Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Trace metals in the open oceans: speciation modelling based on humic-type ligands

Anthony Stockdale A C D , Edward Tipping A , John Hamilton-Taylor B and Stephen Lofts A
+ Author Affiliations
- Author Affiliations

A Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, UK.

B Lancaster Environment Centre (LEC), Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.

C Present address: School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

D Corresponding author. Email: tony@biogeochemistry.org.uk

Environmental Chemistry 8(3) 304-319 https://doi.org/10.1071/EN11004
Submitted: 8 January 2011  Accepted: 23 May 2011   Published: 22 June 2011

Environmental context. Speciation of trace metals in the oceans is typically explained by invoking the concept of metal binding to specific organic ligands. Here, using a speciation model widely used for freshwaters, we assess the extent to which non-specific humic-type ligands found in the ocean may explain chemical speciation of cationic metals. We found that the model can give good fits in some cases, and that experimental results do not give consistent variation from the model. This has implications for the way that the availability of trace elements is considered in ocean environments.

Abstract. The speciation of trace metals in the oceans is typically explained by invoking the concept of metal binding to specific organic ligands, but a lack of detailed knowledge about the ligands has impeded the formulation of comprehensive models to predict speciation chemistry. The aim of our study was to shed further light on the possible role of humic-type ligands in trace metal complexation in the oceans by comparing published seawater (open ocean) speciation measurements with predictions obtained using a speciation model typically used for freshwater and soil systems (Windermere Humic Aqueous Model; WHAM). We show that in some cases, speciation of trace metals in seawater environments may be reasonably predicted using this model with its default parameter set, without any model fitting. The results support the idea that humic-type ligands may account for much of the observed organic binding at least in the cases of Fe, Cu and Pb. Although the model does not consistently provide agreement with the measured values, it provides a useful benchmark to compare different datasets and to examine variation in speciation as a result of varying levels of competing metal ion concentration and fulvic acid activity.


References

[1]  H. W. Nurnberg, P. Valenta, Potentialities and applications of voltammetry in chemical speciation of trace metals in sea water, in Proceedings of NATO Advanced Research Institute on Trace Metals in Sea Water, Sicily, 30 March–3 April 1981 (Eds C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton, E. D. Goldberg) 1983, pp. 67l–679 (Plenum Press: New York).

[2]  K. W. Bruland, Complexation of cadmium by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 1992, 37, 1008.
Complexation of cadmium by natural organic ligands in the central North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlWntrk%3D&md5=e1ce10fb15f8b3ee42eb2c05edea5ae2CAS |

[3]  H. Zhang, C. M. G. van den Berg, R. Wollast, The determination of interactions of cobalt (II). with organic compounds in seawater using cathodic stripping voltammetry. Mar. Chem. 1990, 28, 285.
The determination of interactions of cobalt (II). with organic compounds in seawater using cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXisVSjur4%3D&md5=5158a85c8be236c8bb5440bc7572ca3eCAS |

[4]  E. L. Rue, K. W. Bruland, Complexation of iron (III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 1995, 50, 117.
Complexation of iron (III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVaqu74%3D&md5=1ad56b811336e7ee03eb95c2714905edCAS |

[5]  M. L. Wells, Marine colloids and trace metals, in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, pp. 367–404 (Academic Press: London).

[6]  F. M. M. Morel, N. M. Price, The biogeochemical cycles of trace metals in the oceans. Science 2003, 300, 944.
The biogeochemical cycles of trace metals in the oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLk%3D&md5=32a70794f26447c8ea4e25ecee5a8cdeCAS | 12738853PubMed |

[7]  A. K. Hanson, C. M. Sakamoto-Arnold, D. L. Huizenga, D. R. Kester, Copper complexation in Sargasso Sea and Gulf Stream warm-core ring waters. Mar. Chem. 1988, 23, 181.
Copper complexation in Sargasso Sea and Gulf Stream warm-core ring waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhslehtb8%3D&md5=74684c398045e7b5de6ac2effd761ca5CAS |

[8]  C. A. Carlson, Production and removal processes, in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, pp. 91–151 (Academic Press: London).

