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Forewords    by    Mr    R.    J.    H.    Beverton    and    
Sir    Angus    Paton    

In    1967,    the    Committee     on    Floods    of    the    Institution     of    Civil    Engineers,     
under    the    Chairmanship      of    Sir    Angus    Paton,    FRS,    drew    attention     to    the    
urgent     need    for    improved      techniques      of    flood    prediction,      and    made    
proposals    for    the    investigations      that    should    be    undertaken.     The    report    of    
the    Committee      also    stressed     the    need    for    a    continuing      programme      of    
fundamental     research    related    to    flood    hydrology.     

In    these    circumstances      it    seemed    appropriate     that    the'study    should    be    
conducted     under    the    auspices     of    the    Institute     of    Hydrology,      which    the    
Council    was    at    that    time    building    up    from    the    nucleus    of    the    Hydrological     
Research      Unit    started     under     the    former     Department      of    Scientific      &    
Industrial    Research.     Financial    support    for    the    project    from    other    sources    
failed    to    materialise,     but    the    Council    was    fortunate     at    that    time    to    com-
mand    funds    with    the    flexibility     to    respond    quickly    and    positively     to    the    
need.    

The    Floods    Study    Team,    headed    by    a    senior    member    of    the    Institute,    
Dr    J.    V.    Sutcliffe,      was    assembled      under    the    Director     of    the    Institute,     
Dr    J.    S.    G.    McCulloch.     The    work    was    overseen    by    an    Inter-Departmental      
Steering     Committee     chaired    by    the    late    Marshall     Nixon.    I    am    happy    to    
place    on    record    the    appreciation    of    my    Council    for    the    work    of    the    Steering    
Committee,     for    the    diligence    and    enthusiasm     with    which    it    carried    out    its    
task,    and    in    particular     for    the    efforts    of    the    late    Mr    Nixon,    who    took    a    
personal    and    informed     interest    in    the    work    of    each    member    of    the    team.    

With    its    task    completed    the    Floods    Team    has    been    dismantled,     as    was    
originally    intended.    The    majority    of    its    members    have    been    brought    on    to    .    
the    permanent    staff    of    the    Council    where    they    are    putting    their    experience    
to    good    use    either    in    commissioned      research    in    applied    hydrology     or    in    
following     up    fundamental     hydrological     problems     generated     during    their    
floods    work.    

R.    J.    H.    Beverton    
Secretary,     Natural    Environment     Research    Council    

As    Chairman     of    the    Institution     of    Civil    Engineers'     Committee     appointed    
in    1965    to    consider    the    review    of    the    1933    and    1960    Interim    Reports    on    
`Floods    in    Relation     to-Reservoir      Practice'    it    is    very    satisfactory     that    the    
recommendations      of    our    Report    of    February     1967    on    Flood    Studies    for    
the    United     Kingdom      have    been    carried     out    so    conscientiously      and    
thoroughly.    

Although    practising    engineers    will    still    require    to    exercise    judgement     
and    make    decisions     in    their    designs     for    the    control    of    floods    the    basic    
information      on    which    such    judgement     depends     is    now    available     in    the    
form    of    a    comprehensive      report    and    reliable    records.    

The    lack    of    data    has    been    a    serious    drawback    in    the    past.    We    can    now    
undertake    our    tasks    with    more    confidence.     

But    a    word    of    warning.    We    cannot    predict    future    weather    conditions.     
Considerable    margins    of    safety    are    still    necessary    according    to    the    location    
of    any    flood    control     works    and    the    allowable     risk.    On    the    other    hand,    
damage    to    life    and    property    cannot    be    entirely    eliminated     in    our    densely    
crowded    islands    without    incurring    unwarranted     expense.    

On    behalf    of    the    Institution     of    Civil    Engineers'     members     in    general    
and    the    Floods    Committee     in    particular     may    I    express    our    thanks    to    the    
Natural    Environment     Research    Council    for    undertaking     this    task,    to    their    



Institute    of    Hydrology     for    directing    the    work    under    the    guidance    of    an    
Inter-Departmental      Steering     Committee      Chaired     by    the    late    Marshall     
Nixon,    and    to    Dr    J.    V.    Sutcliffe     and    his    team    for    their    most    useful    and    
thorough    investigation     and    report.    

Angus    Paton    



Preface    

The    investigations     of    methods    of    flood    estimation    for    engineering    design    
purposes,     which    are    described     in    this    report,    were    carried    out    at    the    
Institute    of    Hydrology,     the    Meteorological      Office    and    the    Hydraulics     
Research    Station,    with    the    co-operation    of    the    Irish    Office    of    Public    Works    
and    Meteorological     Service,    the    Soil    Surveys    and    other    organisations.    

The    Flood    Studies    Report    consists    of    five    volumes.    Volume    I    contains    
the    hydrological    studies,    Volume    li the    meteorological    studies,    Volume    III    
the    flood    routing    studies,    Volume    IV    the    hydrological    data,    and    Volume    V    
the    maps.    

Cross-references      to    sections,     equations     and    figures    are    by    chapter    
numbers,     preceded     by    a    volume     number     if    necessary.     Thus,    Section     

1.3.5.2    is    in    Chapter    3    of    Volume    I.    Equations    are    numbered    consecutively    
within    chapters,     except    in    Chapters     1    and    2    of    Volume    I    where    it    was    
necessary     to    number    them    within    subsections.      Figures    are    numbered     
consecutively    within    chapters;    certain    .figures    illustrating    Volumes    I    and    
II    are    contained    in    Volume    V.    

The    chapter    titles    illustrate    the    scope    of    the    report.    

Volume    I—Hydrological    studies    

A    Introduction      
1    Statistics    for    flood    hydrology     
2    Statistical    flood    frequency    analysis    
3    Methods    of    extension    of    short    records    
4    Estimation      of    flood    peaks    from    catchment    characteristics    
5    Estimation      of    flood    volumes    over    different    durations    
6    Synthesis    of    the    design    flood    hydrograph     
7    Supplementary     studies:    snowmelt    runoff,    conceptual    catchment    model    

and    flood    routing    
8    Future    research    and    investigation     needs    

Volume    II—Meteorological    studies    

1    A    guide    to    procedures    and    contents    of    Volume    11    
2    Regional      analysis    of    point    rainfall    extremes    
3    Estimation    and    mapping    of    M5    (5    year)    values    for    different    durations    
4    Estimated     maximum    falls    of    rain    
5    Areal    rainfall    
6    Storm    profiles    
7    Snow    cover    and    snowmelt    
8    Examples      of    rainfall    estimates    for    the    Tyne    and    Wansbeck    catchments    
9    Some    historic    heavy    rainfall    events    

Volume    III—Flood    routing    studies    

1    Choice      of    a    flood    routing    method    
2    Theory    of    flood    routing    
3    Comparison      of    flood    routing    methods    
4    Strategy    for    flood    routing    
5    Appendices      

Volume    IV—Hydrological    data    

1    Collection      of    records    
2    Data    used    in    statistical    analysis    
3    Data    used    in    unit    hydrograph     analysis    
4    Historical     flood    records    



5    Master    list    of    gauging    stations,    catchment     characteristics      and    flood    
statistics    

6    Basic    flood    records    

Volume    V—Maps    

The    following    maps    illustrating    Volumes    1    and    II    are    contained    in    Volume    
V.    (S    indicates    the    southern    part    of    Great    Britain,    N    the    northern    part,    
and    I    indicates    Ireland.)    

1.4.18    (S,    N    and    1)    Winter    rain    acceptance    potential    
1.4.19    Estimated     mean    soil    moisture    deficit    
1.4.20    River     gauging    stations    used    in    analysis    
1.4.21    Mean     annual    flood    (BESMAF)    divided    by    area    
1.4.22    Coefficient     of    variation    of    annual    flood    
1.4.23    Residuals     from    BESMAF    prediction    equations    

11.3.1    (S,    N,    I    and    NI)    Average    annual    rainfall    
11.3.2    (S,    N    and    I)    2      day    M5    rainfall    
11.3.3    (S,    N    and    1)    2      day    M5    rainfall    as    %    of    AAR    

11.3.4    25     day    M5    rainfall    
11.3.5    (S,    N    and    1)    I      hour    M5    expressed    as    %    of    2    day    M5    
11.4.1    Estimated     maximum    2    hour    rainfall    
11.4.2    Estimated     maximum    24    hour    rainfall    

This    volume,    which    forms    Volume    I    of    the    Flood    Studies    Report,    des-
cribes    the    hydrological     studies    carried    out    by    the    team    at    the    Institute    
of    Hydrology.     The    team    consisted    of    Dr    J.    V.    Sutcliffe    (team    leader),    
Mr    M.    A.    Beran,    Mr    C.    Cunnane,     Mr    R.    C.    Jones,    Mr    M.    J.    Lowing,    
Dr    J.    B.    Miller    and    Dr    M.    D.    Newson.    They    were    assisted    during    the    
study    by    Mrs    E.    Bishop,    Miss    V.    M.    Black,    Miss    J.    H.    Ellis,    Miss    B.    J.    
Glover,    Mrs    J.    M.    Haworth,     Miss    A.    R.    Herriotts,     Mr    J.    L.    Hill,    Mrs    

M.    Kent,    Mr    S.    A.    Mellanby,    Mrs    B.    D.    Newman,    Mrs    A.    E.    Sekulin,    
Mrs    J.    K.    Travell,    Miss    A.    M.    Tucker,    Mrs    J.    M.    Tucker    and    Mrs    E.    A.    
Williams.     Temporary     assistance     was    provided     by    Mrs    M.    Henbest,     
Mr    C.    Johnson,    Mr    M.    Patto,    Mrs    M.    Sadler    and    Mrs    M.    E.    Stevens.    
Secretarial     assistance    during    the    study    was    provided    by    Mrs    S.    Black,    
Miss    C.    Cremer-Evans,    Mrs    J.    Fowler    and    Miss    M.    R.    E.    Kearsley.    

Other    contributors      were    Mr    R.    T.    Clarke,     Miss    J.    R.    Frost,    Mr    
P.    W.    Herbertson,     Miss    M.    N.    Leese    and    Mr.    A.    N.    Mandeville     at    the    
Institute    of    Hydrology,     and    Mr    D.    R.    Archer    and    Mr    P.    Johnson    at    the    
University      of    Newcastle-upon-Tyne.      Mr    M.    Mansell-Moullin      and    
Professor    T.    O'Donnell    acted    as    consultants.    

The    Office    of    Public    Works,    Dublin,    co-operated    in    the    investigation;    
staff    included     Mr    P.    Corish,    Mr    J.    Howard,     Mr    F.    McDonough      and    
Mr    G.    Copeland     under    the    direction     of    Mr    M.    A.    Lynn.    Professor     

E.    Nash    acted    as    a    consultant.    

The    members    of    the    Flood    Studies    Steering    Committee    were    the    late    
Mr    M.    Nixon    (Chairman)      who    was    succeeded     as    Chairman     by    Mr    
E.    J.    K.    Chapman    (tcE)    in    1974,    Mr    G.    Cole    (MAFF),    Mr    V.    K.    Collinge    
(wRB),    Mr    D.    Fiddes    (Tim),    Mr    J.    Harding     (Mo)    succeeded     by    Mr    
R.    Murray    and    Mr    J.    F.    Keers,    Mr    A.    F.    Jenkinson     (Mo),    Mr    M.    A.    
Lynn    (opw,    Dublin),    Mr    M.    Mansell-Moullin,      Dr    J.    S.    G.    McCulloch     
(Director,     IH),    Mr    J.    C.    Munro    (six)),    Dr    J.    V.    Sutcliffe    (IH),    Mr    J.    I.    
Taylor    (ARA),    Mr    S.    F.    White    (DE)    and    Professor    P.    0.    Wolf.    
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Fig. A.2 Residuals from equation
predicting mean annual instantaneous
flood (BESMAF) related to (a) residuals
from equation predicting mean annual
calendar day flood (cALmAF), and
(b) residuals from equation predicting
standard percentage runoff (sPR).

