLE(I),1   .1,60)    
100   FORMAT(10A8/SA8)    

READ(1,101)    JX.LEND.10H,IODNS    •   ITR1,ITR2,    JT1   ,JT2,J1    ,   L1   •   L2   
101   FORMAT(11I0)    

READ(1,102)    OXLR,DT,DTOHYDRO,GINIT.QINB,DINA,TOIN,TSCOIN,WSP,AP,    
1000N   
2   ,TDEVN   

102   FORMAT(13E0,0)    

WRITE(3,300)    (TITLE(I).1.1,60)    
300    FoRmATtim    .(1  5A0))    
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C   WRITE(3,301   )   JX•LEND,IQH,ICIONS#ITR1,ITR2eJT1,JT2pJ1eL1,12    
C300    FORMAT    -   FOR    WRITE    STATEMENT    
C   WRITE(3,302)    OXLR.OT,Die3HYDRO/CIINIT•OIN8•41NA,TgiNoTSCQINeliSP,AP,    
C   1QCON   
C   2   ,TDEV4    
C302    FORMAT    -   FOR    WRITE    STATEMENT    

C   READ    IN   THE    DISCHARGE    HypivIGRApHS   

READ(20200)    (OHYDRO(I).1A1,/OH)    
IF(ITR1   .NE.u)    READ(2.260)    (QTRIB1   (1  ),I   21  ,ITR1   )   
IF(ITR2.NE.01    REAO(2,20,))    (QTRIB2(I).1   .1  t1  TR2)    

READ(2,200)    (ODNS(I)t1   .1  ,10DNS)    
200   FORNAT(41X,F0.2)    

wRITE(3,306)    
306    FURMAT(1H    .210,4HTI'lE,10X,8MOISTANCE,6X.10HCALCULATE0,6X.9MPR0T0TY    

1PE/114    .20X,5m(HRS),13X,3N(M).9X,9RDISCNARGE,6X,PNOISCHARGE/)    
RETURN   
END   

FUNCTION    FF(O,T,AT)    

C   THIS    FUNCTION    INTERPOLATES    USING    A   CUBIC    POLYNOMIAL    

REAL   aana,    

1..INT(T/0-..).1   
tF(L.LE.1)    L.2   

FRI.rior-FLoAT(L-1)    
A.(0(L.2)-3.1   .(00,1)-0(0)-g(L-1   1)/6.0    

11.(o(L-1)-0.0..4(0.0(0.1)).0.5    
c.c-0(L.2)..e.0.o(L.1).3.0.0(0-2.0.0(0-1))/6.0    
D.0(L)    

FF.I(A.FRI.0).FRI•C).Fol.D    
RETURN   
END   
W.ISH    

5.3   Variable   parameter   diffusion   method   

A   Calculate   parameters    
i   Derive   curves   for   the   speed,   LIT,,   and   attenuation    parameters    as   
described   in   Section   5.1.   
ii   Construct   the   function   e(Q)   from   the   equation   

*   d   (L)    
e   =   co+   Q   d—Q   (5.17)   

where   d(LIT,)IdQ   is   measured   graphically   from   the   curve   for   L/T,   and   
is   defined   for   each   recorded   flood   using   known   values   for   Q*.   

iii   Digitalise   the   functions   for   e   and   a   at   10   m3    s-1    or   20   m3   intervals.    

iv   Set   Ax   =   L/10,   where   L   is   the   length   of   the   reach,   and   define   At   by   

At   =   Ax/E„,c   (5.18)    

where   is    an   average   value   for   e   over   the   range   of   discharge   anticipated   
for   the   flood.   Choose   At   as   a   convenient   fraction   of   an   hour.   

B   Prepare   card   data   

The   program   listed   below   reads   the   data   in   the   following    order.   Eight   
cards   containing    the   heading   for   the   output   from   the   program.    Cards   
containing   14   integers   (free   1-format):   
JX,   LEND,    KEND,    IWSP,    IQH,   IQDNS,    ITRI,    ITR2,    JT1,   JT2,   31,   LI,   L2,   NPAR.    

These   integers   are   all   explained   in   Part   B   of   5.2,   except   for   
KEND   maximum   number   of   iterations   allowed   in   the   solution   of   the   non-   

linear   equations   
IVVSP   number   of   data   points   defining   each   of   the   functions   of   e   and   a   
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NPAR    =   1   if   the   coefficients    of   the   smoothed    cubics   through   the   data   
points   for   e   and   a   are   to   be   calculated   
=   0   if   the   coefficients   are   to   be   read.   

