Methane, midges, and maybe some climate change

Jonathan Grey + a cast of thousands j.grey@lancaster.ac.uk

A potted history of methane

• 1887 chemosynthesis (synthesis of OC using chemical energy derived from the oxidation of simple IC) first observed by Winogradsky

'no significant, quantitative role in the carbon cycle'

- At deep-sea vents and seeps, macroinvertebrates found reliant upon chemosynthetic based nutrition
 Paull et al 1985; Fisher 1990
- Methanotrophic communities also are found in many terrestrial and freshwater environments Fenchel & Finlay 1995; Hanson & Hanson 1996
- First evidence of billabong, lake and stream food-webs being fuelled by methane-derived carbon via methane oxidising bacteria (MOB)

See Bunn & Boon 1993; Kiyashko et al 2001; Grey 2002; Kohzu et al 2004

Biogenic CH₄

- Reservoirs of CH₄ in oceanic and freshwater sediments all over the world
 DeLong 2000
- e Freshwaters contribute ~20% of annual global CH₄ flux Bastviken et al 2011
- We now have a good understanding of production and flux processes
 regulated by microbes
 eg review by Rudd & Taylor 1986
- Methane oxidising bacteria (MOB) are the most important natural mitigative process for emissions of CH₄, accounting for up to 90% of that produced
 eg Casper 1992; Krüger et al 2001
- Yet few studies have investigated the fuelling of (aquatic) food webs via methanotrophic bacterial biomass

Stable isotopes

• Isotopic signatures are transferred in a relatively dependable way

Biogenic CH₄

Methanogenesis involves a large Kinetic Isotope Effect (KIE)
 ie the heavy isotope (¹³C) is discriminated against

e Hence $CH_4 \delta^{13}C$ is markedly different from organic matter substrate Whiticar 1999

 Methanotrophy (by MOB) also involves KIE, resulting in MOB becoming even further ¹³C-depleted than the CH₄
 Whiticar 1999

• Thus MOB have a distinct isotopic signature which can be easily traced Boschker et al 1998

*CH*_₄-derived carbon

freshwater sources:

Modified from Coplen et al 2002 USGS Report 01-4222

 δ^{13} C of typical basal resources in freshwater:

eg Grey et al 2000

Chironomids are key

Table 1. Some limnological characteristics of Loch Ness, Scotland and Esthwaite Water, Cumbria.

Characteristic	Loch Ness	Esthwaite Water
Area (km ²)	56.4	1.0
Volume (m ³)	7.45×10^{9}	6.4×10^{6}
Mean (max.) depth (m)	132 (230)	6.4 (15.5)
[Phosphorus] (µg L ⁻¹)	<10	35.7
Peak chlorophyll <i>a</i> (µg L ⁻¹)	<3	100
Colour (mg Pt L ⁻¹)	51.0	33.8

Grey et al 2004

Chironomid (midge) life

copied from Frank 1982

Chironomid life

• Tubicolous species bioturbate sediments creating micro-niche

Interspecific variability

Chironomus plumosus & C. anthracinus

Interaction between species and $\delta^{15}N$ ($F_{1,11} = 16.09$; p = 0.0039)

Modified from Kelly, Jones & Grey 2004

10.00

Interspecific variability

C. plumosus

C. anthracinus

Suggested roles of tube morphology and larval physiology

affecting larval ability to irrigate tubes

AND feeding mode assimilating bacteria from different sediment layers

in Kelly, Jones & Grey 2004 Grey & Deines 2005 Tube pictures courtesy of P.M. Jónasson

Intraspecific variability

- e Individual 4th instar larvae, same depth, same date
- e δ^{15} N range over 15‰ = 5 trophic levels (!)
- e δ^{13} C range over 35‰

Stable hydrogen isotopes

Esthwaite & Holzsee *C. plumosus*

 Further evidence of bacterial substrate usage: methylated substrates appear more prevalent at shallower depths in Esthwaite

Deines, Wooller & Grey 2009

Jones et al 2008

Related to lake 'structure'

(a) No hypolimnetic anoxia

(C) Extensive, prolonged hypolimnetic anoxia

Routing of methane? 2 1 $++ O_{2}$ ++ O₂ $++ O_2$ 3 00 Î 5 CO₂ 0 0 MOB 1 CH₄ MOB 00 Weakly $+ 0_{2}$ Strongly 00 stratified stratified 0 $+ CH_4$ 0 $+ O_2$ MOB - O₂ MOB $+ CH_4$ -- O₂ -- O₂ -- O₂ -- O₂ $+ CH_4$ $+ CH_4$ $+ CH_4$

Methane and higher trophic levels

Mean profundal, sub-littoral and littoral chironomid SI values as likely prey sources for fish species such as ruffe

Ravinet et al 2010

Wider use of methane?

Jones & Grey 2011

Wider use of methane?

...and maybe some climate change?

Figure 7.4. Average daily surface (thick lines) temperature and bottom (thin lines) temperature for the 1960s (red lines) and 2000s (blue lines) for Esthwaite Water.

From Maberly et al 2011

j.grey@lancaster.ac.uk

MDC in river food webs too....

Methane and river food webs?

Typical δ^{13} C values researchers are associating with some degree of methane-derived carbon assimilation

-82 to -32‰ in lakes	chiros	Grey 2002; Grey et al 2004; Deines & Grey 2006;
		Jones et al 2008

-68‰ in stream backwaters	beetles	Kohzu et al 2004
-31‰ in a headwater stream	snails	Doi et al 2006 (chemoautotrophy)
~-40‰ in a stream	caddis	McNeely et al 2006
-46 to -44‰ in a stream	caddis	Graham 2010 (pers. comm.)
-74‰ in the Lawrence River	caddis	Marty 2011 (pers. comm.)

¹³C-addition experiment

¹³C-addition experiment

Hindcasting potential

van Hardenbroek et al 2010