Skip to main content

Advertisement

Log in

Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Rigorous and widely applicable indicators of biodiversity are needed to monitor the responses of ecosystems to global change and design effective conservation schemes. Among the potential indicators of biodiversity, those based on the functional traits of species and communities are interesting because they can be generalized to similar habitats and can be assessed by relatively rapid field assessment across eco-regions. Functional traits, however, have as yet been rarely considered in current common monitoring schemes. Moreover, standardized procedures of trait measurement and analyses have almost exclusively been developed for plants but different approaches have been used for different groups of organisms. Here we review approaches using functional traits as biodiversity indicators focussing not on plants as usual but particularly on animal groups that are commonly considered in different biodiversity monitoring schemes (benthic invertebrates, collembolans, above ground insects and birds). Further, we introduce a new framework based on functional traits indices and illustrate it using case studies where the traits of these organisms can help monitoring the response of biodiversity to different land use change drivers. We propose and test standard procedures to integrate different components of functional traits into biodiversity monitoring schemes across trophic levels and disciplines. We suggest that the development of indicators using functional traits could complement, rather than replace, the existent biodiversity monitoring. In this way, the comparison of the effect of land use changes on biodiversity is facilitated and is expected to positively influence conservation management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

mT:

Mean trait per community

FD:

Functional diversity

LU:

Landscape unit

References

  • Bady P, Dolédec S, Fesl C, Gayraud G, Bacchi M, Schöll F (2005) Use of invertebrate traits for the biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshw Biol 50(1):159–173

    Google Scholar 

  • Balmford AL, Bennun L, ten Brink B, Cooper D, Côté IM, Crane P, Dobson A, Dudley N, Dutton I, Green RE, Gregory RD, Harrison J, Kennedy ET, Kremen C, Leader-Williams N, Lovejoy TE, Mace G, May R, Mayaux P, Morling P, Phillips J, Redford K, Ricketts TH, Rodríguez JP, Sanjayan M, Schei PJ, van Jaarsveld AS, Walther BA (2005) The convention on biological diversity’s 2010 target. Science 307(5707):212–213

    PubMed  CAS  Google Scholar 

  • Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32(2):321–333

    Google Scholar 

  • Barrocas HM, da Gama MM, Sousa JP, Ferreira C (1998) Impact of reafforestation with Eucalyptus globulus Labill. on the edaphic collembolan fauna from Serra de Monchique (Algarve). Misc Zool 21(2):9–23

    Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423

    Google Scholar 

  • Bezzel E (1993) Kompendium der Vögel Mitteleuropas: Passeres-Singvögel. Aula-Verlag, Wiesbaden

    Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA (1992) Bird census techniques. Academic Press, London

    Google Scholar 

  • Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, De Blust G, De Cock R, Diekotter T, Dietz H, Dirksen J, Dormann C, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Maelfait JP, Opdam P, Roubalova M, Schermann A, Schermann N, Schmidt T, Schweiger O, Smulders MJM, Speelmans M, Simova P, Verboom J, van Wingerden WKRE, Zobel M, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150

    Google Scholar 

  • Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    PubMed  CAS  Google Scholar 

  • Bongers T (1990) The Maturity Index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Google Scholar 

  • Bremner J, Rogers SI, Frid CLJ (2006) Matching biological traits to environmental conditions in marine benthic ecosystems. J Mar Syst 60:302–316

    Google Scholar 

  • Breure AM, Mulder CM, Römbke J, Ruf A (2005) Ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Safe 62:211–229

    CAS  Google Scholar 

  • Carlisle DM, Hawkins CP (2008) Land use and the structure of western US stream invertebrate assemblages: predictive models and ecological traits. J North Am Benthol Soc 27(4):986–999

    Google Scholar 

  • Charvet S, Kosmala A, Statzner B (1998) Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Arch Hydrobiol 142:415–432

    Google Scholar 

  • Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Google Scholar 

  • Clergeau P, Jokimäki J, Savard J-P (2001) Are urban bird communities influenced by the bird diversity of adjacent landscapes? J Appl Ecol 38:1122–1134

    Google Scholar 

  • Clergeau P, Croci S, Jokimäki J, Kaisanlahti-Jokimaki ML, Dinetti M (2006) Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol Conserv 127:336–344