Cards   containing   12   real   numbers   (free   E-format)   
DXLR,   DI,   EQ,   DTQHYDRO,    QERROR,    QINIT,   QINB,   QINA,   TQIN,   TSCQIN,    QCF,   

TDEVN.   

Again,   these   numbers   are   all   explained   in   Part   B   of   5.2,   except   for   
EQ   interval   between   successive   data   points   for   e   and   a   
QERROR   maximum   error   allowed   in   the   iteration   procedure   
QCF   cut-off   discharge   to   simulate   drainage   off   the   flood   plain   and   to   

stabilise   the   finite   difference   solution   technique.   

Cards   containing   the   data   defining   e   in   free   F-format   and   a   in   free   E-format.   

Again,   the   computer   program   below   for   the   variable   parameter   diffusion   
method   is   written   in   FORTRAN   IV.   

C   41    -    ARRAY    FOR    THE    DISCHARGE    ALONG    THE    REACH    AT    THE    NEW    TIME    LEVEL.    
C   02    -    ARRAY    FOR    THE    DISCHARGE    ALONG    THE    REACH    AT   THE    OLD    TIME    LEVEL.    
C   DX    -    SPACE    INCREMENT.    
C   DXLR    -    LENGTH    OF    THE    REACH.    
C   JX    -    NUMBER    OF    SPACE    GRID    POINTS.    
C   X    -    ARRAY    FOR    TAO    DISTANCES    OF    THE    GRID    POINTS    ALONG    THE    CHANNEL.    
C   DT    -    TIME.    INCREMENT.    
C   LEND    -    NUMBER    OF    T111E    STEPS.    
C   T    -    TIME    IN   SECONDS    
C   TH    -    TIME    (N   HOURS.    
C   KEND    -    MAXIM'IM    NUMBER    OF   ITERATIONS    ALLOWED.    
C   SF.RROR    -   MAXIMUM    ERROR    ALLOWED    IN   THE    NEWTON    ITERATION    PROCESS.    
C   IQ    -    INCREMENT    IN   THE    DISCHARGE    BETWEEN    SUCCESSIVE    VALUES    OF   THE    DATA    
C   FOR    THE    WAVE    SPEED    AND    THE    ATTENUATION    PARAMETER.    
C   TITLE    -   ARRAY    WHICH    STORES    DATA    FOR    THE    HEADING    OF    THE    OuTPUT,    
C   J1,    L1   AND    L2   REFER    TA    WHEN    AND    HOW    THE    RESULTS    ARE    WRITTEN.    

C   OTumYDR0    TIME    INTERVAL    IN   HOURS    BETWEEN    THE    DATA    POINTS    FOR    THE    INPUT    AND    
C   OTHER    DISCHARGE    HyDROGRApHS.    
C   uHYDRO    ARRAY    WHICH    STORES    THE    DATA    FOR    THE    RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE    UPSTREAM    SECTION.    
C   ION    NUMBED•    OF   DATA    POINTS    FOR    THE    UPSTREAM    HyDROGRAPR.    
C   uTRIB1    ARRAY    WHICH    STORES    THE.    DATA    FOR    THE    RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE    FIRST    TRIBUTARY.    
C   1TR1    -    NUMBER    OF   DATA    POINTS    FOR    THE    HYDROGRAPM    AT   THE    FIRST    TRIBUTARY.    
C   JT1    -    POSITION    OF     THE    INPUT    DISCHARGE    FROM    THE    FIRST    TRIBUTARY    (U   OR    1)   
C   uTR1B2    -   ARRAN,     WHICH    STORES    THE.    DATA    FOR    THE    RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE    SECOND    TRIBUTARY.    
C   ITR2    -    NUMBER    OF   DATA    POINTS    FOR    THE    HYDROGRAPH    AT   THE    SECOND    TRIBUTARY.    
C   JT2    -    POSITION    OF    THE    INPUT    DISCHARGE    FROM    THE    SECOND    TRIBUTARY    (0   OR    JX)    
C   QINIT    -   INITIAL    DISCHARGE    FOR    THE    FLOW    THROUGHOUT    THE    REACH.    
C   GINB    -    BASE.    VALUE    FOR    THE    LATERAL    INFLOW.    
C   0INA    -    AMPLITUDE    OF   THE    FUNCTION    FOR    THE    LATERAL    INFLOW.    
C   TQIN    -    TIME    WHEN    THE    LATERAL    INFLOW    TAKES    ITS    MAXIMUM    VALUE.    
C   TsCOIN    -   TIME    SCALE    FOR    THE    LATERAL    INFLOW    FUNCTION.    
C   OCE    -    CUT-OFF    DISCHARGE    FOR    DRAINAGE    OFF    THE    FLOOD    PLAIN    TO    RE   INCLUDED.    
C   INDIC    -   AN    INDICATOR    WHICH    IS   0   WREN    THE    DISCHARGE    AT    A   SECTION    IS   BELOW   