: •
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STANDARD PERCENTAGE
RESIDUALS(Obs - Pred)

Compatibility of two main approaches A.5

or alternatively

Qp = 9.71 510856.66( , + uRBAN)"3

Standard percentage immediate runqlf:

SPR = 95.5(S010-1- 12(URBAN)

Where there is correlation between catchment characteristics, as
between stream frequency and soil, or between slope and rainfall, it must
be stressed that these are regression equations rather than functional
relationships. However, these somewhat subjective points of similarity
between the statistical and rainfall/runoff approaches are supported by
comparison between regressions using observed and synthetic floods in
Section 6.7.

The residual errors from these equations are fairly large, and indirect
evidence suggests that these are not mainly due to sampling errors because
the elimination of short records or their indirect extension do not greatly
reduce the residual error of the prediction of mean annual flood. Simi-
larly, it seems unlikely that errors of measurement are mainly responsible,
because use of the better graded stations alone does not much improve the
predictions. The regional patterns of the residuals suggest that some further
real factor affects the mean annual flood, and in fact that the residual
errors from the statistical approach are linked with those from the unit
hydrograph approach. The residuals from this equation for the mean
annual instantaneous flood (BESMAF) are compared in Figure A.2(a) and
(b) with those from the equations for the mean annual daily flood (cALmAF)
and the standard percentage immediate runoff (sPR), using all the common
gauging stations. The residuals are of the same order of magnitude.
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The BESMAF and CALMAF residuals are closely linked, and the BESMAF
residuals are related to the SPR residuals; most of the outliers in Figure
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Features    of    distributions    1.1.4    

Fig    1.2    Probability     density    functions     
of    two    distributions     equal    in    all    respects    
except    the    variance.    

Fig    1.3    Probability     density    functions     
of    two    distributions     equal    in    mean    and    
variance    but    differing    in    skewness.    

cv    =    = VP2    (1.1.4.9)    

known    as    the    coefficient    of    variation    is    useful    in    distinguishing     between    
populations.    Population    (2)    has    a    greater    value    of    cv    than    population    (1).    

In    Figure    1.3    population    (1)    is    distributed    more    symmetrically    about    its    
middle    than    population    (2).    The    latter    has    a    higher    value    of    skewness.    

1.1.5    Samples,    estimation    and    sampling    distributions    

Random    samples    and    sequences.    A    random    sample    of    N    units    from    a    popu-
lation    is    most    easily    understood    if    it    is    assumed    temporarily    that    there    are    

(    a    finite    number    M    units    in    the    population.    Then    there    are    
M    

 different      
N    

samples    that    could    be    drawn    and    one    of    these    selected    at    random,    by    a    
lottery    method    say,    is    a    random    sample'    from    the    population.    During    this    ..    
procedure    variate    values    play    no    part;    they    are    merely    observed    as    values    
on    the    units    that    constitute     the    sample.    In    a    random    sample    individual     
variate    values    are    mutually    independent    in    the    statistical    sense.    A    record    of    
annual    maximum    peak    flows    can    be    considered    to    be    a    random    sample    but    
a    record    of    total    annual    flows    is    not    a    random    sample    because    there    is    a    
tendency,    especially     on    large    catchments,     for    a    given    yeai's    flow    to    be    
influenced    by    the    previous    year's    flow.    In    this    case    the    sequence    of    annual    
flows    may    be    considered    to    be    randomly    drawn    from    all    possible    sequences    
of    equal    length    but    no    such    statement    can    be    made    about    individual    values    
in    the    sequence.    
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Extreme value (EV) distributions 1.2.4

(a) (b) (c)

G(yi) yi yi G(yi) T Yi K(T)

0.00 - oo -2.0 0.0006 2 0.37 -0.17
0.10 -0.83 -1.0 0.066 5 1.50 0.72
0.20 -0.48 0.0 0.367 10 2.25 1.31
0.30 -0.19 0.5 0.545 25 3.20 2.04
0.40 0.09 1.0 0.692 50 3.90 2.59
0.50 0.37 1.5 0.800 100 4.60 3.14
0.60 0.67 2.0 0.873 1000 6.91 4.94
0.70 1.03 2.5 0.921
0.80 1.50 3.0 0.951
0.90 2.25 4.0 0.982

Table 1.4 Extreme value Type I 1.00 cc 5.0 0.993
distribution.

u = p- 0.5772a = 81-0.5772(17.94) = 70.65.

The probability value F(x,) associated with x = 91 is required. The
value of yi for which G(y,) = F(x,) is obtained from Equation (1.2.4.6)
giving

y, = (x, -u)la = (91-70.65)/17.94 = 1.134.

The value of G(yi) for this value of yi is obtained from Table 1.4(a). The
nearest argument in Table 1.4(a) is yi = 1.00 for which 6(.Y1) = 0.692.
But F(x,) = G(y,) and therefore

T = 1/(1 - F(x,)) 1/(1 - 0.692) = 3.25.

The pdf and df of this distribution are shown in Figure 1.11(a) and (b)
and the calculations are demonstrated graphically in Figure 1.11(c).

Fig 1.11 Extreme value Type 1
distribution with u = 72.65 and
a = 17.93 showing (a) the pdf, (b) the
df and (c) the variate-reduced variate
relationship.

Notes

I It was shown earlier that a distribution may be specified by expressing
the variate x, as a function of another variate y, the distribution of which
is given (Method b, Section 1.1.3). Applied to the EV1 distribution the
function x = H(y) takes the form

= u+ay, (1.2.4.10)

where the distribution of y, is given by PR(Y, = G(yi) = exp(-

2 The variate value of return period T may also be written as a linear
function of pand a instead of u and a
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Fig 1.17 A random sample of size 12
from an EVI distribution with  u  = 1 0,
a = 3 shown plotted against EV1
reduced variate. This is synonymous 0
with a probability plot. -2 -1 0 1 2 3

estimating the parameters of the distribution from the sample and using
them in a separate step as shown in the examples in Section 1.2, to calcu-
late the corresponding Q(T), but there would be no loss incurred if the
parameters themselves were not estimated explicitly provided that Q(T)
were estimated explicitly. Therefore, ab initio, such methods of estimation
are not to be ruled out.

There follows a discussion of graphical estimation because it introduces
probability plots which are used throughout the report for the display of
both data and fitted distributions.

1.3.2 Graphical estimation

In graphical estimation, the variate under consideration is regarded as a
function of a standardised or reduced variate with known distribution.
For instance, Figure 1.16(a) shows an extreme value Type 1 (Gumbel)
variate as a function of probability F(x) (which can be considered as a
variate which is uniformly distributed between 0 and 1) and as a linear
function of the standardised variate y in Figure 1.16(b). In graphical
estimation the sample of data is plotted as a series of N discrete points on
an x—y plot. These points represent the sample distribution and a line
drawn through these is taken as an estimate of the population x—y rela-
tion. Figure 1.17 is an example of a sample of size 12 from the Gumbel
distribution, (u = 10, a = 3) with an eye guided straight line shown as
an estimate of the population x—y relation.

In graphical estimation the line is subjectively placed and could vary
with analyst and even with occasion. This subjectivity is regarded as a
major drawback by most modern writers.

If it is known that the sample came from the EV1 population then a
straight line is required and consequently the subjectivity of the graphical
estimate is based on two degrees of freedom; otherwise the analyst exer-
cises judgement as to whether he should draw a straight line or a curve. In
either case he could make a mistake by drawing a curve where a line
represents the real population and vice versa.
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Plotting    positions    

The    production     of    a    plot    such    as    that    in    Figure    1.19    needs    N    pairs    of    co-
ordinates    (x,y).    The    N    values    of    x    are    the    ordered     set    of    sampled     data    
x(i)     x(2)    x(,)     .    .    .    -.x(N).    The    corresponding      y    values     are    not    ob-    
served     but    values     yi     <y2<    yi       .    .    .    <y,     called     the    plotting      posi-     
tions    are    chosen    as    follows.    Assume     that    the    population     is    EV    I    so    that    
the    population     x—y    relation    is    the    straight    line    

x    =    u+ay.    (1.3.2.1)    

The    observed    .x(i)     is    to    be    plotted    at    y    =    y:,    say,    where    y:    should    be    such    
that    the    average    value    of    x(1),    namely    E(x(0),    when    plotted    at    y:    would    lie    
on    the    population     line.    Such    a    plotting     position     is    said    to-be    unbiassed.    
This    condition    written    algebraically     is    

E(x(o)    =    u+czy:    

giving    

,    E(x(0)—u      
Yi    E(Y(0)-    a    

(1.3.2.2)    

The    right    hand    side    of    Equation     (1.3.2.2)    is    the    mean    value    of    y",N),    the    
ith    smallest     value    in    a    random    sample    of    size    N    from    the    standardised      
distribution.      This    quantity    of    course    depends    on    the    order    i,    the    sample    
size    N    and    the    form    of    the    distribution.     It    is    not    easily    computed     exactly    
but    an    excellent    approximation     (more    than    sufficient    for    plotting    purposes)    
is    given    for    the    EV1    case    by    Gringorten    (1963).    First    the    value    of    probabi-
lity    F.;     corresponding    to    E(yo,)    is    computed     from    Gringorten's     formula    

i—    0.44    
F    —     (1.3.2.3)    

N+0.12    

and    then    the    value    of    y    corresponding     to    this    is    computed    from    the    inverse    
of    

F(y)    e—e—Y    (1.3.2.4.)    

namely    

yi     =    —    In    —    InFi    (1.3.2.5)    

and    this    is    the    ith    plotting    position.    If    the    graph    paper    has    an    extreme    value    
probability     scale    marked    on    it    the    values    F,    of    Equation    (1.3.2.3)    can    be    
used    as    plotting     positions     but    in    practice     tables    of    y;     can    be    produced      
which    allow    the    use    of    linear    paper    for    the    plot    (see    Table    1.16).    When    
large    samples    are    plotted    the    middle    values    are    plotted    very    close    together.    
It    is    valid    to    divide    the    middle     of    the    ordered     data    and    corresponding      
plotting    positions     'into    groups    and    plot    only    the    group    averages.     These    
averaged    plotting    positions     retain    the    unbiassed     property    of    the    original    
plotting    positions.    

1.3.3    Analytical     methods    of    fitting    

There    are    two    main    methods    of    fitting    which    are    entirely    objective.    These    
are    the    methods     of    moments     and    maximum     likelihood.     Other    objective     
methods    less    frequently    used    are    the    methods    of    least    squares    (regression),    
minimum    chi    square    and    sextiles.    
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a     The     method     of     moments     makes     use     of     the     fact     that     if     all     the     moments     of     
a     distribution     are     known     then     everything     about     the     distribution     is     known.     
In     all     the     distributions     in     common     usage     four     moments     or     fewer     are     suffi-
cient     to     specify     all     the     moments.     For     instance,     two     moments,     the     first     
together     with     any     moment     of     even     order,     are     sufficient     to     specify     all     the     
moments     of     the     Normal     distribution     and     therefore     the     entire     distribution.     

Similarly,     in     the     EVI     distribution     the     first     two     moments     are     sufficient     to     
specify     all     the     moments     and     hence     the     distribution.     In     the     Pearson     Type     3     
distribution     three     moments—always     taken     as     the     first     three—are     required     
to     specify     all     the     moments.     In     these     cases     the     number     of     moments     needed     
to     specify     all     the     moments     and     hence     the     distribution     equals     the     number     of     
parameters;     in     general     this     is     so     because     a     location     parameter     is     analogous     
to     the     first     moment,     a     scale     parameter     to     the     square     root     of     the     second     
moment     and     a     shape     parameter     is     dependent     on     the     third     moment.     

Estimation      is     dependent      on     the     assumption      that     the     distribution      of     
variate     values     in     the     sample     is     representative     of     the     population     distribution.     
Therefore,      a     representation       of     the     former     provides     an     estimate     of     the     
latter.     Given     that     the     form     of     the     distribution     is     known     or     assumed,     the     
distribution     of     the     sample     is     specified     by     its     first     two     or     three     moments     
calculated     from     the     data     and     this     is     the     estimate     of     the     population     distri-
bution     by     the     method     of     moments.     As     an     example,     suppose     the     moments     
estimate     of     an     EV1     population      is     required.     The     sample     moments     are     
denoted     by     m1      and     m2.     The     parameters     u     and     a     of     the     EV1     distribution     are     
related     to     the     population     moments     p;     and     p2     by     the     equations     

7E2GC2     

=     u+0.5772a       and     P2     =     
6     

The     moments     method     of     estimation     replaces     p'1      and     p2      by     the     sample     
values     m1      and     m2      and     the     corresponding     estimates     of     u     and     a     are     

N/6     ,     
—     vm2     
7r     

=     mi      —     (0.5772)     Vm2-       
n     

The     ^     sign     over     a     and     u     indicates     that     they     are     estimated     values     rather     than     
the     true     population     values.     The     mean     value     of     m2      over     all     possible     samples     
is     (N—     1)1121     N     and     is     called     a     biassed     estimate     of     p2.     Unbiassed     estimates     
are     to     be     preferred     and     the     following     estimates     of     p;,     p2,     standard     devia-
tion     a,     and     the     skewness,     g,     are     to     be     used.     