    Google Scholar 

  • Cooch EG, Ricklefs RE (1994) Do variable environments significantly influence optimal reproductive effort in birds. Oikos 69:447–459

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51(4):335–380

    Google Scholar 

  • da Gama MM, Nogueira A, Múrias dos Santos AFA (1991) Effets du reboisement par Eucalyptus globulus sur les Collemboles édaphiques. Rev Ecol Biol Sol 28(1):9–18

    Google Scholar 

  • da Gama MM, Vasconcelos TM, Sousa JP (1994) Collembola diversity in Portuguese autocthonous and allocthonous forests. Acta Zool Fenn 195:44–46

    Google Scholar 

  • Daily GC (1995) Restoring value to the worlds degraded lands. Science 269(5222):350–354

    PubMed  CAS  Google Scholar 

  • de Bello F, Leps J, Sebastia MT (2006) Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29(6):801–810

    Google Scholar 

  • de Bello F, Buchmann N, Casals P, Leps J, Sebastia MT (2009) Relating plant species and functional diversity to community [delta]13C in NE Spain pastures. Agric Ecosyst Environ 131(3–4):303–307

    Google Scholar 

  • de Bello F, Lavorel S, Gerhold P, Reier Ü, Pärtel M (2010) A biodiversity indication framework for practical conservation of grasslands and shrublands. Biol Conserv 143:9–17

    Google Scholar 

  • de Bello F, Lavorel S, Diaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martin da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv (this issue)

  • Diaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104(52):20684–20689

    PubMed  CAS  Google Scholar 

  • Diaz AM, Alonso MLS, Gutierrez MRVA (2008) Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw Biol 53:1–21

    Google Scholar 

  • Didham RK, Lawton JH, Hammond PM, Eggleton P (1998) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Philos Trans R Soc Lond B Biol Sci 353:437–451

    Google Scholar 

  • Dolédec S, Statzner B (2008) Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshw Biol 53:617–634

    Google Scholar 

  • Dolédec S, Statzner B, Bournard M (1999) Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw Biol 42:737–758

    Google Scholar 

  • Dolédec S, Phillips N, Scarsbrook MR, Riley RH, Townsend CR (2006) Comparison of structural and functional approaches to determining land-use effects on grassland stream invertebrate communities. J North Am Benthol Soc 25:44–60

    Google Scholar 

  • Douglas DJT, Vickery JA, Benton TG (2009) Improving the value of field margins as foraging habitat for farmland birds. J Appl Ecol 46:353–362

    Google Scholar 

  • Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition, and remnant size. Conserv Biol 19:182–194

    Google Scholar 

  • EASAC (European Academies Science Advisory Council) (2005) A user’s guide to biodiversity indicators. The Royal Society, London. http://www.royalsoc.ac.uk/document.asp?tip=0&id=3004

  • EEA (European Environment Agency) (2007) Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe. EEA technical report 11/2007, Luxembourg

  • Faber JH (1991) Functional classification of soil fauna—a new approach. Oikos 62(1):110–117

    Google Scholar 

  • FAME Consortium (2005) Manual for application of the European Fish Index (EFI). A fish-based method to assess the ecological status of European rivers in support of the Water Framework Directive, version 1.1, January 2005, Rep. No. EVK1-CT-2001-00094

  • Feld CK, Hering D (2007) Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw Biol 52:1380–1399

    Google Scholar 

  • Feld CK, Martins da Silva P, Sousa JP, de Bello F, Bugter R, Grandin U, Hering D, Lavorel S, Mountford O, Pardo I, Pärtel M, Römbke J, Sandin L, Jones KB, Harrison PA (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118(12):1862–1871

    Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Trautman Richers B, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    PubMed  Google Scholar 

  • Foissner W (1999) Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples. Agric Ecosyst Environ 74:95–112

    Google Scholar 

  • Fontana S (2008) Responses of bird community and functional composition to ecological gradients in Swiss cities. Master thesis, Conservation Biology Department, University of Basel

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9):2630–2637

    Google Scholar 

  • Gaucherand S, Lavorel S (2007) New method for rapid assessment of the functional composition of herbaceous plant communities. Austral Ecol 32(8):927–936