C   BANK-FULL    AND    INCREASING,    AND    1   WHEN    THE    DISCHARGE    HAS    PREVIOUSLY    
C   EXCEEDED    BANK-FULL    AND    YET    IS   BELOW    BANK-FULL    AND    DECREASING,    
C   ()DNS    -   ARRAY    WHICH    STORES    THE    DATA    FOR    THE    RECORDED    DISCHARGE    HYDROGRAPH    
C   AT    THE    DOWNSTREAM    END    of   THE    REACH.    
C   IRONS    NUMBER    OF   DATA    POINTS    FOR   THE    DOWNSTREAM    HYDROGRAPH,    
C   TDEVN    TIME    IN   HOURS    WHEN    THE    CALCULATIONS    OF   THE    ERROR    PARAMETERS    ARE    
C   BEGUN.    
C   TnTnis    -   AVERAGE    RECORDED    DISCHARGE    AFTER    THE    TIME    TDEVN.    
C   TOTD    -    AVERAGE    PREDICTED    DISCHARGE    AFTER    THE    TIME    TDEvN,    

C   DISDIF    -   DIFFERENCE    BETWEN    THE    AVERAGE    RECORDED    AND   PREDICTED    DISCHARGES    
C   AS    A   PERCENTAGE    OF   TAR    RECORDED    DISCHARGES.    
C   nEvN    ULTIMATELY    RECORDS    THE   STANDARD    DEVIATION    OF   THE    PREDICTED    
C   DISCHARGE    AS   A   PERCENTAGE    OF   THE    AVERAGE    RECORDED    DISCHARGE.    

C   

MASTER    FLOODS1    

C   THIS    PROGRAM    SOLVES    A   GENERALISED    CONVECTION-DIFFUSION    EQUATION    FOR   
C   FLOOD    ROUTING    (VARIABLE    PARAMETER    DIFFUSION    METHOD)    

REAL    p1   (50),P2(50).BT(54),B2(50).83(50),R(S0),BB(50),RR(SO)    
COPMCN    DX,DT.JX,LEND,DxLR,KEND,TH,JI,L1,LE,GERROR,IITLE(60)    

1  .E0..)71   ,J72,QTRIB1   ('00).QTRIA2(200),OHYDRO(200),DTGNvORD,    
2QINIT,QINO.UtNA,TSCOIN,TOIR,DCF,CEF,ACE,INDIC(50),Q1   (50).02(50),    
3AP(1   0),wSP(1   00),CoEFAP(3,30),COEFUS(3,30),x(50)    

,TDEV4,CONS(2u0)    

C   FIRST    READ    IN   THE    RELEVANT    DATA    AND    PRINT    IT   OUT    FOR    EASY    REFERENCE    

CALL    DATIN    
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C   DEFINE    VARIOUS    CONSTANTS    uSED    DURING    THE    CALCULATIONS    

JEM2.  JX-2   
Dx=0x1R/(   JX-1)    
DTx=0.   2S•   nT/nx    
DXSQ=0.   5-DT/(   OX•  DX)   
QJX.  CIINIT    
ve.   00F   
I•   08/CEQ•   3)  •  1   
CCE.  (  CUEFUS(   3.  1)  .  QB.  COEFL/S(   2,   I)   )  .  00.   COEFWS(  1,   1)    
ACE6DXSOT(   ICOEFAP(   3,   I/TOR.   COEFA0(   2.  1)   )  .  08.   COEFAp(   1,   I)   )   

C   STATEMENTS    BEGINNING    IN    COLUMN   13    ARE    CONCERNED    WITH    THE    CALCULATION    
C   OF    THE.    ERROR   PARAMETERS    DEVN,    TOTDI$    AND   DIsDIF    

TOTOIS=0.   0   
DEVN60.   0   
TOTO•v.  (  C   
OPI=OINIT    
OP2.   QINIT    
ODNP1=QINIT    
ODNP2P0IN/T    
JCOUNT=0    
ICOuNT60    

C   NEXT,    GENERATE    THE    INITIAL    VALUES    OF   01,    02,    X   AND    INDIC.    