/I;     =     E     xiIN     
i=     

P2     =     -.fl2/(      N      -     )     
= i     (     I     .3.3.1)     

=     (a2)+     

4     =      (x.     102)3/2.     
(N     —1)(N     —2)     =1      I      

b     Maximum     likelihood     (non)     estimation.     

Let     the     set     of     parameters     of     the     distribution     to     be     estimated     be     A     and     
let     the     sample     values     x1,     x2,     .     .     xN      be     denoted     collectively      as     X.     Let     
PR(X/A)     be     the     probability     of     drawing     the     observed     random     sample     X     
from     a     population     with     parameters     A.     Obviously     for     a     given     observed     
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sample    X    the    value    of    PR(X/A)    depends    on    the    parameter    values    A.    Of    
all    possible    sets    of    A    values    that    set    A'    which    is    such    that    PR(X/A')     is    
greater    than    PR(X/A)    for    any    other    set    of    A    values    is    taken    as    the    estimate    
of    the    population    parameters.     In    the    expression    PR(X/A)    the    variable    is    
A    whereas    in    similar    expressions     in    the    conditional     probability     context    
X    is    the    variable.    

Define    L(X/A)    by    

L(X/A)     =    f    f(xj/A)    (1.3.3.2)    
i=1    

where    f(x/A)    is    the    pdf    and    call    L(X/A)    the    likelihood    of    A    given    the    
observed    sample    X.    When    X    is    a    continuous    variate    PR(X/A)    is    formally    
zero.    Because    fiR(X—dX    <    X    <X    +    dX/A)    is    proportional    to    L(X/A)    the    
estimates    are    found    by    attempting    from    the    outset    to    find    A    which    maxi-
mises    the    likelihood,     L(X/A);    hence    the    name    of    maximum    likelihood.     
Broadly    speaking    the    maximum    likelihood    estimates    of    the    parameters     
are    those    which    make    the    given    sample    most    likely    or    probable.    

c    The    method    of    least    squares    can    be    used    to    estimate    location    and    scale    
parameters    such    as    (u,a)    in    the    extreme    value    Type    1    distribution.    The    x(i)    
values    are    regressed     on    the    yi     values    (the    plotting     positions)     and    the    
parameter    estimates    /2    and    64    in    the    relation    x    =    u+    ay    are    

a    i=    
(1.3.3.3)    

E    (y,-9)2    i=,    
=    x    —    (1.3.3.4)    

where    z    is    the    arithmetic    mean    of    the    sample    values    and    y    is    the    arith-
metic    mean    of    the    IV    plotting    positions.    

This    method    was    proposed    by    Chow    (1953).    In    his    usage    the    yi     values    
correspond      to    the    Weibull     plotting     position     based    on    a    probability      

=    il(N+1)     and    the    resulting    estimates    are    biassed.    If    E(y(;))    is    used    as    
plotting    position    the    estimates    are    unbiassed    (Kimball,    1960).    

.d    For    estimation     by    the    minimum    x2     method    consider    Figure    1.20    in    
which    sample    data    are    represented     by    a    histogram     of    m    blocks    and    a    
theoretical    pdf    is    sketched    over    it.    The    form    of    the    function    is    assumed    
known    and    the    parameters     are    unknown.    Let    the    jth    block    of    the    histo-
gram    be    contained    between    X    =    xi_    1     and    X    =    xi.    Let    the    number    of    
sample    members    in    this    block    be    Oi     and    for    some    values    of    population     
parameters,     A,    let    Ei     be    the    mean    number    out    of    N    occurring    between    
xi-  1    J    and    x.    E.    is    

Ei     =    NPi(A)    

where    Pi(A)    is    the    area    under    the    probability    density    curve    between    xi_,    
and    xi     when    the    parameters    are    A.    The    quantity    

x2    =    E    09J-E.02/E;    (1.3.3.5)    

is    a    measure    of    how    closely    the    theoretical    pdf    with    parameters    A    fits    the    
sample    histogram.    That    set    of    parameters    A'    for    which    x2    is    least    is    the    
minimum    x2    estimate    for    the    parameters.     The    system    of    equations    to    be    
solved    to    obtain    A'    is    rarely    simple.    The    equations    are    
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Fig     1    .20     A     sample      histogram       with     a     
theoretical      pdf     superimposed       on     it     and     

illustrating       the     notation      E,     and     0,.     fO    i     NP  j(A)      (0    i      —     NPj(A))    21      aP J(A)     

J=1     

0     

t     P     i(A)     2N.P . f(A)        j     
(1.3.3.6)     

for     k     =     1,     2,     .     .     s,     where     ak      is     the     kth     of     the     s     parameters     which     constitute     
the     parameter     set     A.     

If     N     is     large     the     second     term     has     only     a     small     effect     and     the     solution     of     
the     equations     which     omit     this     term,     namely     

0;—     NPi(A)     .aPi(A)     =     0     

i=     I     1        
P.(A)        •     Oa k     

(for     k     =     1,     2,     .     .     .     s),     is     called      the     modified       x2      minimum       method      by     
Cramer     (1946).     Neither     of     these     methods      is     used     in     this     report     but     the     
quantity     defined     in.     Equation     (1.3.3.5)     will     be     referred     to     in     Section     2.4     as     
a     goodness     of     fit     index.     

e     The     method     of     sextiles     was     developed      by     Jenkinson      (1969)     for     the     
general     extreme     value     distribution      which     has     location     parameter      u,     scale     
parameter     a,     and     shape     parameter     k.     The     range     of     the     variate     is     considered     
to     be     divided      into     six     intervals      such     that     the     cumulative       probability       in     
each     interval     is     one     sixth.     If     the     variate     values     bounding      the     jth     interval     
are     xi  _     1     and     xi      and     the     pdf     and     df     are     f(x)      and     F(x)     respectively,     then     

F(x    i      _     i)     =     (j-    1)/6     

F(x    j)—F(x    j_,)     =     f(x)dx      =     1/6.     

Denote     the     mean     value     of     variate     in     the     jth     interval     by     wi     

xj     

w i      =     1     6xf(x)        dx.      

These     six     means     w1 ,     w2      .     .     .     w6,     called     by     Jenkinson     the     sextile     means,     
characterise      the     distribution.      Their     mean     pw,     standard      deviation      o     and     
the     ratio     e     =     04,   2—wol(w    6—w 5 )     are     expressible      in     terms     of     the     popula-
tion     parameters     u,     a     and     k.     For     estimation     purposes     the     sample     data     are     
split     up     into     six     equal     groups     and     the     mean     of     each     group     is     calculated.      

From     these     &        and      i•      are     calculated     and     these     are     taken     as     estimates     
of     the     population     values.     Changes     in     the     dimensionless      quantity     e     reflect     
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changes     in     the     shape     parameter     k.     Jenkinson     gives     a     table     relating     e     to     k     
from     which     an     estimate     k     can     be     obtained     from     C.     

In     the     reduced     variate     population     where     u     =     0,     a     =     1,     the     quantities      

p.     and     o-      corresponding     to     p,     and     a.     depend     only     on     k     and     can     be     tabu-
lated.     The     relations     linking     p„     and     o,     to     po,     and     o     contain     u     and     a:     
by     rearranging,     u     and     a     can     be     expressed     in     terms     of     p„„     a,     p.     and     ao„     
each     of     which     can     be     estimated     from     the     sample.     

It     is     conceivable     that     such     a     method     could     be     used     for     other     distribu-
tions     with     a     shape     parameter     such     as     the     Pearson     Type     3     but     the     prepara-
tion     of     the     tables     mentioned     above     might     be     even     more     difficult     than     in     the     
GEV     case.     

The     main     features     of     the     sextiles     method     are     that     the     sextile     means     have     
smaller     sampling     variance     than     individual     sample     observations      and     that     
the     effect     of     outliers     is     largely     removed.     

Sampling     distributions     and     properties     of     estimators.     The     word     'estimator'     is     
used     to     describe     the     procedure     followed     in     performing     some     type     of     esti-
mation.     The     estimator     is     the     collection     of     rules     or     series     of     calculating     steps     
which     can     be     stated     in     symbolic     form     quite     independently     of     any     particu-
lar     sample     data.     We     speak     of     a     moments     estimator     and     of     a     maximum      
likelihood     estimator     when     we     mean     a     method     of     estimation.     The     result     of     
using     an     estimator     is     an     estimate—a     numerical     value.     

Three     classes     of     distribution     must     be     distinguished.     These     are     

a     the     distribution     of     the     variate     in     the     population,     

b     the     distribution     of     variate     values     in     a     sample     considered     as     a     popula-
tion     of     finite     size,     and     

c     the     sampling     distribution     between     samples     of     some     quantity,     a     statis-
tic,     calculated     from     a     sample.     

An     estimate      of     a     population       quantity      obtained      from     a     sample      is     
therefore     a     sample     statistic     and     its     sampling     distribution     contains     all     the     
information      on     the     suitability     of     the     estimator     in     all     respects     except     the     
ease     with     which     it     can     be     obtained.     In     practice,     reference     is     made     only     to     
the     mean     and     variance     of     the     sampling     distribution.      The     square     root     of     
the     variance     is,     in     this     context,     not     often     called     a     standard     deviation     but     a     
standard     error.     The     mean     and     standard     error     of     the     distribution      of     many     
simple     statistics     can     be     expressed     algebraically     in     terms     of     the     sample     site     
and     population     parameters,     the     form     of     the     expression     depending     on     the     
form     of     the     population     distribution.     

If     the     mean     or     expected     value     of     the     sampling     distribution     of     an     esti-
mate     equals     the     value     of     the     parameter     in     the     population     then     the     corres-
ponding     estimator     is     said     to     be     unbiassed.     If     not,     the     difference     between     
the     expected     value     and     the     population     value     is     called     the     bias.     Obviously     
an     estimator     having     small     or     zero     bias     is     desirable.     

The     range     or     spread     of     all     possible     estimate     values     is     proportional     to     
the     standard     error.     If     two     methods     of     estimation     A     and     B     have     sampling     
variances     VA      and     VB      the     relative     efficiency     of     method     A     relative     to     method     
B     is     

1     VA      V      B     

11     VB      V      A     

Thus,     if     method     B     gives     V.,     =     9     and     method     A     gives     VA      =     7     then     the     
relative     efficiency     of     A     to     B     is     1.28     and     method      A     is     said     to     be     more     
efficient     than     method     B.     
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are     used     in     Section     2.4.     Estimators     are     applied     to     POT     series     i     n     Section     2.7     
and     to     the     impulses     in     time     series     analysis     in     Section     2.9     and     also     in     many     
practical     hydrological     situations.     