[9]  R. J. M. Hudson, E. L. Rue, K. W. Bruland, Modeling complexometric titrations of natural water samples. Environ. Sci. Technol. 2003, 37, 1553.
Modeling complexometric titrations of natural water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVOlsbk%3D&md5=cc9352b48658e36a7266816f5bcfa987CAS | 12731837PubMed |

[10]  L. M. Laglera, C. M. G. van den Berg, Evidence for geochemical control of iron by humic substances in seawater. Limnol. Oceanogr. 2009, 54, 610.
Evidence for geochemical control of iron by humic substances in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtrrP&md5=0f689875a4e29e37b75f006ce0c96751CAS |

[11]  E. Tipping, Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=b691b52d3cb423544a67e094a347a8e7CAS |

[12]  C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=7a79fef017f01ff26409f082104dfbfbCAS | 12666927PubMed |

[13]  T. Hiemstra, W. H. van Riemsdijk, Biochemical speciation of Fe in ocean water. Mar. Chem. 2006, 102, 181.
Biochemical speciation of Fe in ocean water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWrt7vL&md5=162a9e39a2486b150f44397db3dde007CAS |

[14]  (a) R. F. C. Mantoura, A. Dickson, J. P. Riley, The complexation of metals with humic materials in natural waters. Estuar. Coast. Mar. Sci. 1978, 6, 387.
The complexation of metals with humic materials in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsFaiu7o%3D&md5=07d0fd9e5473bdc5dde5924be0dd6fecCAS |
      (b) R. F. C. Mantoura, J. P. Riley, The use of gel filtration in the study of metal binding by humic acids and related compounds. Anal. Chim. Acta 1975, 78, 193.
The use of gel filtration in the study of metal binding by humic acids and related compounds.Crossref | GoogleScholarGoogle Scholar |

[15]  J. Hamilton-Taylor, A. S. Postill, E. Tipping, M. P. Harper, Laboratory measurements and modelling of metal-humic interactions under estuarine conditions. Geochim. Cosmochim. Acta 2002, 66, 403.
Laboratory measurements and modelling of metal-humic interactions under estuarine conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFensQ%3D%3D&md5=916da48caaf89a960e5cd42788444de2CAS |

[16]  R. Yang, C. M. G. van den Berg, Metal complexation by humic substances in seawater. Environ. Sci. Technol. 2009, 43, 7192.
Metal complexation by humic substances in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFOisr8%3D&md5=a64d48d05b3e1a4d7c5f7c782badf9bfCAS | 19848121PubMed |

[17]  M. B. Kogut, B. M. Voelker, Strong copper-binding behavior of terrestrial humic substances in seawater. Environ. Sci. Technol. 2001, 35, 1149.
Strong copper-binding behavior of terrestrial humic substances in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFyns74%3D&md5=9b12c7b9ff494871ddc4c59040bf95c0CAS | 11347927PubMed |

[18]  B. M. Voelker, M. B. Kogut, Interpretation of metal speciation data in coastal waters: the effects of humic substances on copper binding as a test case. Mar. Chem. 2001, 74, 303.
Interpretation of metal speciation data in coastal waters: the effects of humic substances on copper binding as a test case.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt12mt7Y%3D&md5=b3c3da14bcc55cecdbe26307dbb9239aCAS |

[19]  E. Tipping, WHAM – a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site electrostatic model of ion-binding by humic substances. Comput. Geosci. 1994, 20, 973.
WHAM – a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site electrostatic model of ion-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlyhtrY%3D&md5=ff1fad234a23210b70b4a7a0af81dbebCAS |

[20]  E. Tipping, Cation Binding by Humic Substances 2002 (Cambridge University Press: Cambridge, UK).

[21]  M. Boye, C. M. G. van den Berg, J. T. M. de Jong, H. Leach, P. Croot, H. J. W. de Baar, Organic complexation of iron in the Southern Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 1477.
Organic complexation of iron in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Oitrs%3D&md5=d19f12d96d956a871d8860de7c9f1fb7CAS |

[22]  R. T. Powell, J. R. Donat, Organic complexation and speciation of iron in the South and Equatorial Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 2877.
Organic complexation and speciation of iron in the South and Equatorial Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFWgsLk%3D&md5=dc26ec0b19e30b6c37bb49a2c14e48faCAS |

[23]  P. L. Croot, K. Andersson, M. Öztürk, D. R. Turner, The distribution and speciation of iron along 6°E in the Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 2857.
The distribution and speciation of iron along 6°E in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVChu7zK&md5=c424af051124a65fa128c406ea38acd0CAS |

[24]  M. Boye, A. Aldrich, C. M. G. van den Berg, J. T. M. de Jong, H. Nirmaier, M. Veldhuis, K. R. Timmermans, H. J. W. de Baar, The chemical speciation of iron in the north-east Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 667.
The chemical speciation of iron in the north-east Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

[25]  M. Boye, A. P. Aldrich, C. M. G. van den Berg, J. T. M. de Jong, M. Veldhuis, H. J. W. de Baar, Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean. Mar. Chem. 2003, 80, 129.
Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVCmsw%3D%3D&md5=0f8587bae3cf76fd1824406b47d37257CAS |