DO   2    J.   1,   JX   
X(  J)   =DX.  (  J.   1)    

01(   J)   ,   02(   J)   =0INIT    
2   CONTINUE    

C   BEGIN    THE    MAIN    TIME    LOOP    

T.  0.  0   
DO   32    L.   1,   LEND   

T•  T•  DT   
TI4=7/3600.   0   

C   EVALUATE    THE    PROTOTYPE    DISCHARGE    AT   THE    DOWNSTREAM   BOUNDARY   

Op2.   0P1   
0p1=0.   1X   
0DNP2=ODNp1    
ODNP1.   0DN   
ODN.  FF(   CONS,  TH,  DTQHYDRO)   

C   LPDATE    Cl,    De    AND   INDic    

DO   4    J•   1,   JX   
00=o2(   J)    

IF(   01(   .  1)  .  GT.  DCF)   INDIC(   J)  =1   
02(   J)   .  01(   J)    
01(   .  )  .  2.   )  .  01(   J)   -00    

4   CONTINUE    

C   DEFINE    THE    ARRAYS    PI    AND   P2    TO   STORE    FUNCTIONS    FOR    USE    IN    LOOP    14    

DO   6   .   1.  2,  JO11   
PI(   J)   .  02(   J•  1)   -02(   J-1)    
P2(   J)   •  02(   J•  1)   -2.   0•  02(   J)   •  Q2(  J-1)    

IF(   R1(  J)   ,  IE.   0)   INOIC(   J)   .  0   
6   CONTINUE    

C   CALCULATE    THE    UPSTREAM    VALUE    FOR    01.    INCLUDE    THE   DISCHARGE    FROM   THE.    
C   TRIBLTARY,    IF    THERE    IS    ONE   

OTOT.  0.   0   
IFIJT1.   E0.   1)    QTOT•   FFCQTR)   B1,   TH,  DTOHYDRO)   
01(  1)  .  FF(  oHYDR0,  TH.  DTOHYDRO)  .  .  .  QT0T   

C   CALCULATE    THE    NEW   VALUE   FOR    THE    DISCHARGE    AT   THE    DOWNSTREAM   BOUNDARY   
C   IN   THE   MODEL   

CALL   QDOWN   

C   NOU   FIND    THE    VALUES    FOR    THE    REST    OF    THE    ARRAY   01    
C   LSE    THE    NEWTON   ITERATION    PROCESS    TO   SOLVE    THE    NON-LINEAR    SIMULTANEOUS    
C   EQUATIONS    

DO   22   K=1,   KEND   
DO   14    J=2,   Jxm1   

DoRRQ1(  .  1.  1)  -01(   J-1)   .  R1(  J)    
00-0.   5.   011   (  JC.   02W)    

IF(   INDIC(   J)   .  0.  1)    GO   TO   10    
08.  00   

I.   08/   (  EQ.  3)  •  1   
C•  (  COEFWS(  3.  1)  •  QR.  COEFWS(  2,  1)   I.   QB.  COEFWS<1,   I)    
Dc.   2.   0.   00EFws(   3.  1)   .  08.   COEFuS(   2.   I)    
ADXSoRDXSD.  I   (   COEFAR(  3.   I)    .  00.  COEFAR(   2,    I   )   )   .   0D.  COEFARI   1   ,    )    
DADxSQ.   DXSO•(   2.   0.   COFFAP(   3,   I)   .  QB.  COEFAP(   2,  1)   )   

Go   TO   12    
10   IF(   02(   J)   .  GT.  0CF)    Go   TO   8    

C.  CCF   
ADxSoRACF   
DC,  DADXSO•  U.  0   

12   nnclow(   J.   1)   -2.   0.   01(   J)   a01(   J-1)   .  p2(   J)    
C   PUT    IN    AN   ARTIFICIAL    FUNCTION    FOR    THE    LATERAL    INFLOW.    
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C   IF   A   SNOW-MELT    FLOOD   IS   BEING   SIMULATED   IT   MAY   BE   PREFERABLE    
C   TO   DEFINE   QT0T   AS   SOmi   CONSTANT    TIMES   01(1)   