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:351–379

    Google Scholar 

  • Graefe U, Schmelz R (1999) Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. Newsl Enchytraeidae 6:59–68

    Google Scholar 

  • Green RE, Balmford A, Crane PR, Mace GM, Reynolds JD, Turner RK (2005) A framework for improved monitoring of biodiversity: responses to the world summit on sustainable development. Conserv Biol 19(1):56–65

    Google Scholar 

  • Gregory RD, van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc B Biol Sci 360(1454):269–288

    Google Scholar 

  • Harrington R, Dawson T, Feld C, Haslett J, Kluvankova-Oravska T, Kontogianni A, Lavorel S, Luck G, Rounsevell M, Samways M, Skourtos M, Settele J, Spangenberg JH, Vandewalle M, Zobel M, Harrison PA (2010) Ecosystem services and biodiversity conservation: concepts and a glossary. Biodivers Conserv (this issue)

  • Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekotter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Google Scholar 

  • Hering D, Feld CK, Moog O, Ofenbock T (2006) Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566:311–324

    Google Scholar 

  • Hodgson JG, Montserrat-Marti G, Cerabolini B, Ceriani RM, Maestro-Martinez M, Peco B, Wilson PJ, Thompson K, Grime JP, Band SR, Bogard A, Castro-Diez P, Charles M, Jones G, Perez-Rontome MC, Caccianiga M, Alard D, Bakker JP, Cornelissen JHC, Dutoit T, Grootjans AP, Guerrero-Campo J, Gupta PL, Hynd A, Kahmen S, Poschlod P, Romo-Diez A, Rorison IH, Rosen E, Schreiber KF, Tallowin J, Espuny LD, Villar-Salvador P (2005) A functional method for classifying European grasslands for use in joint ecological and economic studies. Basic Appl Ecol 6(2):119–131

    Google Scholar 

  • Hopkin S (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, Oxford

    Google Scholar 

  • Jänsch S, Römbke J, Didden W (2005) The use of enchytraeids in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:266–277

    PubMed  Google Scholar 

  • Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Glob Change Biol 13(8):1672–1684

    Google Scholar 

  • Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries 6(6):21–27

    Google Scholar 

  • Karr JR (1999) Defining and measuring river health. Freshw Biol 41:221–234

    Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74:65–76

    Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesova J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gotzenberger L, Hodgson JG, Jackel AK, Kuhn I, Kunzmann D, Ozinga WA, Romermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of Northwest European flora. J Ecol 96:1266–1274

    Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174

    PubMed  Google Scholar 

  • Lavorel S, Grigulis K, McIntyre S, Garden D, Williams N, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field—methodology matters!. Funct Ecol 22(1):134–147

    Google Scholar 

  • Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76

    CAS  Google Scholar 

  • Leps J (2006) Biodiversity and plant mixtures in agriculture and ecology. In: Wachendorf M, Helgadóttir A, Parente G (eds) Sward dynamics, N-flows and forage utilization in legume-based systems. Proceedings of the 2nd COST 852 workshop, Grado, Italy, 10–12 Nov 2005, pp 13–20

  • Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501

    Google Scholar 

  • Levrel H (2007) Selecting indicators for the management of biodiversity. Les Cahiers de l’IFB, IFB Edition, Paris

    Google Scholar 

  • Lindberg N, Bengtsson J (2005) Population responses of oribatid mites and collembolans after drought. Appl Soil Ecol 28:163–174

    Google Scholar 

  • Mace GM, Baillie JEM (2007) The 2010 biodiversity indicators: challenges for science and policy. Conserv Biol 21(6):1406–1413

    Article  PubMed  Google Scholar 

  • Maumary L, Valloton L, Knaus P (2007) Die Vögel der Schweiz. Schweizerische Vogelwarte, Sempach, und Nos Oiseaux, Montmollin

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Google Scholar 

  • Moretti M, Legg C (2009) Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32:299–309

    Google Scholar 

  • Moretti M, de Bello F, Roberts SPM, Potts SG (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108

    PubMed  Google Scholar 

  • Mouillot D, Spatharis S, Reizopoulou S, Laugier T, Sabetta L, Basset A, Chi TD (2006) Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquat Conserv 16(5):469–482