[26]  L. J. A. Gerringa, S. Blain, P. Laan, G. Sarthou, M. J. W. Veldhuis, C. P. D. Brussaard, E. Viollier, K. R. Timmermans, Fe-binding dissolved organic ligands near the Kerguelen Archipelago in the Southern Ocean (Indian sector). Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 606.
Fe-binding dissolved organic ligands near the Kerguelen Archipelago in the Southern Ocean (Indian sector).Crossref | GoogleScholarGoogle Scholar |

[27]  R. F. Nolting, L. J. A. Gerringa, M. J. W. Swagerman, K. R. Timmermans, H. J. W. de Baar, Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean. Mar. Chem. 1998, 62, 335.
Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1ajsLg%3D&md5=a3461c987de87d6cbafb3defe9b2c8baCAS |

[28]  M. J. Ellwood, C. M. G. van den Berg, M. Boye, M. Veldhuis, J. T. M. de Jong, H. J. W. de Baar, P. L. Croot, G. Kattner, Organic complexation of cobalt across the Antarctic Polar Front in the Southern Ocean. Mar. Freshwater Res. 2005, 56, 1069.
Organic complexation of cobalt across the Antarctic Polar Front in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Crt7bK&md5=3e857f1ccdab7d4bf6c4003b46e5bc17CAS |

[29]  M. J. Ellwood, C. M. G. van den Berg, Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar. Chem. 2001, 75, 33.
Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVOqsL4%3D&md5=d1f27f0393d3eb6e80d5076879a0b470CAS |

[30]  M. A. Saito, J. W. Moffett, Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Mar. Chem. 2001, 75, 49.
Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVOqsL8%3D&md5=8eb9e85dc6e7a608d1ad20ed2050f3acCAS |

[31]  M. A. Saito, J. W. Moffett, G. R. DiTullio, Cobalt and nickel in the Peru upwelling region: A major flux of labile cobalt utilized as a micronutrient. Global Biogeochem. Cycles 2004, 18, GB4030.
Cobalt and nickel in the Peru upwelling region: A major flux of labile cobalt utilized as a micronutrient.Crossref | GoogleScholarGoogle Scholar |

[32]  J. W. Moffett, C. Dupont, Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 586.
Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFart78%3D&md5=c47325039cf58e47a34128860a922520CAS |

[33]  C. M. G. van den Berg, J. R. Donat, Determination and data evaluation of copper complexation by organic-ligands in sea-water using cathodic stripping voltammetry at varying detection windows. Anal. Chim. Acta 1992, 257, 281.
Determination and data evaluation of copper complexation by organic-ligands in sea-water using cathodic stripping voltammetry at varying detection windows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVSktLg%3D&md5=bf995cb6c49873eacc50f9c088a843f4CAS |

[34]  K. H. Coale, K. W. Bruland, Spatial and temporal variability in copper complexation in the North Pacific. Deep-Sea Res. A 1990, 37, 317.
Spatial and temporal variability in copper complexation in the North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsFyiu78%3D&md5=d55ad019d7f83d29b28210e7832f1ef1CAS |

[35]  M. J. Ellwood, C. M. G. Van den Berg, Zinc speciation in the northeastern Atlantic Ocean. Mar. Chem. 2000, 68, 295.
Zinc speciation in the northeastern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptF2kug%3D%3D&md5=61f43b8a838d8cd78c0128a7d8c84ca9CAS |

[36]  K. W. Bruland, Complexation of zinc by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 1989, 34, 269.
Complexation of zinc by natural organic ligands in the central North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvVeltrs%3D&md5=37666a2f1758a973908a9a54517bfa31CAS |

[37]  M. J. Ellwood, Zinc and cadmium speciation in subantarctic waters east of New Zealand. Mar. Chem. 2004, 87, 37.
Zinc and cadmium speciation in subantarctic waters east of New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGmu7s%3D&md5=2016e74150f10e50c2a9adc08675b3edCAS |

[38]  R. W. Jakuba, J. W. Moffett, M. A. Saito, Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Anal. Chim. Acta 2008, 614, 143.
Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvV2ksLk%3D&md5=847148b75de89c4808f0608fa32fea3fCAS | 18420044PubMed |

[39]  G. Scarponi, G. Capodaglio, G. Toscano, C. Barbante, P. Cescon, Speciation of lead and cadmium in Antarctic seawater – comparison with areas subject to different anthropic influence. Microchem. J. 1995, 51, 214.
Speciation of lead and cadmium in Antarctic seawater – comparison with areas subject to different anthropic influence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkt1ynsbs%3D&md5=5a5ed6e6622bb1b20bb69efefa13b54fCAS |

[40]  G. Capoldaglio, K. H. Coale, K. W. Bruland, Lead speciation in surface waters of the eastern north pacific. Mar. Chem. 1990, 29, 221.
Lead speciation in surface waters of the eastern north pacific.Crossref | GoogleScholarGoogle Scholar |

[41]  R. Chester, Marine Geochemistry, 2nd edn 2003 (Blackwell Science Ltd.: Oxford, UK).