TXp(TH.TOIN)/TSCOIN    
070T.021NA.EXpO.TX*Tx).01NB    
D1•011P•DTH.QTOT•DT   
R(J).111(J),02(J).D1•C-011•ADXso.PDQP    
81(J)..DTX.G-ADXSQ•00    
S2(J)101.0•DC•o.S.01.DADXSO.O.S.QQ.D0QP-ADXSQ.(0.5•DDQP-00.2.0)    
B3(J)0DTX.C-ADXSQ•00    

14   CONTINUE    
11  (2),    B3(JX(:1)    •   0.0    

C   A   GAUSSIAN   ELIMINATION    PROCEDURE    AVOIDS   
C   IN   THE   COMPUTER   

86(2)992(2)    
RR(2).R(2)    

DO   16   J.3,JXM1    
BB(J)•82(J).B3(J-1).R1(J)/B8(J-1)    
RI(J).R(J).RR(J-1).91   (J)/B9(J-1)    

16   CONTINUE    

THE   USE   OF   EXCESSIVE   STORAGE   

DO•RR(JXM1)/B8(JXM1)    
111(JXM1).01(jxP11)-Do    
DOMPARS(DO   
JQPJXM1   

DO   20   JJ63,JXM1    
J0JX-JJO    
DOp(RR(J)-83(J).D0)/B8(J)    

IF(ASS(DQ).LE.DQM)    GO   Tn   18   
Dow•ABS(D0)   
JO•J   

18   01   (J).021(J)-DO    
20   CONTINUE    

C   CONTINUE    THE   ITERATION    UNLESS   THE   ACCURACY    CONDITION    IS   SATISFIED,    
OR   THERE   HAVE   BEEN   TOO   mANY   ITERATIONS   

IF(DOM.LE.GERROp)    GO   70   24   
22   CONTINUE    

WRITE(3,300)    J0,00,1    
300   FORMA7(20H    TOO   NAPO'   ITFRATIONS.SX,13HVALUE    OF   J   •   ,13/   

i   44H    MAXIMUM    VALUE   OF   THE   DISCHARGE    INCREMENT    •   ,F7.0)   
24   CONTINUE    

C   DEFINE   OJX   AS   THE   TOTAL   DISCHARGE   AT   THE.   DoWNsTREAm   BOUNDARY,   
C   INCLUDING    A   TRIBUTARY    IF   THERE   IS   ONE   

QT07•0.0    
IF(J.12.EQ.0)    OTOT.FF(QTRIS2,TH,DTQHVDRO)    

QJXPRI(JX)*OTOT    

C   CALCULATE   VARIOUS   ERROR   PARAMETERS   

IF(TH.LT,TDEVN)    GO   TO   26   
DEVN.DEVN.(QJx.ODH)*(QJX.42DN)    
ICOUNT.ICOuNT.1    
JCOUNT•JCOuNTo   
IF(JCOUNT.145.2)    GO   TO   26   
TOTDIWOTD1S4.2.0.07*(110N.QDNpi•GONP2)/3.0    
ToTD.T0T0.2.0.0T.(0Jx.0F1.0F2)/3.0    
JCOUNT.O   

e   WRITE   OUT   THE   RESULTS    -   IF   17   IS   TIME    

26   IFIL.NE.LI   •IL/Li»    GO    To    30   
WRIT!(3,301)    (THrX(J),01   (J),J.I.JX#J1)    

301   FORMAT((20X,F6.2,9X.118.i.8X,F7.2))    
28   wRITE(3,302)    TM,x(Jx),0JR,00N    
302   FORMAME0X.F6.2.9X,FE.1,2(8)0F7.2)))    

WRITE(3.303)    
303   

::"7:1  1  "   
 .1)   

30   ti(1.,EQ.1   .2.(L/L2))    GO   TO   28   
32   CONTINUE    

ToTDIWOTols/((TN.TDR00.3000.0)    
TOTWOTD/((TH-TDEvN).3600.0)    
DISD1F.(1.0•TOTD/TOTD19)000.0    
DEVN•SQRT(DEvN/FLOAT(TCOUNT)).100.0/TOTDIS    
WRITE(3,304)    TO7DIB,DISDIF,DEvN    
FORmAT(34H   304   AVERAGE.    RECORDED   DISCHARGE   •   ,F7.2,   

1   98   cuwEcs/    
2   SRN    DIFFERENCE    BETWEEN   RECORDED   AND   PREDICTED   AVERAGE   0,   
3   liNiscNARGE    •   ,F6.2,1101/    
4   26H    STANDARD    DEVIATION   •   ,F6.2,1   8x//)    

STOP   
END   

0   

SUBROUTINE   WIN   

C   T011   SUBROUTINE   READS   IN   THE   RELEVANT   DATA,   WRITES   IT   OUT   FOR   EASY   
C   AEFEEINClo   AND   CALCULATES   THE   COEFFICIENTS,   COEFAP   AND   COEPUS,   

DEFINING   THE   CURVES   FOR   THE   ATTENUATION    PARAMETER,   AP,   AND   THE   
C   WAVE   SPEED.   MEP.   

