THE LTLS INTEGRATED MODEL

Vicky Bell, Pam Naden, Helen Davies

 + LTLS modelling team (Ed Tipping, Shibu Muhammed, Jess Davies, Ulli Dragosits, John Quinton, Marianne Stuart, Andy Whitmore, Ed Carnell, Sam Tomlinson, Lei Wang, Lianhai Wu, Rachel Helliwell)

LTLS: Integrated Model (IM)

Hydrological model behind IM incorporates basic properties of:

- soil
- land cover
- topography

LTLS output can be daily/monthly/... And compared to obs. from HMS

Integrated Model Processes

Runoff Production of water & macronutrients

5km grid, HWSD soil

Kinematic wave routing

Of water, dissolved and particulate nutrients

+ sediment loss to floodplain

Riverine processes

- Denitrification
- Organic matter decomposition
- Oxidation of ammonia
- Degassing
- pH
- Chlorophyll growth

Erosion

- Particulate nutrients
- Varying crop LAI
- Annual grids of land-use and grazing

Centre for Ecology & Hydrology natural environment research council

Sewage

Addition of sewage effluent and septic tanks

Groundwater chemistry and delays

Delays in nutrient transport from 1 to 100 years

Daily flow hydrographs: 1985

River variables modelled

Dissolved load (g)		Particulate load (g)		Other
DIC	inorganic carbon	Fine sediment		рН
DOC	organic carbon	POC	labile and non-labile	Oxygen (mg/L)
DO ¹⁴ C		PO ¹⁴ C		Algae (mg/L)
NO ₃ -N & NH ₄ -N				Water Temperature (°C)
DON	organic nitrogen	PON		
TDP	total phosphorus	POP		
		PADS	particle-adsorbed P	
Ca, SO4-S, Si				
CO ₂ & (N2 + N2O) GASES				

flux accounting through the river system

Sources of Nitrate: terrestrial inputs and fluxes (Tonnes)

Annual N and P fluxes (vs) observed

Harmonised Monitoring site (HMS) observations are from 1974 – 2010 Observed sewage from WWTW

N.B. Harmonised Monitoring Sites are monitoring orthophosphate not TDP

Nitrate flux (Tonnes/yr) for selected HMS catchments LTLS

Harmonised Monitoring site (HMS) observations are compared to LTLS model estimates HMS Observations are from 1974 – 2010, observed sewage (1990 – 2005)

Dissolved P flux (Tonnes/yr) for selected HMS catchme LTLS

Harmonised Monitoring site (HMS) observations are compared to LTLS model estimates HMS Observations are from 1974 – 2010, **observed sewage (1990 – 2005)**

Exploring change since 1800...

National simulations from 1800 – 2010
Driven by - climate model hindcasts (1800 – 1960)
observed weather (1961-2010)

U We apply historical changes in land-cover, fertiliser and sewage

Effect of groundwater delay

 Multi-year 'storage' of nitrate in the unsaturated and saturated zones

HMS 6010 THAMES at TEDDINGTON WEIR

• For most UK catchments the effect of the groundwater delay is negligible

Wang et al. (2012) Environ Geochem Health 35:667–681.

History of nutrients from sewage in the IM

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Nutrient fluxes from domestic wastewater: A national-scale historical perspective for the UK 1800–2010

Pamela Naden^{a,*}, Victoria Bell^a, Edward Carnell^b, Sam Tomlinson^b, Ulrike Dragosits^b, Jacky Chaplow^c, Linda May^b, Edward Tipping^c

^a Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK

^b Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH260QB, UK

^c Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Historical changes in per capita emissions of nutrients 1800–2010 are presented.
- UK fluxes of N, P and organic C in sewage effluent 1800–2010 are derived.
- Key drivers are population, connection to sewer and levels of wastewater treatment.
- The importance of detergents in P fluxes is highlighted.
- Effluent fluxes of N and P today are substantially higher than in 1900.

Estimating nutrient emissions

Population * Emission factor

Estimating nutrients in effluent

Emissions * connection to sewer * (1 - loss on treatment)

population per 5km grid square

		Raw	Primary	Secondary	Tertiary	P stripping
Proportion	DIN	0.75	0.4	0.4	0.4	0.4
left after	DIP	0.67	0.67	0.42	0.35	0.16
treatment	Nitrate as prop ⁿ DIN	0	0.3	0.9	0.9	0.9

History of nutrients from sewage in the IM

LTLS

Historical-current LTLS IM run (1800-2010)

- □ HMS Observations are from 1974 2010
- □ Longer historical records for Frome, Thames and Tweed
- Population-based sewage estimates

HMS 8100 AVON at KNAPP MILL PIPE BRIDGE

River nitrate fluxes for selected catchments (T/Yr)

TL

HMS 6010 THAMES at TEDDINGTON WEIR

Historical-current LTLS IM run (1800-2010)

- □ HMS Observations are from 1974 2010
- Longer historical records for Frome and Tweed
- Population-based sewage estimates

HMS 8100 AVON at KNAPP MILL PIPE BRIDGE

River Phosphorus fluxes for selected catchments (T/yr)

HMS 6010 THAMES at TEDDINGTON WEIR

LTLS

LTL

Future sewage scenarios

- P1: population projections from Office of National Statistics to 2089; extended in proportion to UN projections to 2100 emission and treatment factors held constant
- P2: population as above; P stripping applied everywhere

Future scenario results

	Population	Nitrogen emissions	Nitrate* sewage flux	P emissions	P sewage flux	P sewage flux with stripping
	million	kT/yr	kT/yr	kT/yr	kT/yr	kT/yr
2010	63	263	91	44	13	7
2030	72	299	103	50	15	8
2050	78	325	112	54	17	8
2100	92	283	132	63	20	10

Influent to be Effluent flux treated at to river/sea WWTWs

NB. Phosphate dosing not included in P calculations.

*ammonium flux 10kT/yr rising to 15 kT/yr

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

UK Fluxes into the sea: 1800-2010 + future sewage scenarios LTLS

Centre for

Ecology & Hydrology

ATURAL ENVIRONMENT RESEARCH COUNCIL

UK Fluxes (Tonnes/year) Historical-current P1 Population increase P2 Population increase + P-stripping everywhere

Historical development of eutrophication in rivers LTLS

Water Framework Directive standards for annual mean P in rivers:

 \circ Good ecological status is 40 to 120 µg/litre (UKTAG, 2012)

Thank you... questions welcome

LTLS

LTL