[42]  J. Donat, C. Dryden, Transition Metals and Heavy Metal Speciation, in Encyclopedia of Ocean Sciences (Eds J. H. Steele, S. Thorpe, K. Turekian) 2001, pp. 3027–3035 (Academic Press: Oxford, UK).

[43]  R. Middag, H. J. W. de Baar, P. Laan, K. Bakker, Dissolved aluminium and the silicon cycle in the Arctic Ocean. Mar. Chem. 2009, 115, 176.
Dissolved aluminium and the silicon cycle in the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OitbvF&md5=040d4e5dbde92d152a695bd015a04e4eCAS |

[44]  J. Kramer, P. Laan, G. Sarthou, K. R. Timmermans, H. J. W. de Baar, Distribution of dissolved aluminium in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean. Mar. Chem. 2004, 88, 85.
Distribution of dissolved aluminium in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFKgsbo%3D&md5=f812d16784f085d7e3f0af64b5359369CAS |

[45]  E. V. Dafner, P. J. Wangersky, A brief overview of modern directions in marine DOC studies Part II – Recent progress in marine DOC studies. J. Environ. Monit. 2002, 4, 55.
A brief overview of modern directions in marine DOC studies Part II – Recent progress in marine DOC studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlymtA%3D%3D&md5=e6c85b3c881512648401a68c5370c9cfCAS | 11871710PubMed |

[46]  M. D. Doval, X. A. Álvarez-Salgado, F. F. Pérez, Organic matter distributions in the Eastern North Atlantic–Azores Front region. J. Mar. Syst. 2001, 30, 33.
Organic matter distributions in the Eastern North Atlantic–Azores Front region.Crossref | GoogleScholarGoogle Scholar |

[47]  P. Vlahos, R. F. Chen, D. J. Repeta, Dissolved organic carbon in the Mid-Atlantic Bight. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 4369.
Dissolved organic carbon in the Mid-Atlantic Bight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1Kjsbo%3D&md5=8e8096870342758042057d1bcaf661d5CAS |

[48]  A. Aminot, R. Kérouel, Dissolved organic carbon, nitrogen and phosphorus in the N-E Atlantic and the N-W Mediterranean with particular reference to non-refractory fractions and degradation. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 1975.
Dissolved organic carbon, nitrogen and phosphorus in the N-E Atlantic and the N-W Mediterranean with particular reference to non-refractory fractions and degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgtLzM&md5=513c5e770ae68d3be9ba5495862d67adCAS |

[49]  C. M. Swan, D. A. Siegel, N. B. Nelson, C. A. Carlson, E. Nasir, Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 2175.
Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2jsbbL&md5=0aaeee13d451fa6baa41f494044badbfCAS |

[50]  D. Archer, E. T. Peltzer, D. L. Kirchman, A timescale for dissolved organic carbon production in equatorial Pacific surface waters. Global Biogeochem. Cycles 1997, 11, 435.
A timescale for dissolved organic carbon production in equatorial Pacific surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1KrurY%3D&md5=1ab6980e3a705e790a7ce402650b5d13CAS |

[51]  E. Tipping, C. D. Vincent, A. J. Lawlor, S. Lofts, Metal accumulation by stream bryophytes, related to chemical speciation. Environ. Pollut. 2008, 156, 936.
Metal accumulation by stream bryophytes, related to chemical speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSgtb3J&md5=b7c71a1ee37d4f9ae78fa5cacce0b667CAS | 18541353PubMed |

[52]  A. Turner, M. Martino, Modelling the equilibrium speciation of nickel in the Tweed Estuary, UK: voltammetric determinations and simulations using WHAM. Mar. Chem. 2006, 102, 198.
Modelling the equilibrium speciation of nickel in the Tweed Estuary, UK: voltammetric determinations and simulations using WHAM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWrt7vF&md5=184d036e72eb43273b5380869d7945c1CAS |

[53]  S. Lofts, E. Tipping, J. Hamilton-Taylor, The Chemical Speciation of Fe(III) in Freshwaters. Aquat. Geochem. 2008, 14, 337.
The Chemical Speciation of Fe(III) in Freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gtLzN&md5=f58811c57a05d7bc8eefbd42797526e4CAS |

[54]  W. Stumm, J. J. Morgan, Aquatic Geochemistry, 3rd edn 1996 (Wiley: New York).

