# Migrating together improves Atlantic salmon (Salmo salar) smolt survival

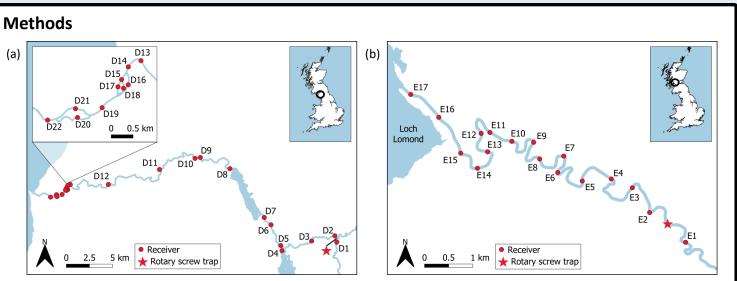
Ruaidhri Forrester (ruaidhri.forrester2@gmail.com) Supervised by Professor Colin Adams and Dr Hannele Honkanen

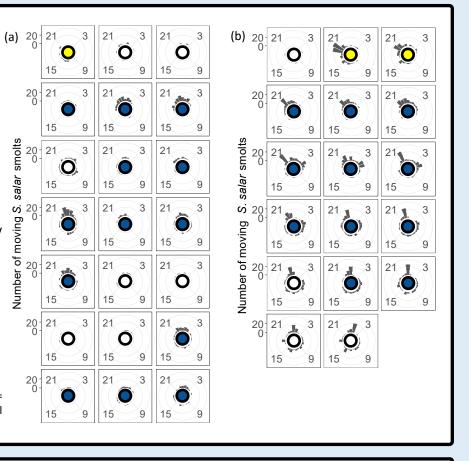
#### Introduction

- Despite high mortality risk, juvenile S. salar, termed smolts, migrate from freshwater to sea.
- Smolts typically migrate in spring<sup>1</sup> and move at night<sup>2</sup>, but their movements may also be more intricately synchronised<sup>2,3</sup>.
- As collective behaviour reduces predation risk<sup>4</sup>, synchronisation may improve survival<sup>5</sup>, but this is untested in wild *S. salar*.



Aims: 1) Are smolt movements nocturnal? 2) Do smolts move in clusters? 3) Does synchronisation improve survival?





Figure 1 - (a) Derwent and (b) Endrick study sites. Apart from 57 smolts released at D10, tagged smolts were released at the rotary screw traps.

- Across two sites (Fig. 1), 248 acoustic-tagged (Innovasea V7) S. salar smolts were tracked with 39 hydrophone receivers.
- 1) At every receiver that detected fish (n = 38), the null hypothesis of uniform diel movement times was tested with a Rayleigh test, and movements were classed as nocturnal if their mean time was later than the receiver's sunset time.
- 2) At 17 receivers that detected > 30 fish, time intervals between smolts were compared with those calculated from 1000 Monte Carlo simulations<sup>2</sup>. Randomisations within days and hours respectively tested for loose and tight clusters.
- 3) At each site, survival was modelled (binomial GLM) as a function of four co-migrant density proxies (see results), fork length and tagging date. Fish detected at or below D7 (66 survived/93 released at trap) or E17 (75/98) were survivors.

## Results

- 1) Movements were nocturnal (Rayleigh test, p < 0.05) at 63% of receivers (Fig. 2).
- 2) Intervals between moving smolts were shorter (1st or 10th percentile, < 5% sim. < obs.) or less even (H regularity index<sup>2</sup>, < 5%sim. < obs.) than expected at 82% of receivers when movements were randomised within days, and at 12% when randomised within hours.
- 3) In the Derwent, for a unit increase in rotary screw trap catch the day after tagging, the odds of survival to D7 increased by 0.3% (LRT:  $\gamma^2 = 6.071$ , df = 1, p = 0.014). No other co-migrant density proxy (trap catch day before tagging, day of tagging and five day rolling average catch) affected survival.

Figure 2 (right) - (a) Derwent and (b) Endrick diel timing. Panels are receivers in downstream order from top left. Bars are hourly moving smolt frequencies (3 = 3am, 15 = 3pm). Blue, yellow and white dots are nocturnal, diurnal and uniformly-distributed movements.



## **Conclusions**

- The strong evidence of nocturnal movement reflects the likely anti-predator benefit of moving in darkness<sup>2</sup>.
- Significant clustering within days but not within hours indicates tagged smolts were loosely but not tightly clustered. However, the maximum number of intervals (ni) was 89, and ni > 300 may be needed to identify tighter clustering<sup>2</sup>.
- The positive effect of co-migrant density on survival supports the hypothesis that synchronised migration is adaptive.

#### Acknowledgements

Many thanks to Colin Adams and Hannele Honkanen for their supervision, and to the University of Glasgow SCENE fish telemetry team for their fieldwork and advice.

<sup>1</sup>Otero et al. (2014) Global Change Biology. 20. pp. 61-75. <sup>2</sup>Riley et al. (2014) Journal of Fish Biology. 85. pp. 1042-1059. <sup>3</sup>Davidsen et al. (2005) Fisheries Research. 74. pp. 210-222.

Handeland et al. (1996) Canadian Journal of Fisheries and Aquatic Sciences. 53. pp. 2673-2680. Furey et al. (2021) Ecology of Freshwater Fish. 30. pp. 18-30.