The     Normal     distribution     

The     plotting     positions     for     graphical     estimation      and     display     of     the     data,     
expressed     as     probabilities,     are     

=     (i-     3/8)/(N+     1/4),     i     =     1,     2     .     .     .     N.     (1.3.4.1)     

This     formula     is     due     to     Blom     (1958).     The     value     of     reduced     variate     y,     
corresponding      to     this     Fi      is     a     sufficiently      good     approximation       to     the     un-
biassed     plotting     position     E(y(o)     which     is     the     mean     value     of     the     ith     smallest     
in     a     sample     from     the     N(0,1)     distribution.      If     Normal     probability     paper     is     
being     used     on     which     a     probability      scale     is     graduated     on     the     horizontal      
axis     the     F;      values     are     used     but     if     linear     paper     is     used     the     Fi      values     are     first     
converted     to     the     corresponding     values     of     Normal     reduced     or     standardised     
variate     yi      and     these     are     used     as     plotting     positions.     The     plotting     positions     
E(y(o)     for     sample     sizes     up     to     N     =     50     are     given     in     Table     1.13     which     is     
taken     from     Table     XX     of     Fisher     &     Yates     (1963).     For     larger     sample     sizes     
yi      values     may     be     obtained     from     the     plotting     probabilities      Fi      of     Equation      
(1.3.4.1)     or     from     Harter     (1961).     When     using     y,     as     plotting     position     on     
linear     paper     a     return     period     scale     may     be     marked     over     the     y     scale     as     
follows     

T     2     5      10       25         50        100        200        

Table     1.13     Plotting     positions,     E(y(j)),     
for     Normal     samples.     

y     0.00        0.84        1.28        1.75        2.05        2.33        2.58        

As     early     as     1924     Foster     had     found     that     peak     flows     were     not     Normally     
distributed      and     this     conclusion      is     generally     accepted.     Hence,     the     use     of     
annual     maximum     flows     to     demonstrate     the     practice     of     estimation     for     the     
Normal     distribution     is     not     realistic     but     will     be     useful     when     the     lognormal     
distribution      is     discussed.      The     annual     maximum      data     for     27/1,     Nidd     at     
Hunsingore     are     given     in     abridged     form     in     Table     1.14     in     column     2     and     the     
ranked     values     are     given     in     column     3.     The     plotting     positions     y;      are     given     in     

N= 2     3      4       5       6       •      '        7     8      9       10      

1     0.56      0.85       1.03       1.16       1.27       1.35       1.42       1.49       1.54      
2     0.30      0.50       0.64       0.76       0.85       0.93       1.00      
3     0.20      0.35       0.47       0.57       0.66      
4     0.15     0.27     0.38     
5     0.12     

i     N=11     12     13      14       15       16       17       18       19       20      

1     1.59        1.63      1.67       1.70       1.74       1.76       1.79       1.82       1.84       1.87      
2     1.06        1.12      1.16       1.21       1.25       1.28       1.32       1.35       1.38       1.41      
3     0.73        0.79      0.85       0.90       0.95       0.99       1.03       1.07       1.10       1.13      
4     0.46        0.54      0.60       0.66       0.71       0.76       0.81       0.85       0.89       0.92      
5     0.22        0.31      0.39       0.46       0.52       0.57       0.62       0.67       0.71       0.75      
6     0.10      0.19       0.27       0.34       0.39       0.45       0.50       0.55       0.59      
7     0.09      0.17       0.23       0.30       0.35       0.40       0.45      
8     0.08      0.15       0.21       0.26       0.31      
9     7--     0.07     0.13      0.19      

10     0.06     

The     lower     half     of     the     data     is     plotted     
against     the     negative     of     these     values.     If     
N     is     odd     the     value     of     rank     (N+1)/2      is     
plotted     at     0.0     (from     Fisher     &     Yates,     

1963).     

71     



Statistics     for     flood     hydrology      

Table     1.13     continued     

i     N     =21     22      23       24       25       26       27       28       29       30      

1     I.89      1.91       1.93       1.95       1.97       1.98       2.00       2.01       2.03       2.04      
2     1.43        1.46      1.48       1.50       1.52       1.54       1.56       1.58       1.60       1.62      
3     1.16        1.19      1.21       1.24       1.26       1.29       1.31       1.33       1.35       1.36      
4     0.95        0.98      1.01       1.04       1.07       1.09       1.11       1.14       1.16       1.18      
5     0.78        0.82      0.85       0.88       0.91       0.93       0.96       0.98       1.00       1.03      
6     0.63        0.67      0.70       0.73       0.76       0.79       0.82       0.85       0.87       0.89      
7     0.49        0.53      0.57       0.60       0.64       0.67       0.70       0.73       0.75       0.78      
8     0.36        0.41      0.45       0.48       0.52       0.55       0.58       0.61       0.64       0.67      
9     0.24        0.29      0.33       0.37       0.41       0.44       0.48       0.51       0.54       0.57      

10     0.12        0.17      ,       0.22        0.26      0.30       0.34       0.38       0.41       0.44       0.47      
11     0.06      0.11       0.16       0.20       0.24       0.28       0.32       0.35       0.38      
12     0.05      0.10       0.14       0.19       0.22       0.26       0.29      
13     0.05      0.09       0.13       0.17       0.21      
14     -      0.04       0.09       0.12      
15     -     -     0.04     

i     N     =31     32      33       34       35       36       37       38       39       40     

1     2.06        2.07      2.08       2.09       2.11       2.12       2.13       2.14       2.15       2.16      
2     1.63        1.65      1.66       1.68       1.69       1.70       1.72       1.73       1.74       1.75      
3     1.38        1.40      1.42       1.43       1.45       1.46       1.48       1.49       1.50       1.52      
4     1.20        1.22      1.23       1.25       1.27       1.28       1.30       1.32       1.33       1.34      
5     1.05        1.07      1.09       1.11       1.12       1.14,       1.16       1.17       1.19       1.20      
6     0.92        0.94      0.96       0.98       1.00       1.02       1.03       1.05       1.07       1.08      
7     0.80        0.82      0.85       0.87       0.89       0.91       0.92       0.94       0.96       0.98      
8     0.69        0.72      0.74       0.76       0.79       0.81       0.83       0.85       0.86       0.88      
9     0.60        0.62      0.65       0.67       0.69       0.72       0.73       0.75       0.77       0.79      

10     0.50        0.53      0.56       0.58       0.60       0.63       0.65       0.67       0.69       0.71      
11     0.41        0.44      0.47       0.50       0.52       0.54       0.57       0.59       0.61       0.63      
12     0.33        0.36      0.39       0.41       0.44       0.47       0.49       0.51       0.54       0.56      
13     0.24        0.28      0.31       0.34       0.36       0.39       0.42       0.44       0.46       0.49      
14     0.16        0.20      0.23       0.26       0.29       0.32       0.34       0.37       0.39       0.42      
15     0.08        0.12      0.15       0.18       0.22       0.24       0.27       0.30       0.33       0.35      
16     -      0.04       0.08       0.11       0.14       0.17       0.20       0.23       0.26       0.28      
17     -      0.04       0.07       0.10       0.14       0.16       0.19       0.22      
18     -      -       0.03       0.07       0.10       0.13       0.16      
19     -      -       -       0.03       0.06       0.09      
20     -      -       -       0.03      

i     N     =41     42     43      44       45       46       47       48       49       50      

1     2.17        2.18      2.19       2.20       2.21       2.22       2.22       2.23       2.24       2.25      
2     1.76        1.78      1.79       1.80       1.81       1.82       1.83       1.84       1.85       1.85      
3     1.53        1.54      1.55       1.57       1.58       1.59       1.60       1.61       1.62       1.63      
4     1.36        1.37      1.38       1.40       1.41       1.42       1.43       1.44       1.45       1.46      
5     1.22        1.23      1.25       1.26       1.27       1.28       1.30       1.31       1.32       1.33      
6     1.10        1.11      1.13       1.14       1.16       1.17       1.18       1.19       1.21       1.22      
7     0.99        1.01      1.02       1.04       1.05       1.07       1.08       1.09       1.11       1.12      
8     0.90        0.91      0.93       0.95       0.96       0.98       0.99       1.00       1.02       1.03      
9     0.81        0.83      0.84       0.86       0.88       0.89       0.91       0.92       0.94       0.95      

10     0.73        0.75      0.76       0.78       0.80       0.81       0.83       0.84       0.86       0.87      
11     0.65        0.67      0.69       0.71       0.72       0.74       0.76       0.77       0.79       0.80      
12     0.58        0.60      0.62       0.64       0.65       0.67       0.69       0.70       0.72       0.74      
13     0.51        0.53      0.55       0.57       0.59       0.60       0.62       0.64       0.66       0.67      
14     0.44        0.46      0.48       0.50       0.52       0.54       0.56       0.58       0.59       0.61      
15     0.37        0.40      0.42       0.44       0.46       0.48       0.50       0.52       0.53       0.55      
16     -     0.31        0.33      0.36       0.38       0.40       0.42       0.44       0.46       0.48       0.49      
17     0.25        0.27      0.29       0.32       0.34       0.36       0.38       0.40       0.42       0.44      
18     0.18        0.21      '       0.23      0.26      0.28       0.30       0.32       0.34       0.36       0.38      
19     0.12        0.15      0.17       0.20       0.22       0.25       0.27       0.29       0.31       0.33      
20     0.06        0.09      0.12       0.14       0.17       0.19       0.21       0.24       0.26       0.28      
21     -      0.03       0.06       0.09       0.11       0.14       0.16       0.18       0.21       0.23      
22     -      -       0.03       0.06       0.08       0.11       0.13       0.15       0.18      
23     -      -       0.03       0.05       0.08       0.10       0.13      
24     -      -       -       -       0.03       0.05       0.08      
25     -      -       -       -       0.03      
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X(j)      Normal     y     EV1        y     

1     189.02      65.08       -2.11       -1.38      
2     91.80      65.60       -1.69       -1.12      
3     115.52      75.06       -1.45       -0.95      
4     78.55      76.22       -1.27       -0.82      
5     162.99      78.55       -1.12       -0.70      

.     .      .       .       .      
31     87.76      213.70       1.12       1.99      
32     251.96      226.48       1.27       2.25      
33     138.72      251.96       1.45       2.60      
34     305.75      261.82       1.69       3.12      

Table     1.14     Summary      of     annual     35     226.48      305.75       2.11       4.13      
maxima     at     27/1,     Nidd     at     Hunsingore,     
with     Normal     and     EV1     plotting     
positions.     

N     
2     x     =     4783.1,     1(x1-.02       =     125437.82,     X     =     136.66,     (12      =     3689.35,     &     =     60.74.     

column     4.     The     ordered     flow     values     are     shown     plotted     against     these     y,     
values     in     Figure     1.21.     There     is     a     distinct     bend     in     the     line     of     the     plotted     
points     just     to     the     left     of     y     =     0,     the     median.     This     is     so     definite     that     it     can     
hardly     be     attributed     to     random     sampling     variation     and     it     is.concluded     that     
the     flows     are     not     Normally     distributed.     This     is     borne     out     by     similar     plots     
of     data     from     other     rivers.     

To     see     if     the     hypothesis     of     Normality     is     reasonable     a     straight     line     must     
be     drawn     through     the     points.     In     Figure     1.21     a     line     which     attempts      to     
represent      the     pattern     exhibited      by     both     the     low     and     high     values     must     
necessarily      be     a     compromise      which     is     not     a     good     fit     at     either     end.     The     
straight     line,     A,     is     a     valid     estimate     at     the     upper     end     but     is     unreasonable      
over     the     entire     range.     Therefore,     a     curve     such     as     B     may     be     drawn     which     is     
tantamount     to     asserting     that     the     distribution      is     not     Normal.     

Moments     estimate.     The     moments      estimate      of     the     Normal     distribution      
parameters     are     

=     mean     of     sample     =     
62      =     sample     variance     =     E(x,      -     )2/(N     -     1)     

(1.3.4.2)      

because     the     population     parameters     p     and     6 2      are     themselves     the     first     and     
second     moments     of     the     population;     in     this     case     they     are     a     =     136.66     and     
62      =     3689.35     and     hence     8     =     60.74.     The     corresponding     population     is     repre-
sented     on     Figure     1.21     by     the     line     x     =     it+ay      =     136.66+60.74y.      

Maximum     likelihood     estimate.     The     likelihood      of     any     arbitrary     values     of     

t     and     a2      given     the     observed     sample     X     =     {x1,     x2,     .     .     x,}      is     

1     
L(XI     ft,     62)     =     f(x)     =     c   iuxi-p)/ai2     

1= 1    i=1        V27r6     

-fruxi-uno)      =      e     2     •     
(V2no-r     

Setting     aL/ap     and     aLla62     to     zero     and     solving     yields     the     maximum     likeli-
hood     estimates     

=     -     Ex,     = n7 ,     

62      =     -
1     

E(X1      -      5)2      =     mi.     