    Google Scholar 

  • Nahmani J, Lavelle P, Rossi J-P (2006) Does changing the taxonomic resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil Biol Biochem 38:385–396

    CAS  Google Scholar 

  • Niemi GJ, McDonald M (2004) Application of ecological indicators. Annu Rev Ecol Syst 35:89–111

    Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity—a hierarchical approach. Conserv Biol 4(4):355–364

    Google Scholar 

  • Oliver I, Beattie AJ (1996) Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecol Appl 6:594–607

    Google Scholar 

  • Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:137–155

    Google Scholar 

  • Parisi V (2001) The biological soil quality, a method based on microarthropods. Ateneo Parmense Acta Nat 37:97–106

    Google Scholar 

  • Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75(1):111–117

    Google Scholar 

  • Pavoine S, Dolédec S (2005) The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environ Ecol Stat 12(2):125–138

    CAS  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758

    PubMed  Google Scholar 

  • Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985

    PubMed  Google Scholar 

  • Petit S, Usher MB (1998) Biodiversity in agricultural landscapes: the ground beetle communities of woody uncultivated habitats. Biodivers Conserv 7:1549–1561

    Google Scholar 

  • Pizzolotto R (2009) Characterization of different habitats on the basis of the species traits and eco-field approach. Acta Oecol Int J Ecol 35(1):142–148

    Google Scholar 

  • Ponge J-F, Dubs F, Gillet S, Sousa JP, Lavelle P (2006) Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes. Soil Biol Biochem 38:1158–1161

    CAS  Google Scholar 

  • Pont D, Hugueny B, Beier U, Goffaux D, Melcher A, Noble R, Rogers C, Roset N, Schmutz S (2006) Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. J Appl Ecol 43:70–80

    Google Scholar 

  • Rao CR (1982) Diversity and dissimilarity coefficients—a unified approach. Theor Popul Biol 21(1):24–43

    Google Scholar 

  • Revaz E, Schaub M, Arlettaz R (2008) Foraging ecology and reproductive biology of the Stonechat Saxicola torquata: comparison between a revitalized, intensively cultivated and a historical, traditionally cultivated agro-ecosystem. J Ornithol 149:301–312

    Google Scholar 

  • Römbke J, Beck L, Förster B, Ruf A, Rosciczewski C, Scheurig M, Woas S, Fründ H-C, Beck L (1997) Boden als Lebensraum für Bodenorganismen und die bodenbiologische Standortklassifikation: Eine Literaturstudie. Texte und Berichte zum Bodenschutz 4/97. Landesanstalt Umweltschutz Baden-Württemberg, Karlsruhe

  • Römbke J, Jänsch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265

    PubMed  Google Scholar 

  • Schouten AJ, Brussaard L, de Ruiter PC, Siepel H, Van Straalen NM (1997) Een indicatorsysteem voor life support functies van de bodem in relatie tot biodiversiteit. RIVM report 712910005. Rijksinstituut voor Volksgezondheid en Milieu, the Netherlands, 90 pp

  • Schwab A, Dubois D, Fried PM, Edwards PJ (2002) Estimating the biodiversity of hay meadows in north-eastern Switzerland on the basis of vegetation structure. Agr Ecosyst Environ 93:197–209

    Google Scholar 

  • Schweiger O, Maelfait JP, Van Wingerden W, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R, Burel F, Diekotter T, Dirksen J, Frenzel M, Herzog F, Liira J, Roubalova M, Bugter R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139

    Google Scholar 

  • Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    PubMed  Google Scholar 

  • Siepel H (1995) Applications of microarthopod life-history tactics in nature management and ecotoxicology. Biol Fertil Soils 19:75–83

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163(4148):688

    Google Scholar 

  • Sorace A, Gustin M (2008) Homogenization processes and local effects on avifaunal composition in Italian towns. Acta Oecol 33:15–26

    Google Scholar 

  • Sousa JP, da Gama MM (1994) Rupture in a Collembola community structure from a Quercus rotundifolia Lam. forest due to the reafforestation with Eucalyptus globulus Labill. Eur J Soil Biol 30(2):71–78