[55]  F. J. Millero, D. R. Schreiber, Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am. J. Sci. 1982, 282, 1508.
Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVejsL4%3D&md5=d51299e7ac5d4d9d66340f1034e62c2eCAS |

[56]  A. De Robertis, C. De Stefano, S. Sammartano, Equilibrium studies in natural fluids: a chemical speciation model for the major constituents of sea water. Chem. Spec. Bioavail. 1994, 6, 65..

[57]  R. H. Byrne, L. R. Kump, K. J. Cantrell, The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem. 1988, 25, 163.
The influence of temperature and pH on trace metal speciation in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlWqtg%3D%3D&md5=10381eab2a60fc6ad3bda65b91d99834CAS |

[58]  D. R. Turner, M. Whitfield, A. G. Dickson, The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure. Geochim. Cosmochim. Acta 1981, 45, 855.
The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlsFKisbY%3D&md5=747ee39bc50af295584c92efdbc6c457CAS |

[59]  R. J. M. Hudson, D. T. Covault, F. M. M. Morel, Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Mar. Chem. 1992, 38, 209.
Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFOqsrs%3D&md5=12769851015c12d27c031a8d41e2d333CAS |

[60]  T. Wagener, E. Pulido-Villena, C. Guieu, Dust iron dissolution in seawater: Results from a one-year time-series in the Mediterranean Sea. Geophys. Res. Lett. 2008, 35, L16601.
Dust iron dissolution in seawater: Results from a one-year time-series in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

[61]  H. Tani, J. Nishioka, K. Kuma, H. Takata, Y. Yamashita, E. Tanoue, T. Midorikawa, Iron(III) hydroxide solubility and humic-type fluorescent organic matter in the deep water column of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 1063.
Iron(III) hydroxide solubility and humic-type fluorescent organic matter in the deep water column of the Okhotsk Sea and the northwestern North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Crs7w%3D&md5=a8b596999d729c142214196d1a4bb175CAS |

[62]  S. Kitayama, K. Kuma, E. Manabe, K. Sugie, H. Takata, Y. Isoda, K. Toya, S. Saitoh, S. Takagi, Y. Kamei, K. Sakaoka, Controls on iron distributions in the deep water column of the North Pacific Ocean: iron(III) hydroxide solubility and marine humic-type dissolved organic matter. J. Geophys. Res. 2009, 114, C08019.
Controls on iron distributions in the deep water column of the North Pacific Ocean: iron(III) hydroxide solubility and marine humic-type dissolved organic matter.Crossref | GoogleScholarGoogle Scholar |

[63]  E. M. Bertrand, M. A. Saito, J. M. Rose, C. R. Riesselman, M. C. Lohan, A. E. Noble, P. A. Lee, G. R. DiTullio, Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 2007, 52, 1079.
Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ymtL4%3D&md5=94ffa6e6fe3fe6c7fb964dee31e72585CAS |

[64]  E. P. Achterberg, C. M. G. van den Berg, Chemical speciation of chromium and nickel in the western Mediterranean. Deep Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 693.
Chemical speciation of chromium and nickel in the western Mediterranean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVKitbo%3D&md5=1b12ebba0d2254baf1e132baca40e732CAS |

[65]  V. I. Slaveykova, I. B. Karadjova, M. Karadjov, D. L. Tsalev, Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT. Environ. Sci. Technol. 2009, 43, 1798.
Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVylurk%3D&md5=c62f215d4070ff07c346db504847af5eCAS | 19368174PubMed |

[66]  T. J. Boyd, D. M. Wolgast, I. Rivera-Duarte, O. Holm-Hansen, C. D. Hewes, A. Zirino, D. B. Chadwick, Effects of dissolved and complexed copper on heterotrophic bacterial production in San Diego Bay. Microb. Ecol. 2005, 49, 353.
Effects of dissolved and complexed copper on heterotrophic bacterial production in San Diego Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1ensLo%3D&md5=f3438eac25bf2539444c81a20af698d9CAS | 15827833PubMed |

[67]  K. R. Murphy, C. A. Stedmon, T. D. Waite, G. M. Ruiz, Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 2008, 108, 40.
Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGlu7vL&md5=d4b4ed64e13935e10de3c3ef3ea25a8aCAS |