(1.3.4.4)     
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i—     0.44     
F
i     
=     

N+0.12.     
(1.3.4.8)     
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The     estimate     of     82      is     m2,     the     second     moment     of     the     sample     which     itself     
has     sampling     distribution     with     mean     E(m2)     =     ((N-1)1N)o-2.      Hence,     it     is     a     
biassed     estimate     of     a2.     Any     function     of     m2      retains     the     important     property     
of     sufficiency     so     that     (N/(N-    1))m2,     which     is     an     unbiassed     estimate     of     a2,     
can     be     taken     and     the     tot,     estimates     are     revised     to     

#     =—Ex;        

62     = E(x     
N-1      

(1.3.4.5)     

Strictly     speaking     the     ML     estimates     are     given     by     Equation     (1.3.4.4)     and     
these     alone     maximise     L     of     Equation     (1.3.4.3).     The     estimates     of     Equation     
(1.3.4.5)     however     are     sufficient     and     are     the     most     efficient     among     unbiassed     
estimators.     Since     they     do     not     maximise     L     they     are     not     strictly     ML     esti-
mators     but     in     practice     are     usually     allowed     to     retain     the     ML     title.     For     the     
Normal     distribution,     therefore,     the     moments     estimates     of     tt     and     a2      coincide     
with     the     ML     estimates.     

The     exponential     distribution     

This     distribution      has     a     location     parameter     x0      and     a     scale     parameter     /3.     
The     variate—reduced     variate     relationship     is     

x     =     x0+13y     (1.3.4.6)     

where     y     is     the     standardised     or     reduced     exponential     variate     with     df     

F(y)=     PR(     Y<     y)     =     1     —e     ''.     (L3.4.7)     

In     some     cases     the     location     parameter     xo      is     known     and     does     not     need     to     be     
estimated.     In     this     case     the     estimation     of     is     simpler     than     the     joint     estimate     
of     fl     and     x0      together.     

Graphical     estimation.     The     plotting     probabilities      may     be     taken     to     be     the     
same     as     those     specially     derived     for     the     extreme     value     Type     1     distribution,     
namely,     those     given     by     the     Gringorten     formula,     

The     corresponding     reduced     variate     values     

yi      =     —1n(1—F;)     (1.3.4.9)     

are     used     as     plotting     positions     on     linear     paper.     These     are     very     good     approxi-
mations     to     the     exact     values     of     the     expected     order     statistics     which     are     the     
unbiassed     plotting     positions.     In     this     case     these     can     be     easily     computed     
and     are     

4),(0     =     E     ;_,     N     +     1     —j     
(1.3.4.10)     

The     values     obtained     from     either     Equation     (1.3.4.9)     or     (1.3.4.10),     which     
differ     slightly,     may     be     used     as     plotting     positions.      This     distribution      is     
exceptional     in     that     Equation     (1.3.4.10)     is     a     simple,     easily     computed     ex-
pression;     usually     only     the     approximation     (1.3.4.9)     is     available.     

Whether     x0      is     known.or     not     the     sample     value     xo)      is     plotted     against     yi     
from     Equation     (1.3.4.9)     or     (1.3.4.10)     as     the     first     step.     Then,     if     x0      is     known     
a     priori     an     eye     guided     straight     line     is     drawn     through     the     plotted     points     
and     is     made     to     pass     through     the     point     (x     =     x0,     y     =     0).     The     slope     of     this     

74     



Estimates     for     particular     distributions     1.3.4     

line     is     the     estimate     of     /3.     If     x,     is     not     known     a     priori      the     eye     guided     straight     
line     is     drawn     through     the     data     and     the     intercept     at     y     =     0     is     the     estimate'of     
xo      and     again     the     slope     of     the     line     is     the     estimate     of     LI.     

A     return     period     scale     may     be     marked     in     over     the     y     scale     as     a     guide.     
The     following     points     are     sufficient     for     exploratory     work.     The     relation     is     
y     =     InT.     

T     2     5      10       20         25        50      100         200        
y     0.69     1.61        2.30        3.00        3.22        3.91        4.61        5.30        

Estimation       by     moments.       The     mean     and     standard     deviation     p     and     a     are     
related     to     xo      and     )3     by     

p     =     x0-1-13     (      I     .3.4.11)     

o-      =     /3.     (1.3.4.12)     

Therefore,     if     x,     is     known     and     the     sample     mean     z     is     the     estimate     of     p,     

$     is     got     from     

=     (1.3.4.13)     

If     both     xo      and     are       unknown     both     Equations     (1.3.4.11)     and     (1.3.4.12)     
must     be     used.     First     

/3= Q     

where     a     is     the     sample     estimate     of     a     and     then     

zo      =     =     (1.3.4.14a)     

Estimation       by     maximum       likelihood.       The     likelihood     function     is     
N     

L(x,,     x2,     .     ,       x,/x0,     )3)     -     e -(xi-x0)Iff .     (1.3.4.15)     
i=     13     

The     values     of     xo      and     /3     which     maximise     this     quantity     also     maximise     the     
log     likelihood     

LL(x,,x2,        =      —      N     In     /3     —     E     (x1-     x0)/(3.     (1.3.4.16)     

alone     unknown.      When     xo      is     known     the     value     of     /3     alone     which     maximises     
Equation     (1.3.4.15)     or     (1.3.4.16)     is     required.     Setting     aLLIali     to     zero     gives     

—N +     (x1—x0)     =     0      L     71     i=i     p2     

which     on     solving     for     n     gives     

p     =     N_1l(,-     x0)     =     x-     x0.     (1.3.4.17)     

Thus,     when     /3     alone     is     unknown     the     moments     and     maximum     likelihood     
estimates     take     the     same     form.     

If     both     xo      and     are     unknown     and     have     to     be     estimated     the     procedure     
is'     not     so     straightforward       because     equating     the     derivatives      aLLIOfi     and     
aLLIOxo      to     zero     does     not     afford     two     independent      equations     in     xo      and     /3.     
However,     from     statistical      theory     it     is     known     that     if     sufficient     statistics     
exist     for     xo      and     /3     then     the     maximum     likelihood     estimates     are     functions     of     
them.     Now,     if     /3     is     'known,     t,     =     x(1)      =     min(x,,      x2,     .       xi,     .        xN)     is     a     
sufficient     statistic     for     xo;     while     if     xo      is     known     t2      =     .,7--x0      is     a     sufficient     
statistic     for     /3.     But,     t,     and     t2      being     individually      sufficient     for     xo      and     /3     
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implies    that    they    are    a    pair    of    jointly    sufficient    statistics    for    xo     and    /3.    
Hence,    the    maximum     likelihood     estimates    are    functions    of    ti     ,and    t2.    
Indeed,    t,    and    t2     are    themselves    maximum    likelihood    estimates    but    they    
are    biassed;    hence    some    functions    of    them    which    are    unbiassed    are    desir-
able.    

Since    x(1)     is    always    greater    than    or    equal    to    xo     it    follows    that    its    mean    
must    exceed    xo,    i.e.    E(x(,    ))'>    xo     and    consequently     xo     )    is    a    biassed    esti-
mate    of    xo.    For    the    same    reason    the    expected    value    of    t2     is    less    than    p.    

The    corrections    to    be    applied    to    ti     and    t2     to    remove    the    bias    are    ob-
tained    from    the    distributional    properties    of    xo     ).    For    

PR(x(,)     <    x)    =    1    -    PR(xl     >    x,    x2     >    x,    ,      xi     >    x,    ,      x,    >    x)    

=    1    -[e-(x-x°)/fir      
=    1    -e -(x- xo)/4t1/N)     

showing    that    x(1)     has    an    exponential    distribution    with    mean    

E(x(1))    =    x0+
N
-     (1.3.4.19)    

and    variance    
fie    

var(x(    I    =    —N2.    

Using    Equation    (1.3.4.19)    it    can    be    shown    that    

N    

N-1     

E    (x,-x(,))    
x.(1 ))    =      

-=    1    (1.3.4.20)    
N-1     

and    

1    E(x,    -xo    
o    =    x")    =     x")     N     N-1     (1.3.4.21)    

are    unbiassed    in    that    E(#)    =    )3    and    E(4)    =    xo     and    since    they    are    functions    
of    t1     and    t2     above    they    are    unbiassed,    maximum    likelihood    estimators    for    
#    and    xo.    

The    two    parameter    gamma    distribution    

This    distribution    has    no    location    parameter;    its    two    parameters    are    a    scale    
and    a    shape    parameter    respectively.    The    variate-reduced    variate    relation-

.    ship    is    

x    =    fly    (1.3.4.22)    

which    is    a    special    case    of    the    general    relation    in    Equation    (L1.3.4)    

x    =    a    -1-    by    (1.3.4.23)    

with    a    =    0,    b    =    fi.    The    second    parameter    y    in    the    gamma    distribution    is    
contained    in    the    distribution    of    the    reduced    gamma    variate,    y.    In    order    
that    Equation    (1'.3.4.22)    should    hold,    the    shape    parameter    of    the    y    variate    
should    equal    that    of    the    x    variate.    Therefore,     if    a    sample    from    the    x    
population    is    to    be    plotted    to    estimate    /3    of    Equation    (1.3.4.22)    by    drawing    
a    straight    line    through    the    plot,    the    value    of    y    on    which    the    horizontal    
probability    scale    depends    must    be    that    of    the    x    variate.    if    any    other    value    
of    y    is    used    the    theoretical    .,v-y    relation    is    no    longer    linear    and    the    drawing    
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of    a    straight    line    in    that    situation     necessarily     introduces     bias    in    the    esti-
mate    of    /3.    

Graphical    estimation.    Suppose     it    were    known    that    all    annual    maximum     
populations     were    gamma    distributed     with    the    same    value    of    gamma,    say    
y    =    3,    at    every    station     but    that    /3    varied     from    station     to    station.     Then    
probability     paper    could    be    constructed     for    this    value    of    y    and    a    straight    
line    drawn    through    the    plotted    points    would    then    give    a    valid    estimate    of    

The    plotting    positions    strictly    speaking    depend    on    the    value    of    y.    In    the    
example    cited    y    =    3    which    is    close    to    the    y    value    of    1    in    the    exponential     
distribution.      Consequently,      the    plotting     probabilities      Fi     =--    (i—    0.44)/    
(N+0.12)    appropriate     to    the    exponential     distribution     may    be    used.    If    y    is    
very    large    then    the    distribution     is    close    to    Normal    and    then    the    plotting    
probabilities    F,    =    (i    —    3/8)(N    +1/4),    Equation    (1.3.4.1),    should    be    used.    

In    practice,    even    if    it    is    known    that    the    distribution    is    gamma    the    value    
of    y    is    not    known    and    consequently     the    use    of    a    formula    which    is    appar-
ently    exact    gives    an    illusion    of    accuracy    and    a    compromise    plotting    proba-
bility    

F.;     =    (i—    2/5)/(N+    1/5)    •     (1.3.4.24)     

could    be    used    regardless    of    the    value    of    y.    
If    y    is    known,    /3    may    be    estimated    graphically    but    when    y    is    unknown    

there    is    no    straightforward     method    of    estimating    both    /3    and    y    graphically.    
A    practical    graphical    method    which    estimates    quantiles    but    not    the    indi-
vidual    parameters      is    to    plot    the    data    against    both    exponential      reduced     
variates    and    Normal    reduced    variates    and    to    draw    a    smooth    curve    through    
the    plotted    points    on    the    plot    which    appears    least    curved.    The    plot    showing    
least    curvature    should    be    adopted,because      (a)    the    plotting    position    bias    is    
kept    to    a    minimum    and    (b)    extrapolation     is    easier    and    safer.    

