Internal phosphorus loading and remediation in lakes

Ellie Mackay, Ian Jones, Andy Folkard and Bryan Spears CEH <u>ellcka@ceh.ac.uk</u>

Cumbrian Lakes Research Forum 22nd October 2015

Legacy phosphorus confounds recovery in lakes

Even if we reduce catchment P sources our lakes won't recover by policy deadlines.....

Ecological status of 31,819 km² lake surface area needs to be improved to meet EU WFD targets

Jarvie et al., 2013. ES&T

Inter-annual variation and changes in the weather

- What was different?
- Increase in wind speed of 0.8 m s⁻¹ resulted in a doubling of midsummer wind energy between 2008 and 2009
- Combined with an 8 W m⁻² difference in solar radiation resulted in lake cooling in 2009 opposed to warming in 2008

Internal loading in deep stratified lakes

- Early summer SRP in hypolimnion low and little affected by mixing
- Late summer some hypolimnetic SRP is mixed up into epilimnion during overturn
- Mid summer weather conditions determine potential supply of SRP from hypolimnion through mixing changes to anoxic area and volume

Mackay et al. 2014 Freshwater Biology

Internal loading in shallow lakes

- Resuspension of sediment nutrients occurs due to waves and fish activity
- Direct impact on light climate and provision of nutrients for algal growth
- Negative impact on macrophytes
- Shift from macrophytedominated to phytoplanktondominated state

Scheffer et al. 1993 Trends in Ecology and Evolution

Θ

Remediation of harmful algal blooms

- 1. External loading
- 2. Increased
 - flushing
- 3. Increased mixing
- 4. Sediment capping
- 5. Sediment dredging
- 6. Trophic cascade
- 7. Chemical treatment

Using sediment 'capping' to reduce internal loading

ALGAL DOMINATED STATE

FORCING A CHANGE OF STATE

Following successful reduction of catchment P inputs, internal loading feedback mechanism is disrupted using geo-engineering products providing an opportunity for aquatic macrophytes to re-establish lake bed sediments

PLANT DOMINATED STATE

Resilience to change maintained through high plant production and regulation of internal P cycling

[P = phosphorus]

Mackay et al. 2014 Inland Waters

Results from 15 lakes comparing +/- 24 months

- Significant reduction in TP and PO₄-P
- Only a small reduction in phytoplankton biomass
- Change in community with increases in green algae and diatoms relative to

Ecology & Hydrology Natural environment research council

Spears et al. 2015 Water Research

Factors potentially confounding chemical responses

Interactions between DOC and other chemical components of the receiving water may retard operational performance of the product

Conclusions

- Internal phosphorus loading can be a problem in both shallow and deep lakes
- Variability in the weather can influence how important it is from year to year
- A number of remediation strategies exist for addressing water quality problems like algal blooms
- A meta-analysis of a sediment 'capping' material suggest that phosphorus concentrations can be strongly affected, while impacts on phytoplankton are more subtle
- A thorough understanding the lake 'system' is required before this approach should be considered, to reduce confounding effects

Acknowledgements

• Co-authors:

Said Yasseri, Iain D.M. Gunn, Kate E. Waters, Christopher Andrews, Stephanie Cole, Mitzi De Ville, Andrea Kelly, Sebastian Meis, Alanna L. Moore, Gertrud K. Nürnberg, Frank van Oosterhout, Jo-Anne Pitt, Genevieve Madgwick, Helen J. Woods, Miquel Lürling, Gang Pan, Kasper Reitzel, Andy Bruere, Nicholas Corker, Grant Douglas, Sara Egemose, David Hamilton, Tristan Hatton-Ellis, Brian Huser, Wei Li, Brian Moss, Geoff Phillips