REAL   MI(IO)tWX(10)pAPH(10),COEFCSI    
COMMON   OX,OT.JX.LENO000ILROCENO,THoJleLl,L2rOERROOPTITLE(60)    

isElitei,JTE/0TEIBIC200/#0TR1112(200),OHYDRO;200),DTCISYOMO0    
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20INIT,   OINB,   OINA,  TSCOIN,   TOIN,   OCF,  CCF,  ACF,  INDIC(   50)   .  01(   50)   ,  02(   S0)   ,   
3AP(  100)   ,  NSP(  100)   ,  COEFAR(  3,  30)   ,  COEFWS(  3,  30)   ,  X(  50)    
4   ,   TDEVN,  CIONS(  200)    

READ(  1,  100)    (   TITLE(   I)   ,  I.   1,   60)    
100   FORMAT(   10A8/5A8)    

READ(  1,  101)    JX,   LEND,  KEND,  IWSPOOH,   ITR1  ,  TTR2,   JT1.   JT2,   J1,   L1.   L2.   NPAR   
1   

101   FORMAT(   14I0)    
READ(  1,  102)    oxlR,   DT.  Fo,   promybRo,   oERROIR,   QINIT,   Qiwa.   °1014,   TaIN,   ,  scoiN    

1,  0CE   
2   ,   TDEVN   

10[    FORMAT(   12E0.   0)   

C   WRITE    OUT   THE   DATA   USED   IN   RUNNING   THE   PROGRAM   

wRITE(   3,  300)    (   TITLE(   I)   ,  I.   1,   60)    
300   FORMAT(   1H   ,   (  15AR)   )   

C   WRITE(   3,  301)    JX,   LEND,  KEND,  IwSP,   IoN,   ITR1   ITR2,   JT,I,   JT2,   J1,   L1,   L2,   NRAR   
C   1    '   IRONS   
C   INSERT    AN   APPROPRIATE    FORMAT   STATEMENT   301    
C   WRITE(   3,  302)    DXLR,   DT,  Eo,  DTOHYDRO,  OERROR,  QINIT,   CIINB,   01NA,  TOIN,    
C   1TSCOIN,   QCF   
C   2   ,  TDEVN   
C   INSERT    AN   APPROPRIATE    FORMAT   STATEMENT   302    

C   NEXT,    EITHER    READ   IN    THE   DATA   FOR   THE   WAVE   SPEED    AND   ATTENUATION    
C   PARAMETERS    TO   CALCULATE   THE   COEFFICIENTS    FOR   THE   SMOOTHED   
C   QUADRATIC    CURVES   OR   READ   IN    THE   COEFFICIENTS.    

IISFD3•   IWSP/3    
IF(   NPAR,  E0.  1)   Go   TO   10    
READ(  1,  103)    (   wSp(  1)  ,  I.   .  1,  1WSp)   

103   FORMAT(   16F5.   3)   
READ(  1,  104)    (   AP(  /)   ,  I.   1,   IWSP)   

104   FoRm4T(   8E0,   o)   
WRITE(  3,  303)    EQ,   (  wso(  1)  ,  141,   fwSp)    

303   FORMAT(   j  H   ,   25X,   27NDATA   FOR   THE   WAVE   SPEED   AT   ,   F3.   0,  16H   CUMEC   INTER    
1VALS/(   111   ,   10(  1PE8.   2,  3X)  )  )   

wRITE(   3,  304)    
304    FORMAT(   1H   ,   //)    

WRITE(  3,  305)    EQ,   (  AP(  1)  ,  Im1,   1WSP)   
305   FORMAT(  1H   ,   20X,   38HDATA   FOR   THE   ATTENUATION    PARAMETER   AT   .   F3.   0,  16)   1   

1   CUMEC   INTERVALS/(   1H   ,   10(  1PE8.   2,  3X)  )  )   

C   THE   FOLLOWING   PROCEDURE   SMOOTHS   THE   DATA   FOR   THE   SPEED    AND   ATTENUATION    
C   PARAMETERS.    THIS    IS    DONE   BY   FITTING    A   QUADRATIC    CURVE   THROUGH   4   
C   NEIGHBOURING    POINTS.    