Estimation    by    method    of    moments.    The    mean    and    standard     deviation     in    
terms    of    /3    and    y    are    

=    flY    

a    =    /3-0    (1.3.4.25)    

which    on    rearrangement     gives    

2    

Y    cv2    

=    =      0-2111.    (1.3.4.26)    

The    sample    estimates    of    p    and    a    namely     and    8    are    substituted    to    give    the    
moments    estimates    of    /3    and    y    

=    

p    =    (1.3.4.27)    

Estimation    by    maximum    likelihood.    The    likelihood    function    is    
N    N     -      xi/    /3    e    x y-    I    

1-(X113,y)    =    11    .f(x0,      y)    =    n    
;=,    ;=.     /PTO)    

The    log    likelihood    is    

LL(X//3,y)    =    
i
L    In    f(xil    fi,y)    
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by    Thom's    approximation.'    
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=    - Ny    In    13-N    In    F(y)-Efl    +    (y    -    1)E    In    xi.    (1.3.4.29)    

The    maximum    likelihood    estimates    must    satisfy    

=    0    and      
aLL    

=    0.    (1.3.4.30)    
a9    

Differentiating    Equation    (1.3.4.29)    with    respect    to    p    and    9    gives    

=    9    (1.3.4.31)    

a    
1   0+     -

a9
InF(9)-     -

1    
Elnx,    =    Q.    (1.3.4.32)    

From    Equation    (1.3.4.31),    Intl    =    -1119      and    inserting    this    in    Equation    
(1.3.4.32)    together    with    the    digamma    function    'I'(9)    for    alnF(9)/a9    gives    

1    
-    Inp    +    T(9)    -- N    Elnx,    =    0.    (1.3.4.33)    

The    method    of    solving    Equation    (1.3.4.33)    is    that    described    by    Thom    
(1958).    For    values    of    y    =    1    or    larger    the    approximation    

1    1      
`PM    -

zy    1292    
(1.3.4.34)    

is    correct    to    within    2%.    Substituting    this    in    Equation    (1.3.4.33)    yields    

1    -      
12    (In.ic-    -N    Elnx    )132     -    69    -    1    =    0.    

Letting    

1    
A    =    (1.3.4.35)    

this    is    simplified    to    

12A92-6.9-1      =    0    (1.3.4.36)    

which    is    a    quadratic    in    the    unknown    9    and    the    root    

+„    1    1/1+4A/3      
-    (1.34.37)     

4A    

is    used.    Because    of    the    approximation    in    Equation    (1.3.4.34)    this    value    of    
9    is    not    the    exact    solution    of    Equation    (1.3.4.33).    Thom    gives    the    following    
corrections    A9    to    be    subtracted    from    the    result    of    Equation    (1.3.4.37)    to    
correct    the    result    of    using    the    approximation     to    'P(9).    Thus,    if    Equation    
(1.3.4.37)    gives    a    value    9    =    1.3,    the    corrected    value    of    9    should    be    taken    
as    1.3-0.006     =    1.294.    The    ML    estimate     of    /3    is    then    from    Equation     
(1.3.4.31)    

/3    7    .k'19    (1.3.4.38)    

0.2    
0.3    
0.4    
0.5    
0.6    
0.7    

0.034    
0.029    
0.025    
0.021    
0.017    
0.014    

0.8    
0.9    
1.0    
1.1    
1.2    
1.3    

0.012    
0.011    
0.009    
0.008    
0.007    
0.006    

1.4    
1.5    
1.6    
1.7    
1.8    
1.9    

0.006    
0.005    
0.005    
0.004    
0.004    
0.003    

2.2    
2.3    
3.1    
3.2    
5.5    
5.6    

0.003    
0.002    
0.002    
0.001    
0.001    
0.000    
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The    Pearson    Type    3    distribution    

This    distribution     may    be    regarded    as    a    form    of    the    gamma    distribution     
generalised    by    the    addition    of    a    locatibn    parameter.    The    variate-reduced     
variate    relationship    is    

x    =    x0+/3y    (1.3.4.39)    

where    y    is    the    reduced    gamma    variate    with    parameter    y.    All    the    remarks    
made    about    graphical    estimation    in    the    case    of    the    gamma    distribution     
apply    here    also.    The    parameter    values    cannot    be    estimated    explicitly    but    
quantile    values    can    be    obtained    by    using    the    compromise    plotting    proba-
bilities    

i—    2/5    
F.    =     (1.3.4.40)    

N+    1/5    

on    either    Normal    or    exponential     probability     papers.    If    rectangular     or    
linear    paper    is    used    instead    of    ready    made    probability     paper,    plotting    
positions    yi     corresponding      to    the    F,    of    Equation     (1.3.4.40)     are    used:    
y,    =    0:130-1(Fi)    in    the    Normal    case    where    I-1(.)    is    the    inverse    standardised     
Normal    probability    integral    and    yi     =    —    In(1    —F1)    in    the    exponential    case.    
Return    period    scales    may    be    marked    alongside    they    axis    as    described    under    
the    headings    of    exponential    and    Normal    distributions    in    this    section.    

Estimation    by    moments.    Because    there    are    three    parameters    to    be    estimated    
three    relations    between    parameters    and    moments    must    be    used.    These    are    

=    x0+/3y    

a    =    13,7y    (1.3.4.41)    
g    =    2//y    

where    g    is    the    skewness,    µ34/23/2.    
If    2,    8    and    g    are    the    sample    estimates     of    p,    a    and    g    (see    Equation    

(1.3.3.1))    Equation    (1.3.4.41)    gives    on    rearranging    

=    4/42    

=    012    (1.3.4.42)    
=    —     /3j)    =    —2ovg    

Estimation    by    maximum    likelihood.    The    likelihood    function    is    
N.    e -(xj7.0)A

xi_ x0y-i    
L(x    „    x2,    .    .    ,    xN/x0,    y)    =    (     1    .    3    .    4    .    4    3    )    

i=1    fiYr(v)    

and    the    log    likelihood    is    

LL(xl,    x2,    .    ,xN/x0,fl,y)    =    —    Ny    r(y)    

E(x,    —x0)    
 +    (y    —1)E    In    (x,    x0).    

fl    

The    maximum    likelihood    estimates    must    satisfy    

OLL/02,    =    0,    OLL/0/3    =    0,    and     aLL/a9    =    0.    

(1.3.4.44)    

(1.3.4.45)    

Differentiating    Equation    (1.3.4.44)    with    respect    to    20,    and      9     gives    

-7z    —    0—     1)E    
1    

—    0    
fi    x,     —20    
—N9    ±    l(x,    —    20)    =    0    

1
02    
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Or    

Z(xiT-ko)    
A    

0    

and    

(1.3.4.47)    

—N    In    /3—N    —    In    +      In    =     0    
6-9    

or    writing    the    digamma    function    'P(y)    for    alnr(y)/ay    

In(x,    —    .3C0)    
In    /3+'N(9)   _     O.    (1.3.4.48)    

Equations    (1.3.4.46),    (1.3.4.47)    and    (1.3.4.48)    are    nonlinear    in    the    un-
knowns    .ko,    /3    and    '9,    and    a    completely    automatic    iterative    solution    would    
be    both    time-consuming    in    operation    and    difficult    to    program.    

The    following    procedure    suggested    by    R.    T.    Clarke    and    quoted    by    
Wallis    &    Matalas    (1973)    is    to    assume    a    value    of    fc,    and    use    that    to    solve    
Equations    (1.3.4.46)    and    (1.3.4.47)    for    /3    and    y    giving    

=    DAD-1)     •    (1.3.4.49)    

where    

D    =    
1    
—1(x•—    xo)    .E    
N2    (     1     x,—    

N    

(    1      )     x,    520    

These    three    values    .ko,    p    and    9    are    inserted    into    Equation    (1.3.4.48)    
which    when    evaluated    yields    a    number    R,    say.    For    these    three    values    .ko,    

[3,    9    to    be    maximum    likelihood    estimates    this    R    should    be    zero    but    if    [RI    is    
less    than    some    small    arbitrary    amount,    Equation    (1.3.4.48)    is    considered    
to    be    satisfied.    If    not,    a    new    value    of    ".ko     is    chosen    and    the    procedure    re-
peated.    After    a    few    trials    the    choice    may    be    guided    by    plotting    R    against    

.ko.    In    small    samples    particularly,    the    likelihood    surface    may    be    very    flat    
and    it    may    be    almost    impossible    to    arrive    at    a    solution.    

Another    method    in    the    same    vein    is    to    assume    a    value    of    ".Z0     and    calcu-
late    (z1     =    x1-4,      i    =    1,    2,    ..    N)    and    then    estimate    /3    and    y    by    fitting    a    
gamma    distribution     by    Thom's    method    to    this    sample    of    z    values.    The    
log    likelihood    LL    is    then    computed    from    Equation    (1.3.4.44)    with    these    
values    of    p    and    9     and    after    this    has    been    done    with    a    few    values    of    xo    
a    plot    of    LL    against    .ko     is    prepared.    A    smooth    curve    is    drawn    through    the    
plotted    points    and    the    value    of    ic'o     for    which    LL    is    a    maximum    is    estimated    
and    new    values    of    /3    and    y    obtained    from    the    resulting    sequence    of    z    values.    
It    should    be    noted    that    when    Equation    (1.3.4.44)    is    being    evaluated,    the    
quantities    Z(.,c,    —4)    and    Zln(x,    —    ico)    have    already    been    calculated    in    the    
course    of    estimating    and    y    by    Thom's    procedure.    If    the    log    likelihood    
surface    is    flat    this    method    may    also    be    unsatisfactory    in    some    cases.    

The    log    Pearson    Type    3    distribution    

Estimation    for    this    distribution    is    usually    carried    out    in    the    log    domain.    
This    is    a    consequence     of    the    fact    that    the    distribution    is    much    easier    to    
define    in    the    log    domain.    With    the    exception    of    a    possible    fourth    parameter    
in    the    form    of    a    location    parameter    in    the    real    domain    the    parameters    of    
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the    distribution    are    log    domain    parameters.    It    was    remarked    in    Section    1.2    
that    the    moments    of    the    distribution    in    the    real    domain    may    not    be    express-    
ible    in    terms    of    the    parameters     and    this    means    that    moments    estimates    
cannot    be    sought    from    the    sample    moments.    

The    likelihood    function    in    the    three    parameter    case    is    
N    e -    (In    (xj)—z0)/2{1n      (x    

xi"f(ii)i)      

 —    zo}n-    I    
L(xi,    x2,    ...,    x,/zo,    2,    ri)    =    (1.3.4.51)    

.1     

where    zo,    ),    and    ri    are    location,    scale    and    shape    parameters    of    the    Pearson    
Type    3    distribution    of    lnx.    The    log    likelihood    is    

(In    xi     —    zo)    
LL(xi,    x2,    .    .    ,    xNlzo,2,q)    E    

+(II-1)E      In    {ln    (x1)—    z„,}    
—E    ln    x;     —N(ti    In    2+    ln    F(0).    (1.3.4.52)    

Solution    of    the    equations    aLivaso     =    0,    LL/a.    =    0,    3LL/81j     =    0    has    not    
been    attempted    nor    is    it    known    whether    it    is    feasible.    

It    is    seen    therefore    that    direct    estimation    in    the    real    domain    either    by    
moments    or    maximum    likelihood    is    far    from    easy    and    as    yet    unexplored.    
For    this    reason    the    procedure    used    in    practice    is    to    fit    a    Pearson    Type    3    
distribution     to    the    logarithms    of    the    original    values,    z;     =    Inxi,    i    =    1,    2,    
.    .    .    N,    compute    quantiles,    z,,    of    the    fitted    distribution    and    then    compute    
the    required    x    quantiles    by    the    transformation,     x,    =    ezP.    While    this    is    a    
valid    method    of    estimation     it    should    be    remembered     that    the    estimates    
are    by    no    means    the    .same    as    those    which    would    be    obtained     by    the    
corresponding     methods    without    transformation     of    the    data.    Indeed    there    
is    no    guarantee    that    unbiassed,    minimum    variance    estimators    in    the    log    
domain    exhibit    the    same    desirable    qualities    after    transformation    back    into    
the    real    domain.    

The    extreme    value    Type    I    (EV1)    or    Gumbel    distribution     

The    plotting    positions    for    graphical    estimation     and    display    of    the    data,    
expressed    as    probabilities    are    

F1     =    (i—    0.44)/(N+    0.12)    (1.3.4.53)    

due    to    Gringorten    (1963).    The    reduced    or    standardised     variate    values    yi    
corresponding    to    F,    are    

yi     =    —1n—InFi    (1.3.4.54)    

which    is    the    inverse    of    the    df    exp(    —e-Y).    These    yi     values    are    a    very    good    
approximation    to    the    unbiassed    positions    E(y(;))    the    expected    values    of    the    
reduced    variate    order    statistic    y(").     When    data    are    being    plotted    on    A4    
size    paper    the    difference    between    using    the    approximate    values    yi     and    the    
exact    values    E(y(0)    is    so    small    as    to    be    negligible.     The    exact    values    for    
sample    sizes    up    to    35    are    given    in    Table    1.16    and    the    approximate    values    
yi     are    given    for    sample    sizes    from    36    to    50    in    the    same    table.    