    Google Scholar 

  • Sousa JP, Vingada JV, Barrocas H, da Gama MM (1997) Effects of introduced exotic tree species on Collembola communities: the importance of management techniques. Pedobiologia 41:145–153

    Google Scholar 

  • Sousa JP, da Gama MM, Ferreira C, Barrocas H (2000) Effect of eucalyptus plantations on Collembola communities in Portugal: a review. Belg J Entomol 2:187–201

    Google Scholar 

  • Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

    Google Scholar 

  • Statzner B, Bis B, Dolédec S, Usseglio-Polatera P (2001) Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl Ecol 2:73–85

    Google Scholar 

  • Statzner B, Bady P, Dolédec S, Scholl F (2005) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshw Biol 50:2136–2161

    Google Scholar 

  • Statzner B, Bonada N, Dolédec S (2007) Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: towards a collective public database. Biodivers Conserv 16:3609–3632

    Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456

    Google Scholar 

  • Streamlining European 2010 Biodiversity Indicators (SEBI) (2010) http://biodiversity-chm.eea.europa.eu/information/indicator/F1090245995/F1101800700/1090246068

  • Teder T, Moora M, Roosaluste E, Zobel K, Partel M, Koljalg U, Zobel M (2007) Monitoring of biological diversity: a common-ground approach. Conserv Biol 21(2):313–317

    PubMed  Google Scholar 

  • Townsend CR, Hildrew AG (1994) Species traits in relation to habitat template for river systems. Freshw Biol 31:265–275

    Google Scholar 

  • Usher MB (1992) Management and diversity of arthropods in Calluna heathland. Biodivers Conserv 1:63–79

    Google Scholar 

  • Usseglio-Polatera P, Beisel JN (2002) Longitudinal changes in macroinvertebrate assemblages in the Meuse River: anthropogenic effects versus natural change. River Res Appl 18(2):197–211

    Google Scholar 

  • Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw Biol 43:175–205

    Google Scholar 

  • Van Straalen NM (1998) Evaluation of bioindicator systems derived from soil arthropod communities. Appl Soil Ecol 9:429–437

    Google Scholar 

  • Van Straalen NM, Timmermans MJTN, Roelofs D, Berg MP (2008) Apterygota in the spotlights of ecology, evolution and genomics. Eur J Soil Biol 44:452–457

    Google Scholar 

  • Vanbergen AJ, Woodcock BA, Watt AD, Niemela J (2005) Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography 28:3–16

    Google Scholar 

  • Vieira NKM, Poff NL, Carlisle DM, Moulton II SR, Koski ML, Kondratieff BC (2006) A database of lotic invertebrate traits for North America: U.S. Geological Survey Data Series 187. http://pubs.usgs.gov/ds/ds187/pdf/ds187.pdf

  • Volz P (1962) Beiträge zu einer pedozoologischen Standortslehre. Pedobiologia 1:242–290

    Google Scholar 

  • Wolters V (2001) Biodiversity of soil animals and its function. Eur J Soil Biol 37:221–227

    Google Scholar 

  • Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74:113–135

    Google Scholar 

  • Zaitsev AS, Chauvat M, Pflug A, Wolters V (2002) Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biol Biochem 34:1919–1927

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RUBICODE Coordination Action Project (Rationalizing Biodiversity Conservation in Dynamic Ecosystems) funded under the Sixth Framework Programme of the European Commission (Contract No. 036890). The study on urban birds was part of the interdisciplinary project ‘BiodiverCity’ (www.biodivercity.ch) funded by the Swiss National Science Foundation as a project of the NRP54 ‘Sustainable development of the built environment’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Vandewalle.

Additional information

Marie Vandewalle and Francesco de Bello contributed equally to this work.

Appendix

Appendix

See Tables 7, 8, 9, 10.

Table 7 Benthic macroinvertebrate traits and trait modalities
Table 8 Collembolan species traits and trait modalities
Table 9 Traits of carabids (117 species collected from 24 landscapes in four European countries) used in the calculation of FD and mT
Table 10 Description of the bird nesting and feeding traits and categories

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandewalle, M., de Bello, F., Berg, M.P. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19, 2921–2947 (2010). https://doi.org/10.1007/s10531-010-9798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9798-9

Keywords

Navigation