DO   8   1.   1,   IWSRD3   
DO   2   mm1,   4   

13.   3•  (  1-1)   •  M   
QX(  M)  .  EQ.  (  I3-1)    
WX(  M)  .  WSP(  I3)    
APX(  MI=A0113)   /DXLR   

2   CONTINUE    
CALL   FIT(   00,   wX,  COEF)   
DO   4   J.   1,   3   

COEFUS(  J,   I)   PCOEF(  J)   
4   CONTINUE    

CALL   FIT(   QX.   APX,  COEF)   
DO   6   JP1,   3   

COEFAP(  J,   I)   PCOEF(  J)   
6   CONTINUE    
8   CONTINUE    

C   WRITE    OUT   THE   COEFFICIENTS    TO   A   CARD   FILE    OR   TO   THE   LINE    PRINTER    
C   (   CHANGE   THE   CHANNEL   NUMBER   IN    THE   LATTER    CASE)    

wRITE(   4,  400)    (   (  COEFWS(  J,   I)   ,  COEPAP(  J,   /)   ,  J.  1,   3)  ,  1.  1,   IWSPD3)    
GO   TO   12   

in   PAUSE    (   RP)   
READ(  1,  400)    (   (  COEFUS(  J,  1)  ,  COEFAP(  J,  I)  ,  J.  1.   3)  ,  I01,   IWSPD3)   

400   FORMAT(   6E12.   6)   

C   READ   IN    THE   DISCHARGE    WYDROGRAPHS   AT   THE   UPSTREAM   AND   DOWNSTREAM   ENDS   
C   OF   THE   REACH,    TOGETHER   WITH   THE   HYDROGRAPHS   FOR   THE   TWO   
C   TRIBUTARIES    

12   READ(   2,  200)    (   QHYDRO(  I)   ,  IP1,   10H)    
IF(   ITR1.   NE.  0)   READ(   2,  200)    (   01R/Bi(   I)   ,  I.   1,  1TR1)    
IF(   ITR2.   NE.  0)   READ(2,   200)    (   OTR102(   I)*1.   1,  1TR2)    

READ(2,   200)    (   ODNS(  I)  01.   1,  10DNS)    
200   FORMAT(   41X,   F9.   2)   

C   WRITE   THE   HEADINGS   FOR   THE   OUTPUT   DATA   FROM   THE   CALCULATIONS   

WRITE(  3,  306)    
306   FORMAT   (11I   ,21   X,4)  ITIIIE   .1   OX   ,8MDI   STANCE   ,  6X,   1011CALCl/LATe0•6X    er9HPROTOTY   

1PE/114    t20X,   PI(   HRS)  ,  130,   3W(  N)  02X,   OHDISCHARGE,  6X/OHDISCHARGE/)    
RETURN   
END   

C   

SUBROUTINE   (   )  DOWN   

C   THIS    SUBROUTINE    CALCULATES    THE   DISCHARGE   AT   THE   DOWNSTREAM   BOUNDARY   
C   IN   THE   MODEL   
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DIMENSION    XX(10).RX(10),COEF0(5)    
COMMON    DX.DT,JX,LEND,DXLR.FEND.TH.J1.1.1.L20ERROR.TITLE(60)    

1,EQ,JT1,JT2,QTRI81(200),QTRIR8(200),QHMDRO(200),DTQHYDRO,    
201  41/T,QINB,QINA,TSCQIN.TOIN.00F,CCP.ACF.INDIC(50,Q1(50).02(50),    
3AP(100).WSP(100),COEFRP(3.30),COEPWS(3.30).8(50)    
4   ,TDEVN.QONS(2)01    

C   FIRST    FIT   A   QUADRATIC    THROUGH    THE   LAST    FOUR    POINTS    AT   THE   OLD   TIME   
C   LEVEL    

JXm1Fjx-1    
JYM2=.1X-2    

COEFQ(1)=D2IJX,    
CCEFQ(2)   40.54(4.0.412(JXM1)   402(J8M2).3.04Q2(JX)I    
COEFQ(3).0.5.00(JBM2)-2.0.02(JXM1).02(JX))    

C   NOW    ITERATE    TO   FIND    THE   CORRECT    VALUE    OF   02   AT   THE   FOOT    OF   THE   
CHARACTERISTIC.    THE   WEGSTEIN    ITERATION    PROCEDURE    IS   USED    HERE    