If    extreme    value    probability    paper    (Gumbel    paper)    is    used    the    ordered    
sample    values    are    plotted    against    F1     and    if    not    they    are    plotted    against    yi    
values    on    linear    paper;    a    return    period    scale    may    be    quickly    marked    along-
side    the    horizontal    y    axis    using    the    following    figures.    

T    2     '      5    10     20      50      100      200      1000      
y    0.37     1.50      2.25      2.97      3.90      4.60      5.30      6.91      

(For    T>]0    the    relation    y    =    ln(T-4-)    holds    to    3    significant     digits    in    y    and    for    T> 50    it    
holds    to    5    significant    digits    in    y.)    
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N=2    3    4     5     6     7     8     9     10    

1    -0.11     -0.40     -0.57      -0.69      -0.78     -0.85      -0.90      -0.95      -0.99      
2    +1.27     0.46     0.16     -0.11      -0.25     -0.36      -0.45      -0.52      -0.58      
3    -     1.67     0.81.      0.43     0.19     0.22     -0.10      -0.20      -0.28      
4    1.96     1.07     0.66     0.41     0.23     0.10     -0.01      
5    -     -     -     2.19     1.27     0.85     0.59     0.40     0.26    
6    -     2.37     1.44     1.01     0.74     0.54    
7    -     2.52     1.59     1.15     0.87    
8    -    2.66    1.71     1.27    
9    -     -     2.77     1.83    

10    -     -     2.88    

N=11    12    13     14     15     16     17     18     19     20    

1    -1.02      -1.05     -1.08     -1.11      -1.13      -1.15      -1.17     -1.19      -1.21      -1.22    
2    -0.64      -0.68     -0.72      -0.76     -0.79      -0.82      -0.84     -0.87      -0.89      -0.91      
3    -0.35      -0.41      -0.46     -0.51      -0.55      -0.58      -0.62      -0.65      -0.67      -0.70      
4    -0.10      -0.18     -0.24     -0.30      -0.34      -0.39      -0.43      -0.47      -0.50      -0.53      
5    0.14     0.05     -0.03     -0.10      -0.16      -0.21      -0.26     -0.30      -0.34      -0.38      
6    0.39     0.27     0.17     0.09     0.02     -0.04     -0.10      -0.15      -0.19      -0.23      
7    0.67     0.51     0.39     0.29     0.20     0.13     0.06     0.00     -0.05      -0.10      
8    0.98     0.78     0.62     0.49     0.39     0.30     0.22     0.15     0.09     0.04    
9    1.37     1.08     0.88     0.72     0.58     0.48     0.38     0.30     0.24     0.17    

10    1.93     1.47     1.18     0.97     0.80     0.67     0.56     0.46     0.38     0.31    
11    2.98     2.02     1.56     1.26     1.05     0.88     0.75     0.63     0.54     0.45    
12    -     3.06     2.10     1.64     1.34     1.12     0.94     0.82     0.70     0.61    
13    -     3.14     2.18     1.71     1.41     1.19     1.02     0.88     0.77    
14    -     3.22     2.25     1.78     1.48     1.26     1.09     0.95    
15    -     3.29     2.32     1.85     1.54     1.32     1.15    
16    3.35     2.38     1.91     1.60     1.38    
17    3.41     2.44     1.96     1.66    
18    3.47    2.49    2.02    
19    -    3.52    2.55    
20    -    3.57  

N-21    22    23     24     25     26     27     28     29     30    

1    -1.24     -1.25      -1.26     -1.28      -1.29      -1.30      -1.31      -1.32      -1.33     -1.34      
2    -0.93      -0.95     -0.97     -0.98      -1.00      -1.01      -1.03     -1.04      -1.05      -1.06    
3    -0.73      -0.75     -0.77     -0.79      -0.81      -0.82      -0.84      -0.86      -0.87      -0.89      
4    -0.56      -0.58     -0.61      -0.63     -0.65      -0.67      -0.69      -0.71      -0.73      -0.74      
5    -0.41      -0.44     -0.47     -0.49      -0.52      -0.54     -0.56      -0.58      -0.60      -0.62      
6    -0.27      -0.31      -0.34     -0.37      -0.40      -0.42      -0.45     -0.47      -0.49      -0.51      
7    -0.14      -0.18     -0.22      -0.25     -0.28      -0.31      -0.34     -0.36      -0.38      -0.41      
8    -0.01      -0.05     -0.10     -0.13      -0.17      -0.20      -0.23      -0.26      -0.29      -0.31    
9    0.12     0.06     0.02     -0.02      -0.06      -0.10      -0.13      -0.16      -0.19      -0.22    

10    0.25     0.19     0.14     0.09     0.05     0.01     -0.03     -0.06      -0.10      -0.13    
11    0.38     0.32     0.26     0.20     0.16     0.11     0.07     0.03     0.00     -0.04    
12    0.52     0.45     0.38     0.32     0.27     0.22     0.17     0.13     0.09     0.05    
13    0.67     0.58     0.51     0.44     0.38     0.32     0.27     0.23     0.18     0.14    

,    14    0.83     0.73     0.64     0.56     0.50     0.43     0.38     0.33     0.28     0.24    
15    1.00     0.89     0.79     0.70     0.62     0.55     0.49     0.43     0.38     0.33    
16    1.20     1.06     0.94     0.84     0.75     0.67     0.60     0.54     0.48     0.43    
17    1.43     1.26     1.11     0.99     0.89     0.80     0.72     0.65     0.58     0.52    
18    1.71     1.49     1.31     1.16     1.04     0.94     0.85     0.77     0.69     0.63    
19    2.07     1.76     1.53     1.36     1.21     1.09     0.98     0.89     0.81     0.74    
20    2.60     2.12     1.81     1.58     1.40     1.26     1.13     1.03     0.93     0.85    
21    3.62     2.64     2.17     1.85     1.63     1.44     1.30     1.17     1.07     0.97    
22    -     3.67     2.69     2.21     1.90     1.67     1.49     1.34     1.22     1.11    
23    -     3.71     2.73     2.25     1.94     1.71     1.53     1.38     1.25    
24    -     3.75     2.78     2.29     1.98     1.75     1.57     1.42    
25    -     3.80     2.81     2.33     2.02     1.79     1.60    
26    3.83     2.85     2.37     2.06     1.82    
27    -     -     3.87     2.89     2.41     2.09    
28    -     -       3.91     2.93     2.44    
29    -     -     3.94     2.96    
30    -    3.98  

Table    1.16    Plotting    position,    E(y(1)),    for    extreme    value    Type    1    distribution.    
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N=31    32    33     34     35     36     37     38     39     40    

1    '-1.35      -1.36      -1.36      -1.37      -1.38      -1.43      -1.43      -1.44     -1.45     -1.45    
2    -1.08      -1.09      -1.10      -1.11      -1.12      -1.14      -1.15      -1.16     -1.17     -1.18    
3    -0.90      -0.91      -0.92      -0.94      -0.95      -0.97      -0.98      -0.99     -1.00     -1.01      
4    -0.76      -0.77      -0.79      -0.80      -0.82      -0.84      -0.85      -0.86     -0.87     -0.88    
5    -0.64      -0.66      -0.67      -0.69      -0.70      -0.73      -0.74     -0.75     -0.77     -0.78    
6    -0.53      -0.55      -0.57      -0.58      -0.60      -0.63      -0.64     -0.66     -0.67     -0.68    
7•    -0.43      -0.45      -0.47      -0.49      -0.5]     -0.53      -0.55     -0.57     -0.58     -0.59    
8    -0.34      -0.36      -0.38      -0.40      -0.42      -0.45      -0.46     -0.48     -0.50     -0.51    
9    -0.24      -0.27      -0.29      -0.31      -0.34      -0.36      -0.38      -0.40     -0.42     -0.43    

10    -0.16      -0.18      -0.21      -0.23      -0.25      -0.28      -0.31      -0.32     -0.34     -0.36    
11    -0.07      -0.10      -0.12      -0.15      -0.17      -0.2]      -0.23-      -0.25      -0.27     -0.29    
12    0.02.     -0.01      -0.04      -0.07     -0.10      -0.13      -0.15      -0.18     -0.20     -0.22    
13    0.11     0.07     0.04     0.01     -0.02      -0.05      -0.08     -0.10     -0.13     -0.15    
14    0.20     0.16     0.12     0.09     0.06     0.02     -0.01      -0.03     -0.06     -0.08    
15    0.29     0.24     0.21     0.17     0.14     0.10     0.07     0.04     0.01     -0.01    
16    0.38     0.33     0.29     0.25     0.21     0.17     0.14     0.11     0.08     0.05    
17    0.47     0.42     0.38     0.33     0.29     0.25     0.21     0.18     0.15     0.12    
18    0.57     0.51     0.46     0.42     0.38     0.33     0.29     0.25     0.22     0.19    
19    0.67     0.61     0.56     0.51     0.46     0.41     0.37     0.33     0.29     0.26    
20    0.78     0.71     0.65     0.60     0.54     0.49     0.45     0.40     0.37     0.33    
21    0.89     0.82     0.75     0.69     0.63     0.57     0.53     0.48     0.44     0.40    
22    1.01      0.93     0.86     0.79     0.73     0.66     0.61     0.56     0.52     0.48    
23    1.15     1.05     0.97     0.89     0.82     0.75     0.70     0.65     0.60     0.55    
24    1.29     1.18     1.09     1.00     0.93     0.85     0.79     0.73     .0.68     0.63    
25    1.45     1.33     1.22     1.12     1.04     0.95     0.88     0.82     0.76     0.71    
26    1.64     1.49     1.36     1.25     1.16     1.06     0.99     0.92     0.85     0.80    
27    1.86     1.68     1.52     1.40     1.29     1.18     1.09     1.02     0.95     0.88    
28    2.13     1.89     1.71     1.56     1.43     1.31     1.21     1.13     1.05     0.98    
29    2.48     2.16     1.93     1.74     1.59     1.45     1.34     1.24     1.16     1.08    
30    2.99     2.51     2.19     1.96     1.77     1.61     1.48     1.37     1.27     1.19    
31    4.01     3.03     2.54     2.22     1.99     1.79     1.64     1.51     1.40     1.30    
32    4.04     3.06     2.57     2.25     2.00     1.82     1.67     1.54     1.43    
33    -     4.07     3.09     2.60     2.27     2.03     1.85     1.70     1.57    
34    -     -     4.09     3.10     2.61     2.29     2.06     1.88     1.72    
35    -     -     4.13     3.12     2.64     2.32     2.09     1.90    
36    4.16     3.15     2.67     2.35     2.11    
37    -     4.19     3.18     2.69     2.38    
38    -     4.21     3.20     2.72    
39    -     4.24     3.23    
40    -     -     -     -     4.26    

i    N=41      42    43     44    45    46     47r      48     49     50    

1    -1.46      -1.46      -1.47      -1.47      -1.48      -1.48      -1.49     -1.49     -1.50     -1.50    
2    -1.19      -1.19      -1.20      -1.21      -1.21      -1.22      -1.23     -1.23     -1.24     -1.24    
3    -1.02      -1.03      -1.04      -1.05      -1.05      -1.06      -1.07     -1.08     -1.08     -1.09    
4    -0.89      -0.90      -0.91      -0.92      -0.93      -0.94      -0.95     -0.96     -0.96     -0.97    
5    -0.79      -0.80      -0.81      -0.82      -0.83      -0.84      -0.85      -0.86     -0.87     -0.87    
6    -0.69      -0.71      -0.72      -0.73      -0.74      -0.75      -0.76     -0.77     -0.78     -0.79    
7    -0.61      -0.62      -0.63      -0.65      -0.66      -0.67      -0.68      -0.69     -0.70     -0.71      
8    -0.53      -0.54      -0.55      -0.57      -0.58      -0.59      -0.60     -0.62      -0.63     -0.64    
9    -0.45      -0.47      -0.48      -0.49      -0.51      -0.52      -0.53     -0.55     -0.56     -0.57    

10    -0.38      -0.39      -0.41      -0.42      -0.44      -0.45      -0.47     -0.48      -0.49     -0.50    
11    -0.31      -0.32      -0.34      -0.36      -0.37      -0.39      -0.40     -0.42      -0.43     -0.44    
12    -0.24      -0.26      -0.27      -0.29      -0.31      -0.32      -0.34     -0.36     -0.37     -0.38    
13    -0.17      -0.19      -0.21      -0.23      -0.25      -0.26      -0.28     -0.30     -0.31      -0.32    
14    -0.10      -0.13      -0.15      -0:17      -0.18      -0.20      -0.22      -0.24     -0.25     -0.27    
15    -0.04      -0.06      -0.08      -0.10      -0.12      -0.14      -0.16      -0.18     -0.20     -0.21      
46    0.03     0.00     -0.02      -0.04      -0.06      -0.08      -0.10     -0.12      -0.14     -0.16      

17    0.09     0.07     0.04     0.02     0.00     -0.02      -0.04     -0.06     -0.08     -0.10    
18    0.16     0.13     0.11     0.08     0.06     0.04     0.01     -0.01     -0.03     -0.05      
19    0.23     -0.20      0.17     0.14     0.12     0.09     0.07     0.05     0.03     0.01    
20    0.30     0.27     0.24     0.21     0.18     0.15     0.13     0.11     0.08     0.06    
21    0.37     0.33     0.30     0.27     0.24     0.2]     0.19     0.16     0.14     0.12    
22    0.44     0.40     0.37     0.33     0.30     0.27     0.35     0.22     0.19     0.17    
23    0.51     ,0.47      0.43     0.40     0.37     0.34     0.31     0.28     0.25     0.23    
Table    1.16    Plotting    position,    E(y(I)),    for    extreme    value    Type    1    distribution.    
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The    six    highest    plotted    points    on    Figure    1.22    show    remarkably    little    depar-
ture    from    collinearity      in    the    light    of    the    large    sampling     variance     of    the    
highest    values.    Any    curve    would    offer    a    slight    improvement     on    a    straight    
line    but    the    evidence    is    slight    that    a    straight    line    is    inadequate.     

Moments    estimates.    The    mean    and    the    standard     deviation     in    terms    of    the    
parameters    u    and    a    are    

p    =    u+    0.577a    (1.3.4.55)    

TCCX    
CT    =     

6    
•    (1.3.4.56)    

The    population     quantities    µ    and    a    are    estimated    by    .5e-     and    a.     and    the    
moments    estimates    of    u    and    a    in    terms    of    these    are    

a    =    
6
8    =    

rz    
(1.3.4.57)    

=    .)Z    —    (0.577)6i    =    z-0.456.    (1.3.4.58)    

In    this    example,     z    =    136.66    and    a    =    60.74    which    give    fi    =    109.33    and    
=    47.36.    

Maximum    likelihood    estimates.    The    likelihood     function    L(X1u,a),    where    
X    represents    the    sample    collectively,    is    

L(X1u,a)      =    fl    f(xilu,a)     
i=1    

N    

=    fl    —    exp[—(x,    —u)la—e-(x1-")11     
=1    

=    exp[    —E(x1   —u)la—E    e-(x'-u)la    
a    (1.3.4.59)    

The    values    of    u    and    a    which    maximise    this    quantity,    given    the    observed    
sample    values    x1,    x2,    .    .    xN,    are    the    maximum      likelihood      estimates.      
Those    values    which    maximise    the    likelihood    also    maximise    the    logarithm    
of    the    likelihood     since    the    latter    is    a    monotonically      increasing     function     
of    the    former.    Since    the    log    likelihood    is    easier    to    work    with,    the    maximum    
likelihood    estimates    will    be    sought    as    those    values    which    maximise    the    log    
likelihood.    

The    log    likelihood    is    

LL(X/u,    a)    =    In    L(X1u,a)    

=    —N    In    a    E(     '
a

)    e-(xj-14)1'    

=    —N    In    a    —Ey,    —E    e- y'    

where    

(x1   —u)    
—    

a    

The    partial    derivatives     with    respect    to    u    and    a    are    

—N    +E    ‘•     P    
 =    —    —    

a    a    
(1.3.4.62)    

au,    N    —Ey     +Ey    CY    R    

as    a    a    
(1.3.4.63)    

the    notation    P    and    R    being    introduced     for    algebraic    convenience     later.    
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au    as    aa2    as    /    

(1.3.4:69)    

a2LL(x/o,    a2LL(x/p,    a)    /      aLgx/ui,     \    
342    au    as    au    

a2LL(x/o,    a2LL(x/o,    aLux/u,,oc,)    

Statistics    for    flood    hydrology    

The    maximum    likelihood    estimates    (11,6)    must    satisfy    

aLL(X/O,    a)    
=    0    and    

aLL(XIO,    a)     =.  0.    (1.3.4.64)    
au    Oa    

These    equations    do    not    have    explicit    solutions    but    an    iterative    method    
of    solution    has    been    given    by    Jenkinson    (1969).    Let    ai     and    u;     be    the    esti-
mates    after    the    ith    step    of    the    iteration;    the    initial    estimates    a,    and    u,    
may    be    taken    as    the    moments    estimates.    Let    a    and    &    be    the    true    maximum    
likelihood    estimates    and    let    

=    ui+    Su;    

&    =    Sai.      (1.3.4.65)    

That    is,    Su,    and    6a;     are    the    differences    between    the    current    estimate    and    
the    required    estimate.    The    function    —aLL/au    and    —aLL/aa    may    be    
expanded    in    a    Taylor    series    about    the    maximum     likelihood     estimates    
(a4)    (all    derivatives    on    the    right    hand    side    being    evaluated    at    (i1,6)).    

—    aLL(X/u,,    ai)    —      OLL(X/0    —    Sui,    c2-6a1)    

au    au    

(ui—    o)
821.,LOCM,    a)    —aLL(X111,    

Du    au2    

a2LL(XIO,    &)    

Since    OLL(Xla,a)lau    is    zero    by    Equation    (1.3.4.64)    

aLL(X/ui,    (Li)    a2u(X,      6c)    
(u    1.7i)    

a2LL(x/i1,6c)(a.    
 —    60    (1.3.4.66)    

au    au2     au     as    

the    approximation    being    due    to    the    omission    of    terms    containing    powers    
and    cross    products    of    Su    and    Sa.    

A    similar    expression    may    be    derived    for    —aLL(X/u,a)/aa    and    is    

aLL(Xlui,«;)    02LL(X1o,a)      a2LL(X10,60    
aa    au     as    

(    (a,—     6).    (1.3.4.67)    ui    
"    aa2    

Equations    (1.3.4.66)    and    (1.3.4.67)    may    be    rewritten    in    matrix    notation    
and    noting    from    Equation    (1.3.4.65)    that    ui     —    a    -=    —    bui     and    a;     —62    =    —6a,    
they    yield    

OLL(X/ui,    a;)\    02LL(X/Ct,    a)    a2LL(X14,0)\    /     
—Su    ,

\    

au    au  2    au     a0C    
.    (1.3.4.68)    

aLL(X1u,,a;)    a2Luxio,     a)    02Luxio,a)      _6a.    
11    

as    1    au     as    aa2    

On    the    left    hand    side    (u,,a;)    are    the    current    estimates    and    using    these    in    
Equation    (1.3.4.61),    yi,    (i    =    I,    2,    .    .    N)    may    be    calculated.    These    in    turn    
are    used    in    Equations    (1.3.4.62)    and    (1.3.4.63)    to    calculate    the    elements    of    
the    left    hand    side    of    Equation    (1.3.4.68).    Then    

—(ai    au    aa    

+    terms    containing    higher    powers    of    
Su    and    (5a.    
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The    elements    of    the    square    matrix    on    the    right    hand    side    need    to    be    evalu-
ated    at    the    maximum    likelihood    values    (ii,6i)    which    are    unknown.    The    best    
alternative    is    to    evaluate    them    at    the    current    estimates    (ui,ai).    However,    
the    rate    of    convergence    of    the    iteration    procedure    to    the    final    values    is    not    
affected    too    much    if    these    quantities    are    computed    anew    at    every    third    
rather    than    at    each    step    of    the    iteration.    Jenkinson    (1969)    suggests    using    
the    expected    value    of    the    inverted    matrix    which    is    the    large    sample    maxi-
mum    likelihood    variance    covariance    matrix    (Kendall    &    Stuart,    1961).    The    
use    of    the    same    matrix    at    all    steps    of    the    iteration    must    reduce    the    speed    of    
convergence    but    reduces    the    amount    of    calculation    during    each    iteration.    
The    variance-covariance     matrix    (Kimball,    1949)    is    

/    
cov    (0,    6)1    6    (I    -Y)\    a    2    

1    ±    6    0     /
var    

c    o    v    (u,    6)    

=    —    

var    6    6     (1    
6    

/    
a2    1.11      0.26\    

=    N    (0.26    0.61/    
(1.3.4.70)    

Inserting    this    matrix    in    Equation    (1.3.4.69)    and    making    use    of    Equations    
(1.3.4.62)    and    (1.3.4.63)    gives    

-Su;     \    (1.11     0.26      (-P;/a;       \    

V1.26    0.61)    •    Ri/aij      

yielding    

Su;     =    (I    .1    I    I',    -0.26R;)7
N
-i
i    

(1.3.4.71)    
Sot;     =    (0.26P1-    0.61Ri)    

.where    the    subscript    i    on    P    and    R    mean    that    these    quantities    are    computed    
using    ui     and    a,,    the    current    estimates    of    u    and    a.    The    values    Su;     and    Sai    
are    obtained    by    inserting    ai,    Pi     and    I?,    into    Equation    (1.3.4.71);    the    ith    
step    of    the    iteration    is    completed    by    computing    the    revised    estimates    

ui+1     =    ui     +Su;     and      ai+,     =    cc;     +Sot,.    

Example.    The    35    annual    maxima    at    27/1,    Nidd    at    Hunsingore,      are    
used    to    illustrate     the    computations      which    are    shown    in    Table    1.17.    
Moments    estimates    are    used    as    the    starting    values    u1     and    a,.    After     the    
second    iteration    OLLIOu    =    P/a0.006      and    aLL/aa    =    =    -0.022.     
If    these    are    considered    to    be    sufficiently    close    to    zero    the    values    (u2,a2)    
may    be    considered     to    satisfy    Equation     (1.3.4.64)     and    be    taken    as    the    
maximum    likelihood    estimates.    

The    general    extreme    value    distribution    (including    the    extreme    value    
Types    2    and    3)    

Graphical    estimation.    Conventionally      graphical    estimation    is    used    only    
when    the    data    are    considered    to    be    a    random    sample    from    a    population    
whose    variate-reduced     variate    relationship    is    a    straight    line,    for    instance    
from    the    Normal    or    extreme    value    Type    1    (Gumbel)    distributions.    In    the    
general    extreme    value    distribution    this    relationship    is    curved    if    the    para-
meter-free    Gumbel    reduced    variate    yi     is    used.    The    relation    is    
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Fig 6.51 Variation of peak discharge
with cwt.

soil index. This observation results from the form of the percentage run-
off equation used, Equation 6.40. Because catchments with low soil index
have low standard percentage runoff, the percentage increase in runoff for
given cwi change is greater for such catchments than for catchments with
a high soil index. For each 10 % cwt increase the design flood peak in-
creases by 20 % for a catchment with soil index of 0.18, but by 5 % for a
catchment with soil index 0.50 (all soil class 5).

These results show the importance in flood design of correct choice of
cwi in order to predict losses. They also have a bearing on the variability
of floods from year to year.

Sensitivity to storm duration change.  The effect of storm duration has
historically held a prominent position in flood design. This was because
storm duration is the only degree of freedom allowed in the rational
formula and so over or under design will follow from under or over
estimate of the time of concentration. In unit hydrograph methods, on the
other hand, a balance is achieved between increasing storm duration and
decreasing intensity such that the peak discharge varies over a restricted
range for a very considerable range of storm durations. Figure 6.50 shows
histograms of floods following 10 year return period storms of different
durations.

With uniform rainfall and a simple triangular unit hydrograph, it can
be shown algebraically that the duration leading to the highest peak de-
pends on the time base of the unit hydrograph and the continentality factor
n in Table 11.3.8. Figure 6.52 shows the variation of discharge with storm
duration for nine selected catchments. The critical duration producing
the highest peak was found to increase with decreasing n and thus with
increasing annual average rainfall. The sensitivity of simulated peaks to
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