DELTX.O.O    
OP.Q2(JX)    
CIBM2FOR   
08.411,   

DO   12   K.1.KEND    
DOP.4(COEFQ(2)42.0.0ELTX4COEFQ(3)1    

IF(DOP.LT.0.0)    INDICIJx).0    
IF(INDIC(JX).EQ.1)    GO    TO    4   

2   DC.06    
14019/(E043).1    
CC=ICOEFUS(3.1).QC.COEFUs<2.W.QC.COEFWW,1   1   

GO   TO   6   
4   IF(QR.GT.CICF)    GO   To   2   

OC*QCF   
CC.CCF   

6   DELTX.CC.DT/08    
04COEFO(1)4DELTX4(COEFO(2).DELTX.COEF0(3)/    

IFIABSIQ-Qp/.LE.RERROR)    GO   TO   14   
IFIK.EQ.11    GO    TO   8   
IF(K.LT.KEND)    GO   TO   10   
wRITE(3,300/    

300   FORMATI15H    ERROR    IN   ODOUR/    

8   
STOP   
08.0    

QBM1.0   
QP.Q   

GO   TO   12   
1  0   0640.(2-Qp)•(Q-Q8M1   )/(o-OP-OBM1•013/42)    

061,12.08m1    
QBM1.418   
QP.0    

1  2   CONTINUE    

C   FINALLY,    CALCULATE    THE   NEW   DOWNSTREAM    VALUE    FOR   Q   (01)   

14   TX.(TH-TOIN)/TSCOIN    
Q0=Q1NA•EXP(-Tx•TX)•QiNR    

IF(INDIC(JX))    0,0,16    
ADX•   <COS   FAP   (   3   I   )   •Qc•COE    FAPI   2   .   )    •QC•COE    'AP   I   1   •   I   )   Dx4DX    

GO   TO   18   
16   ADX.ACF*2/DT    
18   A=2.0.COFFQ(3)    

01  (JX).Q.(CC.QQ.Q.ADX.A).DT    
RETURN   
END   

FUNCTION    FF(0,T,DT)    

C   THIS    FUNCTION    FITS   A   CUBIC    SPLINE    THROUGH    THE   FOUR    DATA    POINTS    IN   THE    
NEIGHBOURHOOD    OF   THE   POINT   AT   WHICH    THE   DEPENDENT    VARIABLE    IS   

C   REQUIRED    

REAL    0(200    
L.INTIT/DT/.1    

IF(L.LE.1   )   L.2    
FRI=T/DT-FLOATCL-1)    

A.(G(L.2)-3.6.04(LT1   )-Q(0)-0(L.1   ))/6.0    

C  4(-Q(L.2)T6.0.0(0.1)-3.0.w(L)m2.0.0(L-1   ))/6.0    
D.Q(L)    

FF.((A.FRI*E1).FRI.C).FRI.D    
RETURN   
ENO   

SUBROUTINE    FIT(X,Y,E)    

7H10   SUBROUTINE    FITS   A   QUADRATIC    CURVE    THROUGH    FOUR   POINTS    USING    THE   
LEAST   SQUARES    PROCEDURE.    

DIMENSION    X(4),V(4),E(4)    
DIMENSION    A(4),B14)    ,   C(4),D(4>    

C1  1  .(X(2)-X(4)).(X(2).X(1)1    
C21   .0(3).X(4))4(X(3)-X(1   ))   
C1.1   .   
C2.C11   4C21   
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C3=1.   
Ri.  X(  4)   
132=0(  2)  .  C114,x(  3)  .  C21   
83=Xti)    
AI.  X(  4)  •X(  4)   
A2.  X(  2)  .  X(  2)  .  C11.  0(  (  3)  .  X(  3)  .  C21   
A3=X(  1)  •X(  1)   
01.  Y(  4)   
02=Y(  2)  •C11.   Y(  3)  .  C21   
a3=Y(  1)   
42=132-10.   A2/R1   
C2=C2-0.   A2/A1   
02=02-01•AZ/A1    
83=83-81•A3/A1    
C3=C3-C1•43/A1-02.   83/82    
D3=03-01*A3/A1-02•B3/82    
E(  1)  =03/C3   
E(  2)  .  (  02-C2*E(   1)  )  /82   
8(  3)  =(  D1-g1•E(   2)  -C1•E(   1)  )  /AI   

RETURN   
END   
FINISH   
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